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What is Data Integration?

● Data integration: to provide unified access to data residing in multiple, 
autonomous data sources
○ Data warehouse: create a single store (materialized view) of data from 

different sources offline. Multi-billion dollar business.
○ Virtual integration: support query over a mediated schema by applying 

online query reformulation. E.g., Kayak.com.

● In the RDF world: different names for similar concepts
○ Knowledge graph is equivalent to a data warehouse. Has been widely 

used in Search and Voice
○ Linked data is equivalent to virtual integration



Why is Data Integration Hard?

● Heterogeneity everywhere
○ Different data formats
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Why is Data Integration Hard?

● Heterogeneity everywhere
○ Different references to the same entity 
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Why is Data Integration Hard?

● Heterogeneity everywhere
○ Conflicting values 

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



Importance from a Practitioner’s Point of View

● Entity linkage is indispensable whenever 
integrating data from different sources

● Data extraction is important for integrating 
non-relational data

● Data fusion is necessary in presence of 
erroneous data

● Schema alignment is helpful when integrating 
relational data, but not affordable for manual 
work if we integrate many sources

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Machine Learning?

● Machine learning: teach computers to learn with data, not by 
programming

● More Formal definition
A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P if its performance at tasks in T, as 
measured by P, improves with experience E.
                                                                                                         -- Tom Mitchell



Two Main Types of Machine Learning

● Supervised learning: learn by examples



Two Main Types of Machine Learning

● Unsupervised learning: find structure w/o examples



Two Main Types of Machine Learning

● Supervised learning: learn by examples
● Unsupervised learning: find structure w/o examples



Techniques for Supervised ML
Hyperplanes Kernel Tree-based Graphical Mdl Logic Prog Neural Netw

Linear/Logistic 
regression

SVM Decision tree,
Random forest

Bayes net, 
CRF

Pr soft logic,
Markov logic net

ANN, CNN, 
RNN



Colin’s 7 minute intro to 
bidirectional LSTMs



Everyone loves neural networks
• They have the word “neural” in them

• They have the word “network” in them

• You can draw fancy diagrams

•
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Everyone loves neural networks
• They have the word “neural” in them

• They have the word “network” in them

• You can draw fancy diagrams

• This thing:

• They are good at modeling high-dimensional non-linear functions and 
building sophisticated representations of complex sensory data



What’s a neural network?

x

Input vector



What’s a neural network?

Wx

Weight matrix



What’s a neural network?

σ(Wx)

Non-linear function
e.g. sigmoid



What’s a neural network?

h = σ(Wx)

Hidden layer unit



What’s a neural network?

h = σ(Wx)

y = f(h)

Differentiable function
e.g. softmax



Let’s use neural networks for language!

Classify sentences!

Tag parts of speech!

Find entity names!

Extract relations!



Let’s use neural networks for language!

 PROBLEM:

•Fixed # of weights

•Fixed # of features

•Fixed size of input





The puppy is cute.

The puppy is really cute.

Seriously, did you see this 
puppy, look how cute it is!

The puppy is cute

The  puppy is  really  cute





☹

• Sentence classification
• Sentences have variable length!

• Word tagging
• Fixed-width window around word misses full context



What’s a neural network?

h = σ(Wx)



What’s a recurrent neural network?

h = σ(Wx)



h = σ(Wx)

h
t
 = σ(Wx

t 
+ Uh

t-1
)

What’s a recurrent neural network?
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Bidirectional RNN

f([h
4
, h’

4
])

Concatenate the two hidden representations to produce the 
bidirectional representation

Full sentence:

Individual word: f([h
i
, h’

n-i
])



Okay, so RNNs are great!

• Except they don’t work
• (at least for long-term dependencies)

• Vanishing / exploding gradient



LSTM (Long Short Term Memory)

GRU (Gated Recurrent Unit)

75 other variations



LSTM (Long Short Term Memory)

GRU (Gated Recurrent Unit)

75 other variations

Same basic idea



Add more neural networks!

