Data Integration and Machine Learning: A Natural Synergy

Xin Luna Dong @ Amazon.com Theo Rekatsinas @ UW-Madison http://dataintegration.ai

Acknowledgement

What is Data Integration?

- **Data integration**: to provide unified access to data residing in multiple, autonomous data sources
 - **Data warehouse**: create a single store (materialized view) of data from different sources offline. Multi-billion dollar business.
 - **Virtual integration**: support query over a mediated schema by applying online query reformulation. E.g., Kayak.com.
- In the RDF world: different names for similar concepts
 - **Knowledge graph** is equivalent to a data warehouse. Has been widely used in Search and Voice
 - Linked data is equivalent to virtual integration

Different data formats \bigcirc

Data Extraction

- Heterogeneity everywhere
 - Different ways to express the same classes and attributes

SEE RANK

IMDB

Anahí

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro »

📞 Contact Info: View manager

- Heterogeneity everywhere
 - Different references to the same entity Ο

Data Extraction

- Heterogeneity everywhere
 - Conflicting values

IMDB

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 n Mexico City, Distrito Federal, Mexico

More at IMDbPro » Contact Info: View manager

Importance from a Practitioner's Point of View

- Entity linkage is indispensable whenever integrating data from different sources
- Data extraction is important for integrating non-relational data
- Data fusion is necessary in presence of erroneous data
- Schema alignment is helpful when integrating relational data, but not affordable for manual work if we integrate many sources

What is Machine Learning?

• Machine learning: teach computers to *learn* with data, not by programming

• More Formal definition

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, **improves with experience E**.

-- Tom Mitchell

Two Main Types of Machine Learning

• Supervised learning: learn by examples

Two Main Types of Machine Learning

• Unsupervised learning: find structure w/o examples

Two Main Types of Machine Learning

- Supervised learning: learn by examples
- Unsupervised learning: find structure w/o examples

1	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

Techniques for Supervised ML

Colin's 7 minute intro to bidirectional LSTMs

Everyone loves neural networks

- They have the word "neural" in them
- They have the word "network" in them
- You can draw fancy diagrams

Everyone loves neural networks

- They have the word "neural" in them
- They have the word "network" in them
- You can draw fancy diagrams
- This thing:

Everyone loves neural networks

- They have the word "neural" in them
- They have the word "network" in them
- You can draw fancy diagrams
- This thing:

• They are good at modeling high-dimensional non-linear functions and building sophisticated representations of complex sensory data

X T Input vector

Wx Weight matrix

σ(Wx) Non-linear function e.g. sigmoid

$$h = \sigma(Wx)$$
$$y = f(h)$$
$$f$$
Differentiable function
e.g. softmax

Let's use neural networks for language!

Classify sentences!

Tag parts of speech!

Find entity names!

Extract relations!

Let's use neural networks for language!

PROBLEM:

Fixed # of weights
Fixed # of features
Fixed size of input

The puppy is cute.

The puppy is really cute.

Seriously, did you see this puppy, look how cute it is!

- Sentence classification
 - Sentences have variable length!
- Word tagging
 - Fixed-width window around word misses full context

What's a recurrent neural network?

What's a recurrent neural network?

 $h_t = \sigma(Wx_t + Uh_{t-1})$

BIDIRECTIONAL

Bidirectional RNN

Concatenate the two hidden representations to produce the bidirectional representation

Full sentence:
$$f([h_4, h_4'])$$

Individual word: $f([h_i, h'_{n-i}])$

Okay, so RNNs are great!

- Except they don't work
 - (at least for long-term dependencies)
- Vanishing / exploding gradient

LSTM (Long Short Term Memory)

GRU (Gated Recurrent Unit)

75 other variations

Add more neural networks!

- Add "gates" that decide how to balance impact of new input vs hidden state
 - "Remember" gates
 - "Forget" gates
 - "Reset" gates
- Take input and previous state
- Hit 'em with some weights
- Run it through a sigmoid
- Multiply against h, or x,
 - Sigmoid values from 0 1 to signify how much to keep/forget

Key Lessons for ML [Domingos, 2012]

- Learning = Representation + Evaluation + Optimization
- It's generalization that counts: generalize beyond training examples
- Data alone is not enough: "no free lunch" theorem--No learner can beat random guessing over all possible functions to be learned
- Intuition fails in high dimensions: "curse of dimensionality"
- More data beats a cleverer algorithm: Google showed that after providing 300M images for DL image recognition, no flattening of the learning curve was observed.

DI & ML as Synergy

• ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION

- Automating DI tasks with training data
- Better understanding of semantics by neural network
- DI for effective ML: DATA, DATA, DATA
 - Create large-scale training datasets from different sources
 - Cleaning of data used for training

Give me a Fulscrum, I will Move the Earth -- Archimedes

Give me a DI funnel, I will Move ML

Many Systems Where DI & ML Leverage Each Other

Example System: Product Graph [Dong, KDD'18]

Goal of This Tutorial

- NO-GOALS
 - Present a comprehensive literature review for all topics we are covering
- GOALS
 - Present state-of-the-art for DI & ML synergy
 - Show how ML has been transforming DI and vice versa
 - Give some taste on which tool is working best for which tasks
 - Discuss what remains challenging

Outline

- Part I. Introduction
- Part II. ML for DI
- Part III. DI for ML
- Part IV. Conclusions and research directions

Data Integration Overview

- Entity linkage: linking records to entities; indispensable when different sources exist
- Data extraction: extracting structured data; important when non-relational data exist
- Data fusion: resolving conflicts; necessary in presence of erroneous data
- Schema alignment: aligning types and attributes; helpful when different relational schemas exist

Recipe

- Problem definition
- Brief history
- State-of-the-art ML solutions
- Summary w. a short answer

Theme I. Which ML Model Works Best?

Which ML Model Works Best?

D	NAME	CLASS	MARK	SEX
1	John Deo	Four	75	female
2	Max Ruin	Three	85	male
3	Arnold	Three	55	male
4	Krish Star	Four	60	female
5	John Mike	Four	60	female
6	Alex John	Four	55	male
7	My John Rob	Fifth	78	male
8	Asruid	Five	85	male
9	Tes Qry	Six	78	male
10	Big John	Four	55	female

Tree-based models

??

SCENE FROM "DAN'L DRUCE."

This interesting Januari to zeros, by Mr. W. S. Gilbert, has continued to engage the sympathies of a nightly sufficient andience at the Hzymarker Theatre, where it analysis and the sympathy of the sympathy of the enginetic and character were devided by us, in the enginetic and character were devided by us, in the enginetic and character were devided by us, in the set. Var ranks or ellip prohiby product to be permitted in a softwar reclare dwelling on the case of Norfolk, where his lanes ordings is which by fightly of from party His howard of money is stolen; but a different sort of treasure, helpholes female inflatt, is left by more myr-Eliot tabe of "Silas Marner," for a Divise gift to the each-neutral missibarbops, for beine makes answer with the solean exclamation, "Touch not the Lerd's gift." This character well and by Mr. Hereman Vein.

Neural network

Theme II. Does Supervised Learning Apply to DI?

- Supervised learning has made a big splash recently in many fields
- However, it is hard to bluntly apply supervised learning to DI tasks
 Our goal is to integrate data from many different data sources in different domains
 - The different sources present different data features and distributions
 - Collecting training labels for each source is a huge cost

Outline

- Part I. Introduction
- Part II. ML for DI
 - ML for entity linkage
 - ML for data extraction
 - ML for data fusion
 - ML for schema alignment
- Part III. DI for ML
- Part IV. Conclusions and research direction

What is Entity Linkage?

• Definition: Partition a given set **R** of records, such that each partition corresponds to a distinct real-world entity.

SEE RANK

Are they the same entity?

IMDB

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro » Contact Info: View manager

Quick Tour for Entity Linkage

• **Blocking**: efficiently create small blocks

Quick Tour for Entity Linkage

• Pairwise matching: compare all record

Quick Tour for Entity Linkage

• **Clustering**: group records into entities

50 Years of Entity Linkage

Rule-based and stats-based

 Blocking: e.g., Matching: e.g. of attribute va Clustering: e.g closure, etc. 	same name , avg similarity lues ,, transitive ~2000 (Early ML)	 Random forest for matching Random forest for matching F-msr: >95% w. ~1M labels Active learning for blocking & matching F-msr: 80%-98% w. ~1000 labels 2018 (Deep ML) 		
1969 (Pre-ML)	 Sup / Unsup learning Matching: Decisio F-msr: 70%-90% v Clustering: Correla Markov clustering 	-2015 (ML) on tree, SVM w. 500 labels ation clustering,	 Deep learning Deep learning Entity embedding 	

Rule-Based Solution

Rule-based and stats-based

- Blocking: e.g., same name
- Matching: e.g., avg similarity of attribute values
- Clustering: e.g., transitive closure, etc.

- [Fellegi and Sunter, 1969]
 - Match: sim(r, r') > $\boldsymbol{\Theta}_{h}$
 - Unmatch: sim(r, r') < Θ_{I}
 - Possible match:

$$\boldsymbol{\theta}_{|} < sim(r, r') < \boldsymbol{\theta}_{|}$$

Early ML Models

• [Köpcke et al, VLDB'10]

~2000 (Early ML)

Sup / Unsup learning

- Matching: Decision tree, SVM
 F-msr: 70%-90% w. 500 labels
- Clustering: Correlation clustering, Markov clustering

Collective Entity Resolution: Beyond Pairs

- Collective reasoning across entities.
- Constraints across entities:
 - Aggregate constraints
 - Transitivity, Exclusivity
 - Functional dependencies
- Use of probabilistic graphical models, PSL, MLN, to capture such domain knowledge

Out of the scope of this tutorial. For details: See tutorial by Getoor and Machanavajjhala, KDD, 2013.

before

after

[Example by Getoor and Machanavajjhala]

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

- Features: attribute similarity measured in various ways. E.g.,
 - string sim: Jaccard, Levenshtein
 - number sim: absolute diff, relative diff
- ML models on Freebase vs. IMDb
 - Logistic regression: Prec=0.99, Rec=0.6
 - Random forest: Prec=0.99, Rec=0.99

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

- Expt 1. IMDb vs. Freebase
 - Logistic regression: Prec=0.99, Rec=0.6
 - Random forest: Prec=0.99, Rec=0.99

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

- Features: attribute similarity measured in various ways. E.g.,
 - name sim: Jaccard, Levenshtein
 - age sim: absolute diff, relative diff
- ML models on Freebase vs. IMDb
 - Logistic regression: Prec=0.99, Rec=0.6
 - Random forest: Prec=0.99, Rec=0.99
 - XGBoost: marginally better, but sensitive to hyper-parameters

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

- Expt 2. IMDb vs. Amazon movies
 - 200K labels, ~150 features
 - Random forest: Prec=0.98, Rec=0.95

State-of-the-Art ML Models [Das et al., SIGMOD'17]

Magellan

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

~2015 (ML)

Falcon: apply active learning both for
 blocking and for matching; ~1000 labels

Dataset	Accuracy (%)			Cost	
Dataset	P	R	F_1	(# Questions)	
Products	90.9	74.5	81.9	\$57.6(960)	
Songs	96.0	99.3	97.6	\$54.0 (900)	
Citations	92.0	98.5	95.2	65.5(1087)	

0.1

2

2.5

Supervised learning

- Random forest for matching
 F-msr: >95% w. ~1M labels
- AL for blocking & matching
 F-msr: 80%-98% w. ~1000

labels

~2015 (ML)

• Apply active learning to minimize #labels

3.5

3

4.5

Training size (log 10)

5

5.5

6.5

6

Deep Learning Models [Mudgal et al., SIGMOD'18]

• Embedding on similarities

- Magellan
- Similar performance for structured data;

Significant improvement on texts and dirty data

2018 (Deep ML)

Deep learning

- Deep learning
- Entity embedding

Deep Learning Models [Ebraheem et al., VLDB'18]

- Embedding on entities
- Outperforming existing solution

2018 (Deep ML)

Deep learning

- Deep learning
- Entity embedding

Deep Learning Models [Trivedi et al., ACL'18]

 LinkNBed: Embeddings for entities as in knowledge embedding

Deep Learning Models [Trivedi et al., ACL'18]

- LinkNBed: Embeddings for entities as in knowledge embedding
- Performance better than previous knowledge embedding methods, but not comparable to random forest
- Enable linking different types of entities

Deep learning

2018 (Deep ML)

- Deep learning
- Entity embedding

Challenges in Applying ML on EL

- How can we obtain abundant training data for many types, many sources, and dynamically evolving data??
- From two sources to multiple sources

Challenges in Applying ML on EL

- How can we obtain abundant training data for many types, many sources, and dynamically evolving data??
- From one entity type to multiple types

Challenges in Applying ML on EL

- How can we obtain abundant training data for many types, many sources, and dynamically evolving data??
- From static data to dynamic data

Recipe for Entity Linkage

- Problem definition: Link references to the same entity
- Short answers

 \bigcirc

- RF w. attributesimilarity features
 - DL to handle texts and noises
- End-to-end solution is future work

oductio

Outline

- Part I. Introduction
- Part II. ML for DI
 - o ML for entity linkage
 - ML for data extraction
 - ML for data fusion
 - ML for schema alignment
- Part III. DI for ML
- Part IV. Conclusions and research direction

What is Data Extraction?

• Definition: Extract structured information, e.g., (entity, attribute, value) triples, from semi-structured data or unstructured data.

Three Types of Data Extraction

- Closed-world extraction: align to existing entities and attributes; e.g., (ID_Obama, place_of_birth, ID_USA)
- ClosedIE: align to existing attributes, but extract new entities; e.g., ("Xin Luna Dong", place_of_birth, "China")
- OpenIE: not limited by existing entities or attributes; e.g., ("Xin Luna Dong", "was born in", "China"), ("Luna", "is originally from", "China")

35 Years of Data Extraction

 Early Extraction Rule-based: Hear IBM System T 	t pattern, • WebTables: sea • DOM tree: wrap		- structured data Irch, extraction per induction	
 Tasks: IS-A, even 	*~2005 (Rel. Ex.)	•	2013 (Deep ML)	
1992 (Rule-based)	 Relation extraction from NER→EL→RE ○ Feature base ○ Kernel base ● Distant supervision ● OpenIE 	2008 (Semi-stru) m texts ed: LR, SVM ed: SVM on	 Deep learning Use RNN, CNN, attention for RE Data programming / Heterogeneous learning Revisit DOM extraction 	

Bill Gates founded Microsoft in 1975.

Relation Extraction

Entity **linkage**: linking two structured records Entity **linking**: linking a phrase in texts to an entity in a reference list (e.g., knowledge graph)

Relation Extraction

the rest of the tutorial.

Extraction from Texts: Feature Based [Zhou et al., ACL'05]

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

• Models

- Logistic regression
- SVM (Support Vector Machine)
- Features
 - Lexical: entity, part-of-speech, neighbor
 - Syntactic: **chunking**, parse tree
 - Semantic: concept hierarchy, entity class
 - Results
 - Prec=~60%, Rec=~50%

Extraction from Texts: Feature Based [Zhou et al., ACL'05]

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

Features	Р	R	F	523
Words	69.2	23.7	35.3	
+Entity Type	67.1	32.1	43.4	
+Mention Level	67.1	33.0	44.2	
+Overlap	57.4	40.9	47.8	Major
+Chunking	61.5	46.5	53.0	lviajor Lift
+Dependency Tree	62.1	47.2	53.6	
+Parse Tree	62.3	47.6	54.0	
+Semantic Resources	63.1	49.5	55.5	

Table 2: Contribution of different features over 43 relation subtypes in the test data

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

- Models
 - SVM (Support Vector Machine)
- Kernels
 - Subsequence
 - Dependency tree
 - Shortest dependency path
 - Convolution dependency

OpenIE

Shortest dependency path

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

- Models
 - SVM (Support Vector Machine)
- Kernels
 - Subsequence
 - Dependency tree
 - Shortest dependency path
 - Convolution dependency
 - Results
 - Prec=~70%, Rec=~40%

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - \circ Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

	5-fold CV on ACE 2003		
kernel method	Precision	Recall	F1
subsequence	0.703	0.389	0.546
dependency tree	0.681	0.290	0.485
shortest path	0.747	0.376	0.562

Table 1: Results of different kernels on ACE 2003 training set using 5-fold cross-validation.

Extraction from Texts: Deep Learning

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

• Same intuitions, different models

- (2012-13) Recursive NN: dependency tree [Socher et al., EMNLP'12] [Hashimoto et al., EMNLP'13]
- (2014-15) CNN: shortest dependency path [Zeng et al., COLING'14][Liu et al., ACL'15]
- (2015+) LSTM: shortest dependency path, lexical/syntactic/semantic features [Xu et al., EMNLP'15][Shwartz et al., ACL'16] [Nguyen, NAACL'16]

Example System: HyperNET [Shwartz et al., ACL'16]

Quality in identifying hypernyms: Prec = 0.9, Rec = 0.9

Label Generation for Extraction Training

Where are training labels from?

~2005 (Rel. Ex.)

• Semi-supervised learning

Iterative extraction [Carlson et al., AAAI'10]
 Use new extractions to retrain models
 E.g., NELL

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

Iterations	Estimated Precision (%)	# Promotions	
1-22	90	88,502	
23-44	71	77,835	
45-66	57	76,116	

Label Generation for Extraction Training

Where are training labels from?

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - \circ Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

• Semi-supervised learning

Iterative extraction [Carlson et al., AAAI'10]
 Use new extractions to retrain models
 E.g., NELL

Weak learning

Distant supervision [Mintz et al., ACL'09]
 Rule-based annotation with seed data
 E.g., DeepDive, Knowledge Vault

Will cover in "DI for ML"

Corpus Text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from ...Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft) (Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

Corpus Text

Bill Gates founded Microsoft in 1975. Bill Gates, founder of Microsoft, ... Bill Gates attended Harvard from ... Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)

(Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y

Corpus Text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from ...Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)

(Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y Feature: X, founder of Y

Corpus Text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from ...Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft) (Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y Feature: X, founder of Y

(Bill Gates, Harvard) Label: CollegeAttended Feature: X attended Y

For negative examples, sample unrelated pairs of entities.

Label Generation for Extraction Training

Where are training labels from?

Distant supervision: HyperNet++ [Christodoulopoulos & Mittal, 18]

- **Distant supervision**
- OpenIE

~2005 (Rel. Ex.)

Label Generation for Extraction Training

Where are training labels from?

• Semi-supervised learning

Iterative extraction [Carlson et al., AAAI'10]
 Use new extractions to retrain models
 E.g., NELL

• Weak learning

- Distant supervision [Mintz et al., ACL'09]
 Rule-based annotation with seed data
 E.g., DeepDive, Knowledge Vault
- Data programming [Ratner et al., NIPS'16]
 Manually write labelling functions
 E.g., Snorkle, Fouduer

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

Will cover in "DI for ML"

Snorkel: Code as Supervision [Ratner et al., NIPS'16, VLDB'18]

[Slide by Alex Ratner]

Example System: Fonduer [Wu et al., SIGMOD'18]

Fonduer combines a new **biLSTM with multimodal features** and **data programming**.

System	ELEC.	GEN.	
Knowledge Base	Digi-Key	GWAS Central	GWAS Catalog
# Entries in KB	376	3,008	4,023
# Entries in Fonduer	447	6,420	6,420
Coverage	0.99	0.82	0.80
Accuracy	0.87	0.87	0.89
# New Correct Entries	17	3,154	2,486
Increase in Correct Entries	1.05×	1.87×	1.42×

New version of code coming soon: https://github.com/HazyResearch/fonduer

OpenIE from Texts

Where are predicates from?

- ClosedIE
 - Only extracting facts corresponding to ontology
 - Normalize predicates by ontology
 - E.g., (Bill Gates, /person/isFounder, Microsoft)

Bill Gates founded Microsoft in 1975.

- **OpenIE** [Banko et al., IJCAI'07]
 - Extract all relations expressed in texts
 - Predicates are unnormalized strings
 - E.g., ("Bill Gates", "founded", "Microsoft")

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE

 - Kernel based: SVM
- Distant supervision
- OpenIE

Bill Gates founded Microsoft in 1975.

Bill Gates founded Microsoft in 1975.

Predicate: longest
 sequence of words as light
 verb construction

- Predicate: longest
 sequence of words as light
 verb construction
- Subject: learn left and right boundary
- Object: learn right boundary

- Predicate: longest
 sequence of words as light
 verb construction
- Subject: learn left and right boundary
- Object: learn right boundary
- LR for triple confidence
OpenIE from Texts [Mausam et al., EMNLP'12]

~2005 (Rel. Ex.)

Relation extraction from texts

- NER \rightarrow EL \rightarrow RE
 - Feature based: LR, SVM
 - Kernel based: SVM
- Distant supervision
- OpenIE

Where are predicates from?