• Add “gates” that decide how to balance impact of new input vs 
hidden state

• “Remember” gates
• “Forget” gates
• “Reset” gates

• Take input and previous state

• Hit ‘em with some weights

• Run it through a sigmoid

• Multiply against h
i
 or x

i
• Sigmoid values from 0 – 1 to signify how much to keep/forget



Key Lessons for ML [Domingos, 2012]

● Learning = Representation + Evaluation + Optimization
● It’s generalization that counts: generalize beyond training examples
● Data alone is not enough: “no free lunch” theorem--No learner can 

beat random guessing over all possible functions to be learned
● Intuition fails in high dimensions: “curse of dimensionality”
● More data beats a cleverer algorithm: Google showed that after 

providing 300M images for DL image recognition, no flattening of the 
learning curve was observed.



DI & ML as Synergy

● ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION
○ Automating DI tasks with training data
○ Better understanding of semantics by neural network

● DI for effective ML: DATA, DATA, DATA
○ Create large-scale training datasets from different sources
○ Cleaning of data used for training 



Give me a Fulscrum, I will Move the Earth
                                                           -- Archimedes 



Give me a DI funnel, I will Move ML
                                                           



Many Systems Where DI & ML Leverage Each Other
                                                           

Increasing number of systems both in industry 
and academia.

Magellan 
NELL



Example System: Product Graph [Dong, KDD’18]



Goal of This Tutorial
                                                           ● NO-GOALS

○ Present a comprehensive literature review for all topics we are 
covering 

● GOALS
○ Present state-of-the-art for DI & ML synergy
○ Show how ML has been transforming DI and vice versa
○ Give some taste on which tool is working best for which tasks
○ Discuss what remains challenging



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML
● Part IV. Conclusions and research directions 



Data Integration Overview

● Entity linkage: linking records to entities;  
indispensable when different sources exist

● Data extraction: extracting structured data; 
important when non-relational data exist

● Data fusion: resolving conflicts; necessary in 
presence of erroneous data

● Schema alignment: aligning types and 
attributes; helpful when different relational 
schemas exist

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



Recipe

● Problem definition
● Brief history
● State-of-the-art ML solutions
● Summary w. a short answer

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



Theme I. Which ML Model Works Best?



Which ML Model Works Best?

Tree-based models



Theme II. Does Supervised Learning Apply to DI?

● Supervised learning has made a big splash recently in many fields

● However, it is hard to bluntly apply supervised learning to DI tasks
○ Our goal is to integrate data from many different data sources in 

different domains 
○ The different sources present different data features and 

distributions
○ Collecting training labels for each source is a huge cost



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Entity Linkage?

● Definition: Partition a given set R of records, such that 
each partition corresponds to a distinct real-world entity.

Are they the same entity?



Quick Tour for Entity Linkage

● Blocking: efficiently create small blocks 
of similar records Blocking

Pairwise Matching

Clustering

A1 A2

B1
B2 B3

C1
C2

D



Quick Tour for Entity Linkage

● Pairwise matching: compare all record 
pairs in a block Blocking

Pairwise Matching

Clustering

A1 A2

B1
B2 B3

C1
C2

D



Quick Tour for Entity Linkage

● Clustering: group records into entities

Blocking

Pairwise Matching

Clustering

A1 A2

B1
B2 B3

C1
C2

D



50 Years of Entity Linkage

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● Active learning for blocking & matching

F-msr: 80%-98% w. ~1000 labels

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

1969 (Pre-ML)

Rule-based and stats-based
● Blocking: e.g., same name
● Matching: e.g., avg similarity 

of attribute values
● Clustering: e.g., transitive 

closure, etc.
~2000 (Early ML)

Sup / Unsup learning
● Matching: Decision tree, SVM

F-msr: 70%-90% w. 500 labels
● Clustering: Correlation clustering,

Markov clustering



Rule-Based Solution

1969 (Pre-ML)

Rule-based and stats-based
● Blocking: e.g., same name
● Matching: e.g., avg similarity 

of attribute values
● Clustering: e.g., transitive 

closure, etc.