Extraction from Semi-Structured Data

Extraction from semi-structured data

- WebTables: search, extraction
- DOM tree: wrapper induction

2008 (Semi-stru)

Why Semi-Structured Data?

• Knowledge Vault @ Google showed big potential from DOM-tree extraction [Dong et al., KDD'14][Dong et al., VLDB'14]

Extracted relationships

- (Top Gun, type.object.name, "Top Gun")
- (Top Gun, film.film.genre, Action)
- (Top Gun, film.film.directed_by, Tony Scott)
- (Top Gun, film.film.starring, Tom Cruise)
- (Top Gun, film.film.runtime, "1h 50min")
- (Top Gun, film.film.release_Date_s, "16 May 1986")

• Solution: find XPaths from DOM Trees

Filmography	Show all Show by	C Edit
Jump to: Actor Producer Soundtrack Director	r Writer Thanks Self Archiv	e footage
Actor (46 credits)		Hide 🔺
Top Gun: Maverick (pre-production) Maverick		2019
M:I 6 - Mission Impossible (filming) Ethan Hunt		2018
American Made (completed) Barry Seal		2017
Luna Park (announced)		
The Mummy Nick Morton		2017
Jack Reacher: Never Go Back Jack Reacher		2016
Mission: Impossible - Rogue Nation Ethan Hunt		2015
Edge of Tomorrow Cage		2014
Oblivion Jack		2013/I
Jack Reacher Reacher		2012
Rock of Ages Stacee Jaxx		2012
Mission: Impossible - Ghost Protocol Ethan Hunt		2011
Knight and Day Roy Miller		2010
Valkyrie Colonel Claus von Stauffenberg		2008
Tropic Thunder		2008

5	<pre>//div id="filmography"> == \$0</pre>
	<pre>><div class="head" data-category="actor" id="filmo-head-actor" onclick="</pre"></div></pre>
	"toggleFilmoCategory(this);">
	▼ <div class="filmo-category-section"></div>
	▼ <div class="filmo-row odd" id="actor-tt1745960"></div>
	
	2019
	▼
	<pre>Top Gun: Maverick</pre>
	<a href="<u">/r/legacy-inprod-name/title/tti/45960 class= in_production >pre- production
	., ,
	<
	<pre>Maverick</pre>
	<pre><div class="filmo-row even" id="actor-tt4912910"></div></pre>
	▶ <div class="filmo-row odd" id="actor-tt3532216"></div>
	▶ <div class="filmo-row even" id="actor-tt1123441"></div>
	▼ <div class="filmo-row odd" id="actor-tt2345759"></div>
	
	2017
	▼
	The Mummy
	Nick Morton
	<pre>div class="filmo-row even" id="actor-tt3393786"></pre>
	<pre>div class="filmo-row odd" id="actor-tt2381249"></pre>
	<pre>div class="filmo-row even" id="actor-tt1631867"></pre>
	<pre>div class="filmo-row odd" id="actor-tt1483013"></pre>
	<pre>div class="filmo-row even" id="actor-tt0790724"></pre>
	<pre><div class="filmo-row odd" id="actor-tt1336608"></div></pre>

• Challenge: slight variations from page to page

• Challenge: slight variations from page to page

Sample learned XPaths on IMDb

 //*[@itemprop="name"]

Ensure high recall

- //*[@class="bp_item bp_text_only"]/*/*/*[@class="bp_heading"]
- //*[following-sibling::*[position()=3][@class="subheading"]]/*[followin g-sibling::*[position()=1][@class="attribute"]]
- //*[preceding-sibling::node()[normalize-space(.)!=""][text()="Languag e:"]

Distantly Supervised Extraction

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

• Annotation-based extraction

- Pros: high precision and recall
- Cons: does not scale--annotation per cluster per website

- Distantly-supervised extraction
 - Step 1. Use seed data to automatically annotate
 - Step 2. Use the (noisy) annotations for training
 - E.g., DeepDive, Knowledge Vault

Genre

Release Date

Movie entity

Extracted triples

- (Top Gun, type.object.name, "Top Gun")
- (Top Gun, film.film.genre, Action)
- (Top Gun, film.film.directed_by, Tony Scott)
- (Top Gun, film.film.starring, Tom Cruise)
- (Top Gun, film.film.runtime, "1h 50min")
- (Top Gun, film.film.release_Date_s, "16 May 1986")

Talk on Tue Research 11am, Poster on Tue Posters I 17:30pm

Metascore Reviews

Metascore Reviews

vs Popularity

• Extraction experiments on SWDE benchmark

Vertical	Predicate	edicate Vertex++ CERES	RES-F	-Full Vertical		Vertical Predicate		Vertex++			CERES-Full				
, ci ticui	Treatent	Р	R	F1	Р	R	F1			Р	R	F1	Р	R	F1
	Title	1.00	0 1.00 1	1.00	1.00	1.00	1.00		Name	1.00	1.00	1.00	1.00	1.00	1.00
Movie	Director	0.99	0.99	0.99	0.99	0.99	0.99	9 University	Туре	1.00	1.00	1.00	0.72	0.80	0.76
	Genre	0.88	0.87	0.87	0.93	0.97	0.95		Phone	0.97	0.92	0.94	0.85	0.95	0.90
	MPAA Rating	1.00	1.00	1.00	NA	NA	NA		Website	1.00	1.00	1.00	0.90	1.00	0.95
	Average	0.97	0.97	0.97	0.97	0.99	0.98	Y	Average	0.99	0.98	0.99	0.87	0.94	0.90
	Name	0.99	0.99	0.99	1.00	1.00	1.00		Title	0.99	0.99	0.99	1.00	0.90	0.95
	Team	1.00	1.00	1.00	0.91	1.00	0.95	Book	Author	0.97	0.96	0.96	0.72	0.88	0.79
NBAPlayer	Weight	1.00	1.00	1.00	1.00	1.00	1.00	DOOK	Publisher	0.85	0.85	0.85	0.97	0.77	0.86
	Height	1.00	1.00	1.00	1.00	0.90	0.95	0.95	Publication Date	0.90	0.90	0.90	1.00	0.40	0.57
	inorgin	1.00	1.00	1.00	1.00	0.70	0.75		ISBN-13	0.94	0.94	0.94	0.99	0.19	0.32
	Average	1.00	1.00	1.00	0.98	0.98	0.98		Average	0.93	0.93	0.93	0.94	0.63	0.70

Very high precision

Competent w. Wrapper induction w. manual annotation

• Extraction on long-tail movie websites

#Websites / #Webpages	33 / 434К
Language	English and 6 other languages
Domains	Animated films, Documentary films, Financial performance, etc.
# Annotated pages	70K (16%)
Annotated : Extracted #entities	1 : 2.6
Annotated : Extracted #triples	1: 3.0
# Extractions	1.25 M
Precision	90%

• Which model is the best?

- Logistic regression: best results (20K features on one website)
- Random forest: lower precision and recall
- Deep learning??

2013 (Deep ML)

Deep learning

- Use RNN, CNN, attention for RE
- Data programming / Heterogeneous learning
- Revisit DOM extraction

Challenges in Applying Deep Learning on Extracting Semi-structured Data

• Web layout is neither 1D sequence nor regular 2D grid, so CNN or RNN does not directly apply

WebTable Extraction [Limaye et al., VLDB'10]

- Model table annotation using interrelated random variables, represented by a probabilistic graphical model
 - Cell text (in Web table) and entity label (in catalog)
 - Column header (in Web table) and type label (in catalog)
 - Column type and cell entity (in Web table)

Extraction from

semi-structured data

extraction

WebTables: search,

2008 (Semi-stru)

Check-out 10-Year Best Paper Award for WebTable Search on Thursday!

WebTable Extraction [Limaye et al., VLDB'10]

Model table annotation using interrelated random variables, represented by a probabilistic graphical model

Extraction from semi-structured data

- WebTables: search, extraction
- DOM tree: wrapper
- induction

2008 (Semi-stru)

Check-out 10-Year Best Paper Award for WebTable Search on Thursday!

Entity pairs (in Web table) and relation (in catalog)

Challenges in Applying ML on DX

- Automatic data extraction cannot reach production quality requirement. How to improve precision?
- Every web designer has her own whim, but there are underlying patterns across websites. How to learn extraction patterns on different websites, especially for semi-structured sources?
- ClosedIE throws away too much data. How to apply OpenIE on all kinds of data?

Recipe for Data Extraction

- Problem definition: Extract structure from semi- or un-structured data
- Short answers
 - Wrapper induction has high prec/rec
 - Distant supervision is critical for collecting training data

oductio

 DL effective for texts and LR is often effective for semi-stru data

Outline

- Part I. Introduction
- Part II. ML for DI
 - o ML for entity linkage
 - ML for data extraction
 - ML for data fusion
 - ML for schema alignment
- Part III. DI for ML
- Part IV. Conclusions and research direction

What is Data Fusion?

- **Definition:** Resolving conflicting data and verifying facts.
- **Example:** "OK Google, How long is the Mississippi River?"

Mississippi River Facts - Mississippi National River and Recreation ... https://www.nps.gov/miss/riverfacts.htm •

Nov 14, 2017 - The staff of Itasca State Park at the Mississippi's headwaters suggest the main stem of the river is **2,552 miles** long. The US Geologic Survey has published a number of **2,300 miles**, the EPA says it is **2,320 miles** long, and the Mississippi National River and Recreation Area suggests the river's length is **2,350 miles**.

	Longest many stem rivers of the onneo states									
#•	Name •	Mouth ^[5] •	Length +	Source coordinates ^[11] •	Mouth coordinates ^[11]	Watershed area ^[12]	Discharge ^[12] •	States, provinces, and image ^{[5][11]}		
1	Missouri River	Mississippi River	2,341 mi 3,768 km ^[13]	45°55'39"N 111°30'29"W ^[14]	Q 38°48'49"N 90°07'11"W	529,353 mi ² 1,371,017 km ^{2[15]} ‡ ^[n 2]	69,100 ft ³ /s 1,956 m ³ /s [n 3]	Montana ^s , North Dakota, South Dakota, Nebraska, Iowa, Kansas, Missouri ^m		
2	Mississippi River	Gulf of Mexico	2,202 mi 3,544 km ^[17] [n 4]	47°14'22"N 95°12'29"W ^[18]	© 29°09'04"N 89°15'12"W	1,260,000 mi ² 3,270,000 km ^{2[19]} ‡ ^[n 5]	650,000 ft ³ /s 18,400 m ³ /s	Minnesota ⁸ , Wisconsin, Iowa, Illinois, Missouri, Kentucky, Tennessee, Arkansas, Mississippi, Louisiana ^m		

The Basic Setup of Data Fusion

Source Observations

True Facts

River	Attribute	Value
Mississippi River	Length	?
Missouri River	Length	?

Fact's true value

Goal: Find the **latent** true value of facts.

The Basic Setup of Data Fusion

Source Observations

True Facts

River	Attribute	Value
Mississippi River	Length	?
Missouri River	Length	?

Fact's true value

Idea: Use *redundancy* to infer the true value of each fact.

Majority Voting for Data Fusion

Source Observations

Source	River	Attribute	Value
KG	KG Mississippi River Length		2,320 mi
KG	Missouri River	Length	2,341 mi
Wikipedia	Mississippi River	Length	2,202 mi
Wikipedia Missouri River		Length	2,341 mi
USGS Mississippi River		Length	2,340 mi
USGS Missouri River		Length	2,540 mi

Majority voting can be limited. What if sources are correlated (e.g., copying)? Idea: Model source quality for accurate results.

True Facts

River	Attribute	Value		
Mississippi River	Length	?		
Missouri River	Length	2,341		

MV's assumptions

- 1. Sources report values independently
- 2. Sources are better than chance.

40 Years of Data Fusion (beyond Majority Voting)

Dawid-Skene model

- Model the error-rate of sources
- Expectation-maximization

Probabilistic Graphical Models

- Use of generative models
- Focus on unsupervised learning

• ~	1996 (Rule-based)	2016 (Deep ML)			
1979 (Statistical learning)	 20 Domain-specific Strategi Keep all values Pick a random value Take the average value Take the most receive 	07 (Probabilistic) es alue nt value	 Deep learning Use Restricted Boltzmann Machine; one layer version is equivalent with Dawid-Skene model Knowledge graph embeddings 		

A Probabilistic Model for Data Fusion

- Random variables: Introduce a *latent random variable* to represent the true value of each fact.
- **Features:** Source observations become features associated with different random variables.
- Model parameters: Weights related to the error-rates of each data source.

$$P(\text{Fact} = v | \text{data}) = \frac{1}{Z} \exp \sum_{s \in \text{Sources } v'} \sum_{s \in \text{Values}} \sigma_S^{v,v'} \cdot 1[S \text{ reports Fact} = v']$$
Normalizing constant
$$\sigma_S^{v,v'} = \log \left(\frac{\text{Error-rate of Source } S}{1 - \text{Error-rate of Source } S} \right)$$
Error-rate = probability that a source provides value v' instead of value v

error-rate scores

The Challenge of Training Data

- How much data do we need to train the data fusion model?
- **Theorem:** We need a number of labeled examples proportional to the number of sources [Ng and Jordan, NIPS'01]
- Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions and training data is limited!

Idea 1: Leverage redundancy and use unsupervised learning.

The Dawid-Skene Algorithm [Dawid and Skene, 1979]

Iterative process to estimate data source error rates

- Initialize "inferred" true value for each fact (e.g., use majority vote)
- 2. Estimate error rates for workers (using "inferred" true values)
- 3. Estimate **"inferred" true values** (using error rates, weight source votes according to quality)
- 4. Go to Step 2 and iterate until convergence

Assumptions: (1) average source error rate < 0.5, (2) dense source observations, (3) conditional independence of sources, (4) errors are uniformly distributed across all instances.

Bayesian Networks (BNs)

Local Markov Assumption: A variable X is independent of its

non-descendants given its parents (and only its parents).

Bayesian Networks (BNs)

Local Markov Assumption: A variable X is independent of its non-descendants given its parents (and *only* its parents).

Recipe for BNs

Set of random variables X Directed acyclic graph (each X[i] is a vertex) Conditional probability tables P(X | Parents(X))

Joint distribution: Factorizes over conditional probability tables

Where do independence assumptions come from?

Causal structure captures domain knowledge

- The flu causes sinus inflammation
- Allergies *also* cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches

Flu

R.N.

S.I.

All.

н

Factored joint distribution

[Example by Andrew McCallum]

Probabilistic Graphical Models for Data Fusion

Prior truth [Zhao et al., VLDB 2012] probability

Source Quality Setup: Identify true source claims

Entity (Movie)	Attribute (Cast)	Source
Harry Potter	Daniel Radcliffe	IMDB
Harry Potter	Emma Waston	IMDB
Harry Potter	Rupert Grint	IMDB
Harry Potter	Daniel Radcliffe	Netflix
Harry Potter	Daniel Radcliffe	BadSource.com
Harry Potter	Emma Waston	BadSource.com
Harry Potter	Johnny Depp	BadSource.com
Pirates 4	Johnny Depp	Hulu.com

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

Probabilistic Graphical Models for Data Fusion

[Zhao et al., VLDB 2012]

Modeling both source quality and extractor accuracy

[Dong et al., VLDB 2015]

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

Probabilistic Graphical Models for Data Fusion

Modeling source dependencies

[Platanios et al., ICML 2016]

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

PGMs in Data Fusion [Li et al., VLDB'14]

Table 6: Summary of data-fusion methods. X indicates that the method considers the particular evidence.

Category	Method	#Providers	Source trustworthiness	Item trustworthiness	Value Popularity	Value similarity	Value formatting	Copying
Baseline	Vote	X						
	HUB	X	X					
Web-link	AVGLOG	X	X					
based	INVEST	X	X					
	POOLEDINVEST	X	X					
	2-ESTIMATES	X	X					
IR based	3-ESTIMATES	X	X	X				
	COSINE	X	X					
	TRUTHFINDER	X	X			X		
Devesies based	ACCUPR	X	X			1000		
Bayesian based	POPACCU	X	X		X			
	ACCUSIM	X	X			X		
	ACCUFORMAT	X	X			X	X	
Copying affected	ACCUCOPY	X	X			X	X	X

Bayesian models capture source observations and source interactions.
PGMs in Data Fusion [Li et al., VLDB'14]

			Stock			Flight			
Category	Method	prec w. trust	prec w/o. trust	Trust dev	Trust diff	prec w. trust	prec w/o. trust	Trust dev	Trust diff
Baseline	Vote	-	.908	-	-	-	.864	-	-
	HUB	.913	.907	.11	.08	.939	.857	.2	.14
Web-link	AVGLOG	.910	.899	.17	13	.919	.839	.24	.001
based	INVEST	.924	.764	.39	31	.945	.754	.29	12
	POOLEDINVEST	.924	.856	1.29	0.29	.945	.921	17.26	7.45
THE REPORT OF THE	2-ESTIMATES	.910	.903	.15	14	.87	.754	.46	35
IR based	3-ESTIMATES	.910	.905	.16	15	.87	.708	.95	94
	COSINE	.910	.900	.21	17	.87	.791	.48	41
	TRUTHFINDER	.923	.911	.15	.12	.957	.793	.25	.16
	ACCUPR	.910	.899	.14	11	.91	.868	.16	06
	POPACCU	.909	.892	.14	11	.958	.925	.17	11
Bayesian	ACCUSIM	.918	.913	.17	16	.903	.844	.2	09
based	ACCUFORMAT	.918	.911	.17	16	.903	.844	.2	09
	ACCUSIMATTR	.950	.929	.17	16	.952	.833	.19	08
	ACCUFORMATATTR	.948	.930	.17	16	.952	.833	.19	08
Copying affected	ACCUCOPY	.958	.892	.28	11	.960	.943	.16	14

Modeling the quality of data sources leads to improved accuracy.

Dawid-Skene and Deep Learning [Shaham et al., ICML'16]

Theorem: The Dawid and Skene model is *equivalent* to a Restricted Boltzmann Machine (RBM) with a single hidden node.

When the conditional independence assumption of Dawid-Skene does not hold, a better approximation may be obtained from a deeper network.

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

A knowledge graph can be encoded as a tensor.

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

Neural networks can be used to obtain richer representations.

Knowledge Graph Embeddings

Entity and Relation Space

- TransE: score(h,r,t)=-||h+r-t||_{1/2}
- Hot field with increasing interest
 [Survey by Wang et al., TKDE 2017]

Example: Learn embeddings from IMDb data and identify various types of errors in WikiData [Dong et al., KDD'18]

Subject	Relation	Target	Reason
The Moises Padilla Story	writtenBy	César Ámigo Aguilar	Linkage error
Bajrangi Bhaijaan	writtenBy	Yo Yo Honey Singh	Wrong relationship
Piste noire	writtenBy	Jalil Naciri	Wrong relationship
Enter the Ninja	musicComposedBy	Michael Lewis	Linkage error
The Secret Life of Words	musicComposedBy	Hal Hartley	Cannot confirm

The Challenge of Training Data

- How much data do we need to train the data fusion model?
- **Theorem:** We need a number of labeled examples proportional to the number of sources [Ng and Jordan, NIPS'01]
- Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions and training data is limited!

Idea 1: Leverage redundancy and used unsupervised learning.Idea 2: Limit model parameters and use a small number of training data.

SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD'17]

Limit the informative parameters of the model by using domain knowledge Key Idea: Sources have (domain specific) features that are indicative of error rates Example:

What Queen Elizabeth Just Did For Donald Trump Makes Obama Look Like An Idiot

- newly registered similar to existing domain
- traffic statistics
- text quality (e.g., misspelled words, grammatical errors)
- sentiment analysis
- avg. time per task
- number of tasks
- market used

SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD'17]

Genomics data: 2.7k sources (articles), 571 objects (genedisease), 4 domain features (year, citation, author, journal)

Challenges in Data Fusion

- There are few solutions for unstructured data. Mostly work on fact verification [Tutorial by Dong et al., KDD`2018]. Most data Fusion solutions assume data extraction. Can state-of-the art DL help?
- Using training data is key and semi-supervised learning can significantly improve the quality of Data Fusion results. How can one collect training data effectively without manual annotation?
- We have only scratched the surface of what representation learning and deep learning methods can offer. Can deep learning streamline data fusion? What are its limitations?

Recipe for Data Fusion

- Problem definition: Resolve conflicts and obtain correct values
- Short answers
 - Reasoning about source quality is key and works for easy cases
 - Semi-supervised learning has shown
 BIG potential
 - Representation learning provides positive evidence for streamlining data fusion.

duct

Read

Outline

- Part I. Introduction
- Part II. ML for DI
 - o ML for entity linkage
 - ML for data extraction
 - ML for data fusion
 - ML for schema alignment
- Part III. DI for ML
- Part IV. Conclusions and research direction

What is Schema Alignment?

• Definition: Align schemas and understand which attributes have the same semantics.

SEE RANK

IMDB

Anahí

Actress | Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in which she played a 17 year old girl while she was 13, and Vivo Por Elena, in which she played Talita, a naive and innocent teenager. Anahi lives with her mother and sister name Marychelo. She hopes to become a fashion designer one day, and is currently pursuing a career in singing. See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro »

Secontact Info: View manager

WikiData

Anahí P	uente (Q169461)	
Mexican singer-s Mia	congwriter and actress	
 In more langua 	ages Configure	
Language	Label	Description
English	Anahí Puente	Mexican singer-songwriter and actress
Chinese	阿纳希·普恩特	No description defined
Spanish	Anahí Puente	Cantante, compositora y actriz mexicana
date of birth	7 November 1983	
	imported from	Italian Wikipedia
		+ add reference
		+ add value

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr, email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)

• Mediated schema: a unified and virtual view of

the salient aspects of the domain

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr, email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)
MS	(n, pP, pA, wP, wA)

• Attribute matching: correspondences between schema attributes

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr, email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)
MS	(n, pP, pA, wP, wA)
MSAM	MS.n: S1.name, S2.name, S3a.name, MS.pP: S1.hPhone, S3b.resPh, S4.pPh MS.pA: S1.hAddr, S4.pAddr MS.wP: S1.oPhone, S2.phone, MS.wA: S1.oAddr, S2.addr, S5.wAddr

• Schema mapping: transformation between records in different schemas

S1	(name, hPhone, hAddr, oPhone, oAddr)
S2	(name, phone, addr, email)
S3	a: (id, name); b: (id, resPh, workPh)
S4	(name, pPh, pAddr)
S5	(name, wPh, wAddr)
MS	(n, pP, pA, wP, wA)
MSSM (GAV)	MS(n, pP, pA, wP, wA) :- S1(n, pP, pA, wP, wA) MS(n, _, _, wP, wA) :- S2(n, wP, wA, e) MS(n, pP, _, wP, _) :- S3a(i, n), S3b(i, pP, wP) MS(n, pP, pA, _, _) :- S4(n, pP, pA) MS(n, _, _, wP, wA) :- S5(n, wP, wA)

30 Years of Schema Alignment

 Description Logics Gav vs. Lav. vs. Glav Answering queries using views Warehouse ve. Flue 		 Pay-as-you-go dataspa Probabilistic sche alignment 	ces ma
• Warehouse vs. Ell • 1	994 (Early ML)		2013 (Deep ML)
~1990 (Desc Logics)	20	05 (Dataspaces)	•
S	 Semi-Auto mapping Learning to match Schema mapping: C Data exchange 	Clio	 Logic & Deep learning Collective disc. by PSL Universal schema

Early ML Models [Rahm and Bernstein, VLDBJ'2001]

Signals: name, description, type, key, graph structure, values

Early ML Models [Doan et al., Sigmod'01]

Mediated schema

Extracted Data

Training data for base learners

Meta learner--Stacking

ML

Base learners: kNN, naive Bayes, etc.

Early ML Models [Doan et al., Sigmod'01]

Collective Mapping Discovery by PSL [Kimmig et al, ICDE'17]

Step 1. Generate candidate mappings

Universal Schema [Riedel et al., NAACL'13][Yao et al., AKBC'13]

• Attribute matching + Instance inference

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Relation prediction

Type prediction

Universal Schema [Riedel et al., NAACL'13]

- Attribute matching → Instance inference
- f(e_s, r, e_o) is computed using embeddings;
 the higher, the more likely to be true
- DistMult is a relation embedding model

Limitation: Cannot apply to new entities or relations

Figure 3: The continuous representations for model F, E and DISTMULT. [Toutanova et al., EMNLP'15]

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Textual Pattern	Count
SUBJECT \xrightarrow{appos} founder \xrightarrow{prep} of \xrightarrow{pobj} OBJECT	12
SUBJECT \leftarrow co-founded \rightarrow OBJECT	3
SUBJECT appos co-founder prep of pobj OBJECT	Similarity of phrases
SUBJECT conj co-founder of pobj OBJECT	Similarity of phrases
SUBJECT with to co-founded	\rightarrow CNN
SUBJECT signed signed setablishing	
SUBJECT with founders prep of OBJECT	2
SUBJECT appos founders prep of pobj OBJECT	2
SUBJECT one prep of pobj founders prep of pobj OBJECT	2
SUBJECT to founded dobj production OBJECT	2
SUBJECT appos partner with prep founded dobj production	conj →OBJECT 2
SUBJECT + pobj by + prep co-founded + remod OBJECT	1
SUBJECT of co-founder prep of pobj OBJECT	1
SUBJECT dep co-founder prep of pobj	1
SUBJECT + helped xcomp establish dobj	1
SUBJECT signed xcomp creating dobj	1

EMNLP'15]

Columnless Univ. Schema w. CNN [Toutanova et al.,

Relation: organizationFoundedBy

Columnless Univ. Schema w. CNN [Toutanova et al., EMNLP'15]

Figure 4: The convolutional neural network architecture for representing textual relations.

Columnless Univ. Schema w. RNN [Verga et al., ACL'16]

Input :

• Similar sequences of context tokens should be embedded similarly

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Rowless Univ. Schema [Verga et al., ACL'16]

- Infer relation from a set of observed relations
- Similar to schema mapping w. signals from values

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Rowless Univ. Schema [Verga et al., ACL'16]

Rowless & Columnless

2013 (Deep ML)

Logic & Deep learning

- Collective disc. by PSL
- Universal schema

Model	MRR	Hits@10
Entity-pair Embeddings	31.85	51.72
Entity-pair Embeddings-LSTM	33.37	54.39
Attention	31.92	51.67
Attention-LSTM	30.00	53.35
Max Relation	31.71	51.94
Max Relation-LSTM	30.77	54.80

Recall still low

(a)

Model	MRR	Hits@10
Entity-pair Embeddings	5.23	11.94
Attention	29.75	49.69
Attention-LSTM	27.95	51.05
Max Relation	28.46	48.15
Max Relation-LSTM	29.61	54.19

Similar for new entity pairs

Schema Mapping vs. Universal Schema

	Schema matching	Universal schema
Granularity	Column-level decision	Cell-level decision
Expressiveness	Mainly 1:1 mapping	Allow overlap, subset/superset, etc.
Signals	Name, description, type, key, graph structure, values	Values
Results	Accu: 70-90%	MRR=~0.3, Hits@10=~0.5
Community	Database	NLP

Challenges in Applying Deep Learning on SM

• How can we combine techs from schema matching and universal schema??

Recipe for Schema Alignment

- Problem definition: Align attributes with the same semantics
- Short answers
 - Interactive semiautomatic mapping
 - DL-based universal schema revived the field
 - Combine schema matching and universal schema for future

Revisit Theme I. Which ML Model Works Best?

DI tasks	Hyperplanes	Kernal	Tree-based (e.g.,	Graphical models	Logic programs	Neural networks
	(e.g., Log Reg)	(e.g., SVM)	Random forest)	(e.g., CRF)	(e.g, soft logic)	(e.g., RNN)
Entity resolution	Х	Х	Х		Х	Х
Data fusion	Х			Х		
DOM extraction	Х					
Text extraction	Х	X		Х		Х
Schema alignment	Х		Х	Х	Х	Х

For structured data, RF works well, and LR is often effective For texts and semantics, deep learning shows big promise

Revisit Theme II. Does Supervised Learning Apply to DI?

Active learning, semi-supervised learning, and weak supervision lead to dramatically more efficient solutions.

Outline

- Part I. Introduction
- Part II. ML for DI
- Part III. DI for ML
 - Training data creation
 - Data cleaning
- Part IV. Conclusions and research directions

ML is data-hungry

Successful ML requires Data Integration

IM GENET MovieLens

FANtA

COCO is a large-scale object detection, segmentation, and captioning dataset.

Large collections of manually curated training data are necessary for progress in ML.
Successful ML requires Data Integration

IM GENET MovieLens

FANTA

COCO is a large-scale object detection, segmentation, and captioning dataset.

Large collections of manually curated **training data** are necessary for progress in ML.

Outline

- Part I. Introduction
- Part II. ML for DI
- Part III. DI for ML
 - Training data creation
 - Data cleaning
- Part IV. Conclusions and research directions

50 Years of Artificial Intelligence

 Expert systems Manually curated facts and rules Use of inference No support for high 	l knowledge bases of engines igh-dimensional data 1990s (Features)	Graphical models and logic Relational statistical learning Markov logic network	2010s (Representation Learning)
1970s (Rules)	 Classical ML Low complexity m Strong priors that knowledge (featur Small amounts of 	009 (PGMs) odels capture domain e engineering) training data	 Deep learning Automatically learn representations Impressive with high-dimensional data Data hungry!

The ML Pipeline in the Deep Learning Era

The ML Pipeline in the Deep Learning Era

Main pain point today, most time spent in labeling data.

Training Data: Challenges and Opportunities

- Collecting training data is **expensive** and **slow**.
- We are overfitting to our training data. [Recht et al., 2018]
 Hand-labeled training data does not change
- Training data is the point to inject domain knowledge
 - Modern ML is too complex to hand-tune features and priors

Training Data: Challenges and Opportunities

- Collecting training data is **expensive** and **slow**.
- We are overfitting to our training data. [Recht et al., 2018]
 Hand-labeled training data does not change
- Training data is the point to inject domain knowledge
 - Modern ML is too complex to hand-tune features and priors

How do we get training data more effectively?

The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect) labels; prediction on a larger set, and then training of a model.

Semi-supervised learning and ensemble learning

Examples:

- use of non-expert labelers (crowdsourcing),
- use of curated catalogs (distant supervision)
- use of heuristic rules (labeling functions)

NELL

snorke

HoloClean

The Rise of Weak Supervision

Alexa - Customer embrace of Alexa continues, with Alexa-enabled devices among the bestselling items across all of Amazon. We're seeing extremely strong adoption by other companies and developers that want to create their own experiences with Alexa. There are now more than 30,000 skills for Alexa from outside developers, and customers can control more than 4,000 smart home devices from 1,200 unique brands with Alexa. The foundations of Alexa continue to get smarter every day too. We've developed and implemented an on-device fingerprinting technique, which keeps your device from waking up when it hears an Alexa commercial on TV. (This technology ensured that our Alexa Super Bowl commercial didn't wake up millions of devices.) Far-field speech recognition (already very good) has improved by 15% over the last year; and in the U.S., U.K., and Germany, we've improved Alexa's spoken language understanding by more than 2% over the last 12 months through enhancements in Alexa's machine learning components and the use of semi-supervised learning techniques. (These semisupervised learning techniques reduced the amount of labeled data needed to achieve the same accuracy improvement by 40 times!) Finally, we've dramatically reduced the amount of time required to teach Alexa new langua by using machine translation and transfer learning techniques, which allows us to serve customers in more countries (like India and Japan).

The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect) labels; prediction on a larger set, and then training of a model.

Related to semi-supervised learning and ensemble learning

Examples: use of non-expert labelers (crowdsourcing), use of curated catalogs (distant supervision), use of heuristic rules (labeling functions)

Methods developed to tackle data integration problems are closely related to weak supervision.

Setup: Supervised learning but instead of gold groundtruth one has access to multiple annotators providing (possibly noisy) labels (no absolute gold standard).

Task: Learn a classifier from multiple noisy labels.

Closely related to Dawid-Skene!

Difference: Estimating the ground truth and the annotator performance is a byproduct here. Goal is to learn a classifier.

Example Task: Binary classification

 $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ N examples, with labels $\mathbf{y}_i = y_i^1, \dots, y_I^R$ provided by R different annotators

Example Task: Binary classification

Annotator performance:

Sensitivity (true positive rate) $\alpha^{j} = \Pr[y^{j} = 1 | y = 1]$ $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ N examples, with labels $\mathbf{y}_i = y_i^1, \dots, y_I^R$ provided by R different annotators

Specificity (1 - false positive rate) $eta^j = \Pr[y^j = 0 | y = 0]$

Example Task: Binary classification

Annotator performance:

Sensitivity (true positive rate)
$$lpha^j = \Pr[y^j = 1 | y = 1]$$

Learning: $\Pr[\mathcal{D}|\theta] = \prod_{i=1}^{N} \left[a_i p_i + b_i (1-p_i)\right]$

 $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^N$ N examples, with labels $\mathbf{y}_i = y_i^1, \dots, y_I^R$ provided by R different annotators

EM algorithm to obtain maximum-likelihood estimates. Difference with Dawid-Skene is the estimation of *w*.

Goal: Extracting structured knowledge from text.

Hypothesis: If two entities belong to a certain relation, any sentence containing those two entities is likely to express that relation.

Idea: Use a *database* of relations to gets lots of *noisy* training examples

- Instead of hand-creating seed tuples (bootstrapping)
- Instead of using hand-labeled corpus (supervised)

Benefits: has the advantages of supervised learning (leverage reliable hand-created knowledge), has the advantages of unsupervised learning (leverage unlimited amounts of text data).

Corpus Text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from ...Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft) (Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

Corpus Text

Bill Gates founded Microsoft in 1975. Bill Gates, founder of Microsoft, ... Bill Gates attended Harvard from ... Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)

(Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y

Corpus Text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from ...Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)

(Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y Feature: X, founder of Y

Corpus Text

Bill Gates founded Microsoft in 1975.Bill Gates, founder of Microsoft, ...Bill Gates attended Harvard from ...Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft) (Larry Page, Founder, Google) (Bill Gates, CollegeAttended, Harvard)

Training Data

(Bill Gates, Microsoft) Label: Founder Feature: X founded Y Feature: X, founder of Y

(Bill Gates, Harvard) Label: CollegeAttended Feature: X attended Y

For negative examples, sample unrelated pairs of entities.

Entity Linking is an inherent problem in Distant Supervision.

The quality of matches can vary significantly and has a direct effect on extraction quality.

Snorkel: Code as Supervision [Ratner et al., NIPS'16, VLDB'18]

[Slide by Alex Ratner]

Snorkel: Code as Supervision [Ratner et al., NIPS'16, VLDB'18]

Snorkel biomedical workshop in collaboration with the NIH Mobilize Center

15 companies and research groups attended

How well did these new Snorkel users do?

New Snorkel users matched or beat 7 hours of hand-labeling

2.8x Faster than hand-labeling data

Average improvement in model performance

3rd Place Score No machine learning experience Beginner-level Python

[Slide by Alex Ratner]

Alex (the creator of Snorkel) is on the market!

Alex Ratner

You can find Alex at the poster session tonight!

https://ajratner.github.io

Challenges in Creating Training Data

- Richly-formatted data is still a challenge. How can attack weak supervision when data includes images, text, tables, video, etc.?
- Combining weak supervision with other data enrichment techniques such as data augmentation is an exciting direction. How can reinforcement learning help here (<u>http://goo.gl/K2qopQ</u>)?
- How can we combine weak supervision with techniques from semi-supervised?
- Most work on weak supervision focuses on text or images. What about relational data? How can weak supervision be applied there?

Recipe for Creating Training Data

- Problem definition: Go beyond gold labels to noisy training data.
- Short answers
 - Transition from "gold" labels to "high-confidence" labels.
 - Modeling error rates is key. The notion of *data* source is different.
 - Need for debugging tools, bias detection, and recommendations of weak supervision signals.

Outline

- Part I. Introduction
- Part II. ML for DI
- Part III. DI for ML
 - Training data creation
 - Data cleaning
- Part IV. Conclusions and research directions

Successful ML requires Data Integration

IM GENET MovieLens

FANIA

COCO is a large-scale object detection, segmentation, and captioning dataset.

Large collections of **manually curated** training data are necessary for progress in ML.

Noisy data is a bottleneck

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

Source: Crowdflower

Cleaning and organizing data comprises 60% of the time spent on an analytics of AI project.

50 Years of Data Cleaning_{Data transforms}

 E. F. Codd Understanding r #7). FDT - Bullet 7(3):23–28, 1975 Null-related feat 	relations (installment <i>in of ACM SIGMOD</i> , 5. tures of DBs 1980s (Normalization)	 Part of ETL Errors within a across source Transformatic and mapping domain-know crucial 	n a source and rces ition workflows ig rules; wledge is 2000s (Data Repairs)	
1970s (Nulls)	 Integrity Constraints Normal forms to reduce redundancy and integrity FDs, MVDs etc. 	1990s (Warehouses)	 Constraints and Probabilities Dichotomies for consistent query answering Minimality-based repairs to obtain consistent instances Statistical repairs Anomaly detection 	

Where are we today?

Machine learning and statistical analysis are becoming more prevalent.

Error detection (Diagnosis)

- Anomaly detection [Chandola et al., ACM CSUR, 2009]
- Bayesian analysis (Data X-Ray) [Wang et al., SIGMOD'15]
- Outlier detection over streams (Macrobase) [Bailis et al., SIMGOD'17]

Where are we today?

Machine learning and statistical analysis are becoming more prevalent.

Data Repairing (Treatment)

- Classical ML (SCARE, ERACER) [Yakout et al., VLDB'11, SIGMOD'13, Mayfield et al., SIGMOD'10]
- Boosting [Krishan et al., 2017]
- Weakly-supervised ML (HoloClean) [Rekatsinas et al., VLDB'17]

				Each cell is a random variable			
Address	City	State	Zip				
3465 S Morgan ST	Chicago	IL	60608	Constraints introduce correlations c3: City, State, Address \rightarrow Zip			
3465 S Morgan ST	Chicago	IL	60609				
3465 S Morgan ST	Chicago	IL	60609	~			
3465 S Morgan ST	Cicago	IL	60608	External data introduce evidence			
				Ext_Address Ext_City Ext_State Ext_Zip			
				3465 S Morgan ST Chicago IL 60608			

Error Detection: MacroBase [Bailis et al., SIGMOD'17]

Streaming Feature Selection

Setup: Online learning of a classifier (e.g., LR)

Goal: Return top-k discriminative features

Weight-Median Sketch

Sketch of a classifier for fast updates and queries for estimates of each weight and comes with approximation guarantees

[Figure by Kai Sheng Tai]

A data analytics tool that prioritizes attention in large datasets. **Code at: macrobase.stanford.edu**

Data Repairing: BoostClean [Krishnan et al., 2017]

Ensemble learning for error detection and data repairing.

Relies on domain-specific detection and repairing.

Builds upon boosting to identify repairs that will maximize the performance improvement of a downstream classifier.

On-demand cleaning!

Scalable machine learning for data enrichment

loloClean

Code available at: http://www.holoclean.io

Data Repairing: HoloClean [Rekatsinas et al., VLDB'17]

Holistic data cleaning framework: combines a variety of heterogeneous signals (e.g., integrity constraints, external knowledge, quantitative statistics)

Data Repairing: HoloClean [Rekatsinas et al., VLDB'17]

	Address	City	State	Zip	
t1	3465 S Morgan ST	Chicago	IL	60608	
t2	3465 S Morgan ST	Chicago	(IL)	60609	
t3	3465 S Morgan ST	Chicago	IL	60609	
t4	3465 S Morgan ST	Cicago	IL.	60608	

Scalable learning and inference: Hard constraints lead to complex and non-scalable models. Novel relaxation to features over individual cells.

Data Repairing: HoloClean [Rekatsinas et al., VLDB'17]

HoloClean is 2x more accurate. Competing methods either do not scale or perform no correct repairs.

HoloClean: our approach combining all signals and using inference Holistic[Chu,2013]: state-of-the-art for constraints & minimality KATARA[Chu,2015]: state-of-the-art for external data SCARE[Yakout,2013]: state-of-the-art ML & qualitative statistics

Probabilistic Unclean Databases [De Sa et al., 2018]

Unclean Database Generation

 (A) Schema, Attribute Domain, and Constraint Specification

 Tuple ID
 Business Listing
 Integrity Constraints

 Tuple Identifiers
 Business City
 State
 Zip Code
 PK: Business ID FD: Zip Code → City, State

(B) The Two-Actor Generation Process

Tuple Identifiers Business City State Zip Code ID Tuple Constraints t1 Porter Madison WI 53703 t2 Graft Madison WI 53703 Generator Φ t3 EVP Coffee Madison WI 53703 Intentional Data Model \mathcal{I} Sample of clean intended data]

> **Business** City State **Zip Code** ID t1. Porter Madison WI 53703 Realizer It2 53703 Graft Verona WI Model \mathcal{R} t3 EVP Coffee 53703 Madison WI t4 60609 Graft Chicago Dirty data instance .1* observed after

observed after applying the Realizer A two-actor noisy channel model for managing erroneous data.

Preprint: A Formal Framework For Probabilistic Unclean Databases

https://arxiv.org/abs/1801.06750

Challenges in Data Cleaning

- Error detection is still a challenge. To what extent is ML useful for error detection? Tuple-scoped approaches seem to be dominating. Is deep learning useful?
- We need a formal framework to describe when automated solutions are possible.
- A major bottleneck is the collection of training data. Can we leverage weak supervision and data augmentation more effectively?
- Limited end-to-end solutions. Data cleaning workloads (mixed relational and statistical workloads) pose unique scalability challenges.

Recipe for Data Cleaning

- Problem definition: Detect and repair erroneous data.
- Short answers
 - ML can help partly-automate cleaning.
 Domain-expertise is still required.
 - Scalability of ML-based data cleaning methods is a pressing challenge. Exciting systems research!
 - We need more end-to-end systems!

Outline

- Part I. Introduction
- Part II. ML for DI
- Part III. DI for ML
 - Creating training data
 - Data cleaning
- Part IV. Conclusions and research direction

DI and ML: A Natural Synergy

• Data integration is one of the oldest problems in data management

- Transition from logic to probabilities revolutionized data integration
 - Probabilities allow us to reason about inherently noisy data
 - Similar to the Al-revolution in the 80s [https://vimeo.com/48195434]

• Modern machine learning and deep learning have the power to streamline DI

Revisit: Recipe for Data Extraction

- Problem definition: Extract structure from semi- or un-structured data
- Short answers
 - Wrapper induction has high prec/rec
 - Distant supervision is critical for collecting training data

oductio

 DL effective for texts and LR is often effective for semi-stru data

Revisit: Recipe for Schema Alignment

- Problem definition: Align attributes with the same semantics
- Short answers
 - Interactive semiautomatic mapping
 - DL-based universal schema revived the field
 - Combine schema matching and universal schema for future

Revisit: Recipe for Entity Linkage

- Problem definition: Link references to the same entity
- Short answers

 \bigcirc

- RF w. attributesimilarity features
 - DL to handle texts and noises
- End-to-end solution is future work

oductio

Recipe for Data Fusion

- Problem definition: Resolve conflicts and obtain correct values
- Short answers
 - Reasoning about source quality is key and works for easy cases
 - Semi-supervised learning has shown
 BIG potential
 - Representation learning provides positive evidence for streamlining data fusion.

duct

Read

DI and ML: A Natural Synergy

• Data is bottleneck of modern ML and AI applications

- DI-related methods and algorithms have revolutionized the way supervision is performed.
 - Weak supervision signals are integrated into training datasets

• Data integration solutions (e.g., data cataloging solutions) can lead to cheaper collection of training data and more effective data enrichment

Revisit: Recipe for Creating Training Data

- Problem definition: Go beyond gold labels to noisy training data.
- Short answers
 - Transition from "gold" labels to "high-confidence" labels.
 - Modeling error rates is key. The notion of *data* source is different.
 - Need for debugging tools, bias detection, and recommendations of weak supervision signals.

Recipe for Data Cleaning

- Problem definition: Detect and repair erroneous data.
- Short answers
 - ML can help partly-automate cleaning.
 Domain-expertise is still required.
 - Scalability of ML-based data cleaning methods is a pressing challenge. Exciting systems research!
 - We need more end-to-end systems!

Opportunities for DI

One System vs. An Ecosystem: Every RBMS is a monolithic system. This paradigm has failed for DI. Tools for different DI tasks are prevalent. We need abstractions and execution frameworks for such ecosystems.

Humans-in-the-loop: DI tasks can be very complex. Is weak supervision the right approach to inject domain knowledge? What about quality evaluation?

Multi-modal DI: ML-based DI has focused on structured data with the exception of DI over images using crowdsourcing and some recent efforts that target textual data. DL is the de facto solution to reasoning about high dimensional data. Can is help develop unified DI solutions for visual, textual, and structured data?

Efficient Model Serving: This means efficient model serving. Many compute-intensive operations such as normalization and blocking are required. Featurization may also rely on compute-heavy tasks (e.g., computing string similarity). What is the role of pipelining and RDBMS-style optimizations?

Opportunities for ML

Data Catalogs: Data augmentation relies on data transformations performed on data records in a single dataset. How can we leverage data catalogs and data hubs to enable data augmentation go beyond a single dataset?

Valuable Data for ML applications: Our community has focused on assessing the value of data [Dong et al., VLDB'12, Koutris et al., JACM 2015]. These ideas are not pervasive to ML but if ML is to become a commodity [Jordan, 2018] we need methods to reason about the value of data.

DI for Benchmarks: Increasing efforts on creating manually curated benchmarks for ML. Current efforts rely on manual collection and curation. How can we leverage meta-data and existing DI solutions to automate such efforts?

"How reliable are our current measures of progress in machine learning?" *Do CIFAR-10 Classifiers Generalize to CIFAR-10?*, Ben Recht et al., 2018

DI & ML as Synergy

• ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION

- Automating DI tasks with training data
- Ensemble learning and deep learning provide promising solutions
- Better understanding of semantics by neural network

• DI for effective ML: DATA, DATA, DATA

- The software 2.0 stack is data hungry
- Create large-scale training datasets from different sources
- Cleaning of data used for training

Thank you!

References Part I: Introduction

Bengio, Y., Goodfellow, I.J. & Courville, A., 2015. Deep learning. Nature, 521(7553), pp.436–444.

Bishop, C.M., 2016. Pattern Recognition and Machine Learning, Springer New York.

Doan, A., Halevy, A.Y. & Ives, Z.G., 2012. Principles of Data Integration, Morgan Kaufmann.

Domingos, P., 2012. A Few Useful Things to Know About Machine Learning. *Communications of the ACM*, 55(10), pp.78–87.

Dong, X. et al., 2014. Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. KDD '14. New York, NY, USA: ACM, pp. 601–610.

Dong, X.L. & Srivastava, D., 2015. Big data integration. *Synthesis Lectures on Data Management*, 7(1), pp.1–198.

Dong, X.L. & Srivastava, D., 2013. Big Data Integration. *Proceedings of the VLDB Endowment International Conference on Very Large Data Bases*, 6(11), pp.1188–1189.

Getoor, L. & Machanavajjhala, A., 2012. Entity resolution: theory, practice & open challenges. PVLDB, 5(12), pp.2018–2019.

Goodfellow, I. et al., 2016. *Deep learning*, MIT press Cambridge.

Halevy, A., Norvig, P. & Pereira, F., 2009. The Unreasonable Effectiveness of Data. *IEEE intelligent systems*, 24(2), pp.8–12. Konda, P. et al., 2016. Magellan: Toward Building Entity Matching Management Systems. *PVLDB*, 9(12), pp.1197–1208.

References Part I: Introduction

Kumar, A., Boehm, M. & Yang, J., 2017. Data Management in Machine Learning: Challenges, Techniques, and Systems. In *Proceedings* of the 2017 ACM International Conference on Management of Data. SIGMOD '17. New York, NY, USA: ACM, pp. 1717–1722.
Lockard, C. et al., 2018. CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web. arXiv [cs.Al]. Available at: http://arxiv.org/abs/1804.04635.

Mohri, M., Rostamizadeh, A. & Talwalkar, A., 2012. Foundations of Machine Learning, MIT Press.

Polyzotis, N. et al., 2017. Data Management Challenges in Production Machine Learning. In *Proceedings of the 2017 ACM International Conference on Management of Data*. SIGMOD '17. New York, NY, USA: ACM, pp. 1723–1726.

Ratner, A. et al., 2017. Snorkel: Rapid Training Data Creation with Weak Supervision. PVLDB, 11(3), pp.269–282.

Rekatsinas, T. et al., 2017. HoloClean: Holistic Data Repairs with Probabilistic Inference. PVLDB, 10(11), pp.1190–1201.

Wu, S. et al., 2018. Fonduer: Knowledge Base Construction from Richly Formatted Data. In Proceedings of the 2018 International

Conference on Management of Data. ACM, pp. 1301–1316.

Zheng, G. et al., 2018. OpenTag: Open Attribute Value Extraction from Product Profiles. In KDD. Available at:

https://people.mpi-inf.mpg.de/~smukherjee/research/OpenTag-KDD18.pdf.

References Part II: Entity Linkage

Bhattacharya, I. & Getoor, L., 2006. A latent dirichlet model for unsupervised entity resolution. In SDM. SIAM, pp. 47–58. Das, S. et al., 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to Build Cloud Services. In Sigmod. pp. 1431–1446. Doan, A. et al., 2017. Human-in-the-Loop Challenges for Entity Matching: A Midterm Report. In Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2017, Chicago, IL, USA, May 14, 2017, pp. 12:1–12:6. Fellegi, I.P. & Sunter, A.B., 1969. A Theory for Record Linkage. Journal of the Americal Statistical Association, 64(328), pp.1183–1210. Getoor, L. & Machanavajjhala, A., 2012. Entity resolution: theory, practice & open challenges. PVLDB, 5(12), pp.2018–2019. Gokhale, C. et al., 2014. Corleone: Hands-off Crowdsourcing for Entity Matching. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. SIGMOD '14. New York, NY, USA: ACM, pp. 601–612. Hassanzadeh, O. et al., 2009. Framework for Evaluating Clustering Algorithms in Duplicate Detection. PVLDB, 2(1), pp.1282–1293. Ji, H., 2014. Entity Linking and Wikification Reading List. Available at: http://nlp.cs.rpi.edu/kbp/2014/elreading.html. Konda, P. et al., 2016. Magellan: Toward Building Entity Matching Management Systems. PVLDB, 9(12), pp.1197–1208. Kopcke, H., Thor, A. & Rahm, E., 2010. Evaluation of entity resolution approaches on real-world match problems. PVLDB, 3(1), pp.484-493.

References Part II: Entity Linkage

Mudgal, S. et al., 2018. Deep Learning for Entity Matching: A Design Space Exploration. In *Proceedings of the 2018 International Conference on Management of Data*. ACM, pp. 19–34.

Pujara, J. & Getoor, L., 2016. Generic Statistical Relational Entity Resolution in Knowledge Graphs. In AAAI.

Rakshit Trivedi, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos, Jun Ma and Hongyuan Zha., LinkNBed: Multi-Graph

Representation Learning with Entity Linkage. In 56th Annual Meeting of the Association for Computational Linguistics. ACL.

Sarawagi, S. & Bhamidipaty, A., 2002. Interactive deduplication using active learning. In SIGKDD.

Singla, P. & Domingos, P., 2006. Entity Resolution with Markov Logic. In *ICDM*. Washington, DC, USA: IEEE Computer Society, pp. 572–582.

Stonebraker, M. et al., 2013. Data Curation at Scale: The Data Tamer System. In CIDR.

Verroios, V., Garcia-Molina, H. & Papakonstantinou, Y., 2017. Waldo: An Adaptive Human Interface for Crowd Entity Resolution. In

Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. pp. 1133–1148.

References Part II: Data Extraction

Das, R. et al., 2017. Chains of reasoning over entities, relations, and text using recurrent neural networks. In EACL.

Dong, X. et al., 2014. Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion. In Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '14. New York, NY, USA: ACM, pp. 601–610.

Dong, X.L., 2017. Challenges and Innovations in Building a Product Knowledge Graph. In AKBC.

Gulhane, P. et al., 2011. Web-scale information extraction with vertex. In 2011 IEEE 27th International Conference on Data Engineering. pp. 1209–1220.

He, R. et al., 2017. An Unsupervised Neural Attention Model for Aspect Extraction. In ACL.

Hoffmann, R. et al., 2011. Knowledge-based Weak Supervision for Information Extraction of Overlapping Relations. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1.* HLT '11.
 Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 541–550.

Limaye, G., Sarawagi, S. & Chakrabarti, S., 2010. Annotating and Searching Web Tables Using Entities, Types and Relationships. *Proceedings of the VLDB Endowment International Conference on Very Large Data Bases*, 3(1-2), pp.1338–1347.
Lockard, C. et al., 2018. CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web. *arXiv [cs.Al]*. Available at: http://arxiv.org/abs/1804.04635.

References Part II: Data Extraction

Mintz, M. et al., 2009. Distant supervision for relation extraction without labeled data. In ACL.

Mitchell, T. et al., 2018. Never-ending Learning. *Communications of the ACM*, 61(5), pp.103–115.

Neelakantan, A., Roth, B. & McCallum, A., 2015. Compositional vector space models for knowledge base completion. In ACL.

Riedel, S. et al., 2013. Relation Extraction with Matrix Factorization and Universal Schemas. In HLT-NAACL.

Shin, J. et al., 2015. Incremental Knowledge Base Construction Using DeepDive. *Proceedings of the VLDB Endowment International Conference on Very Large Data Bases*, 8(11), pp.1310–1321.

Wu, S. et al., 2018. Fonduer: Knowledge Base Construction from Richly Formatted Data. In *Proceedings of the 2018 International Conference on Management of Data*. ACM, pp. 1301–1316.

Zhang, C. et al., 2017. DeepDive: Declarative Knowledge Base Construction. CACM, 60(5), pp.93–102.

References Part II: Data Fusion

Dawid, A.P. & Skene, A.M., 1979. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. *Journal of the Royal Statistical Society. Series C, Applied statistics*, 28(1), pp.20–28.

Dong, X.L. et al., 2014. From Data Fusion to Knowledge Fusion. PVLDB.

- Dong, X.L. et al., 2015. Knowledge-based Trust: Estimating the Trustworthiness of Web Sources. *Proceedings of the VLDB Endowment International Conference on Very Large Data Bases*, 8(9), pp.938–949.
- Dong, X.L. & Naumann, F., 2009. Data Fusion: Resolving Data Conflicts for Integration. *Proceedings of the VLDB Endowment International Conference on Very Large Data Bases*, 2(2), pp.1654–1655.
- Gao, J. et al., 2016. Mining Reliable Information from Passively and Actively Crowdsourced Data. In KDD. pp. 2121–2122.
- Jaffe, A., Nadler, B. & Kluger, Y., 2015. Estimating the accuracies of multiple classifiers without labeled data. In *Artificial Intelligence and Statistics*. Artificial Intelligence and Statistics. pp. 407–415.
- Li, H., Yu, B. & Zhou, D., 2013. Error rate analysis of labeling by crowdsourcing. In *ICML Workshop: Machine Learning Meets Crowdsourcing. Atlanta, Georgia, USA*.
- Li, Q. et al., 2014. A Confidence-aware Approach for Truth Discovery on Long-tail Data. *Proceedings of the VLDB Endowment International Conference on Very Large Data Bases*, 8(4), pp.425–436.

References Part II: Data Fusion

Li, X. et al., 2013. Truth Finding on the Deep Web: Is the Problem Solved? *PVLDB*, 6(2).

Li, Y. et al., 2016. A Survey on Truth Discovery. SIGKDD Explor. Newsl., 17(2), pp.1–16.

Nickel, M. et al., 2016. A Review of Relational Machine Learning for Knowledge Graphs. *Proceedings of the IEEE*, 104(1), pp.11–33.

Pasternack, J. & Roth, D., 2010. Knowing what to believe (when you already know something). In COLING. pp. 877–885.

Platanios, E. A., Dubey, A., & Mitchell, T. (2016, June). Estimating accuracy from unlabeled data: A bayesian approach. In *International Conference on Machine Learning* (pp. 1416-1425).

Rekatsinas, T. et al., 2017. SLiMFast: Guaranteed Results for Data Fusion and Source Reliability. In *Proceedings of the 2017 ACM International Conference on Management of Data*. SIGMOD '17. New York, NY, USA: ACM, pp. 1399–1414.

Shaham, U. et al., 2016. A Deep Learning Approach to Unsupervised Ensemble Learning. In *International Conference on Machine Learning*. International Conference on Machine Learning. pp. 30–39.

Wang, Q. et al., 2017. Knowledge Graph Embedding: A Survey of Approaches and Applications. *IEEE transactions on knowledge and data engineering*, 29(12), pp.2724–2743.

Yin, X., Han, J. & Yu, P.S., 2007. Truth discovery with multiple conflicting information providers on the web. In *Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining*. ACM, pp. 1048–1052.

References Part II: Data Fusion

Zhang, Y. et al., 2014. Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing. In Z. Ghahramani et al., eds.

Advances in Neural Information Processing Systems 27. Curran Associates, Inc., pp. 1260–1268.

Zhao, B. et al., 2012. A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration. *Proceedings of the VLDE Endowment International Conference on Very Large Data Bases*, 5(6), pp.550–561.

References Part III: Training Data Creation

Chapelle, O., Scholkopf, B. & Eds., A.Z., 2009. Semi-Supervised Learning (Chapelle, O. et al., Eds.; 2006) [Book reviews]. IEEE

transactions on neural networks / a publication of the IEEE Neural Networks Council, 20(3), pp.542–542.

Dawid, A.P. & Skene, A.M., 1979. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. *Journal of the Royal Statistical Society. Series C, Applied statistics*, 28(1), pp.20–28.

Mintz, M. et al., 2009. Distant supervision for relation extraction without labeled data. In ACL.

Mitchell, T., 2017. Learning from Limited Labeled Data (But a Lot of Unlabeled Data). Available at:

https://lld-workshop.github.io/slides/tom_mitchell_lld.pdf.

Platanios, E.A., Dubey, A. & Mitchell, T., 2016. Estimating Accuracy from Unlabeled Data: A Bayesian Approach. In International

Conference on Machine Learning. International Conference on Machine Learning. pp. 1416–1425.

Ratner, A. et al., 2017. Snorkel: Rapid Training Data Creation with Weak Supervision. *PVLDB*, 11(3), pp.269–282.

Ratner, A.J. et al., 2016. Data programming: Creating large training sets, quickly. In *Advances in Neural Information Processing Systems*. pp. 3567–3575.

Raykar, V.C. et al., 2010. Learning From Crowds. Journal of machine learning research: JMLR, 11, pp.1297–1322.

Recht, B. et al., 2018. Do CIFAR-10 Classifiers Generalize to CIFAR-10? arXiv [cs.LG]. Available at: http://arxiv.org/abs/1806.00451.

References Part III: Training Data Creation

Roth, B. & Klakow, D., 2013. Combining generative and discriminative model scores for distant supervision. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*. pp. 24–29.

Russell, S. & Stefano, E., 2017. Label-free supervision of neural networks with physics and domain knowledge. Proceedings of AAAI.

Salimans, T. et al., 2016. Improved techniques for training gans. In *Advances in Neural Information Processing Systems*. pp. 2234–2242.

Schapire, R.E. & Freund, Y., 2012. Boosting: Foundations and Algorithms. Adaptive computation and machine learning.

References Part III: Data Cleaning

Bailis, P. et al., 2017. MacroBase: Prioritizing Attention in Fast Data. In *Proceedings of the 2017 ACM International Conference on Management of Data*. SIGMOD '17. New York, NY, USA: ACM, pp. 541–556.

Chu, X. et al., 2016. Data Cleaning: Overview and Emerging Challenges. In *Proceedings of the 2016 International Conference on Management of Data*. SIGMOD '16. New York, NY, USA: ACM, pp. 2201–2206.

Chandola, V., Banerjee, A. & Kumar, V., 2009. Anomaly Detection: A Survey. ACM Comput. Surv., 41(3), pp.15:1–15:58.

Galhardas, H. et al., 2001. Declarative data cleaning: Language, model, and algorithms. In VLDB. pp. 371–380.

Hellerstein, J.M., 2008. Quantitative data cleaning for large databases. Statistical journal of the United Nations Economic Commission

for Europe. Available at: http://db.cs.berkeley.edu/jmh/papers/cleaning-unece.pdf.

Ilyas, I.F., 2016. Effective Data Cleaning with Continuous Evaluation. *IEEE Data Eng. Bull.*, 39, pp.38–46.

Krishnan, S. et al., 2016. ActiveClean: Interactive Data Cleaning for Statistical Modeling. *Proceedings of the VLDB Endowment*

International Conference on Very Large Data Bases, 9(12), pp.948–959.

Krishnan, S. et al., 2017. BoostClean: Automated Error Detection and Repair for Machine Learning. *arXiv* [*cs.DB*]. Available at: http://arxiv.org/abs/1711.01299.

References Part III: Data Cleaning

Mayfield, C., Neville, J. & Prabhakar, S., 2010. ERACER: A Database Approach for Statistical Inference and Data Cleaning. In *Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data*. SIGMOD '10. New York, NY, USA: ACM, pp. 75–86.

Rekatsinas, T. et al., 2017. HoloClean: Holistic Data Repairs with Probabilistic Inference. *PVLDB*, 10(11), pp.1190–1201.

- Wang, X., Dong, X.L. & Meliou, A., 2015. Data X-Ray: A Diagnostic Tool for Data Errors. In *Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data*. SIGMOD '15. New York, NY, USA: ACM, pp. 1231–1245.
- Yakout, M., Berti-Équille, L. & Elmagarmid, A.K., 2013. Don'T Be SCAREd: Use SCalable Automatic REpairing with Maximal Likelihood and Bounded Changes. In *Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data*. SIGMOD '13. New York, NY, USA: ACM, pp. 553–564.