● [Fellegi and Sunter, 1969]
○ Match: sim(r, r’) > ᷄h

○ Unmatch: sim(r, r’) < ᷄l

○ Possible match: 
᷄l < sim(r, r’) < ᷄h



Early ML Models

● [Ko ̈pcke et al, VLDB’10]

~2000 (Early ML)

Sup / Unsup learning
● Matching: Decision tree, SVM

F-msr: 70%-90% w. 500 labels
● Clustering: Correlation clustering,

Markov clustering



Collective Entity Resolution: Beyond Pairs
● Collective reasoning across 

entities.
● Constraints across entities:

○ Aggregate constraints
○ Transitivity, Exclusivity
○ Functional dependencies

● Use of probabilistic graphical 
models, PSL, MLN, to capture 
such domain knowledge

[Example by Getoor and Machanavajjhala]

Out of the scope of this tutorial. For 
details: See tutorial by Getoor and 
Machanavajjhala, KDD, 2013.



State-of-the-Art ML Models [Dong, KDD’18]

● Features: attribute similarity measured in 
various ways. E.g., 
○ string sim: Jaccard, Levenshtein
○ number sim: absolute diff, relative diff

● ML models on Freebase vs. IMDb 
○ Logistic regression: Prec=0.99, Rec=0.6
○ Random forest: Prec=0.99, Rec=0.99

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels
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State-of-the-Art ML Models [Dong, KDD’18]

● Features: attribute similarity measured in 
various ways. E.g., 
○ name sim: Jaccard, Levenshtein
○ age sim: absolute diff, relative diff

● ML models on Freebase vs. IMDb 
○ Logistic regression: Prec=0.99, Rec=0.6
○ Random forest: Prec=0.99, Rec=0.99
○ XGBoost: marginally better, but sensitive 

to hyper-parameters

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels



State-of-the-Art ML Models [Dong, KDD’18]

● Expt 2. IMDb vs. Amazon movies
○ 200K labels, ~150 features
○ Random forest: Prec=0.98, Rec=0.95

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels

Ready for production, except 
requiring a lot of labels



State-of-the-Art ML Models [Das et al., SIGMOD’17]

● Falcon: apply active learning both for 
blocking and for matching; ~1000 labels

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels

Magellan 



State-of-the-Art ML Models [Dong, KDD’18]

● Apply active learning to minimize #labels

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels

Reaching prec=99% 
and rec=~99% 

requires 1.5M labels

For 99% precision and recall, 
active learning reduces #labels 

by 2 orders of magnitude



Deep Learning Models [Mudgal et al., SIGMOD’18]

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

● Embedding on similarities
● Similar performance for structured data;

Significant improvement on texts and dirty data 

Code at: deepmatcher.ml

Magellan 



Deep Learning Models [Ebraheem et al., VLDB’18]

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

● Embedding on entities 
● Outperforming existing solution



Deep Learning Models [Trivedi et al., ACL’18]

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

● LinkNBed: Embeddings for entities as in 
knowledge embedding



Deep Learning Models [Trivedi et al., ACL’18]

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

● LinkNBed: Embeddings for entities as in 
knowledge embedding

● Performance better than previous 
knowledge embedding methods, but not 
comparable to random forest

● Enable linking different types of entities



Challenges in Applying ML on EL

● How can we obtain abundant training data for many types, many 
sources, and dynamically evolving data??

● From two sources to multiple sources



● How can we obtain abundant training data for many types, many 
sources, and dynamically evolving data??

● From one entity type to multiple types

Challenges in Applying ML on EL



● How can we obtain abundant training data for many types, many 
sources, and dynamically evolving data??

● From static data to dynamic data

Challenges in Applying ML on EL



Recipe for Entity Linkage

● Problem definition: Link references to 
the same entity

● Short answers
○ RF w. attribute-

similarity features
○ DL to handle texts and noises
○ End-to-end solution is future work

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Data Extraction?

● Definition: Extract structured information, e.g., (entity, attribute, value) 
triples, from semi-structured data or unstructured data.

Diagram



Three Types of Data Extraction

● Closed-world extraction: align to existing entities and attributes; e.g., 
(ID_Obama, place_of_birth, ID_USA)

● ClosedIE: align to existing attributes, but extract new entities; e.g., 
(“Xin Luna Dong”, place_of_birth, “China”)

● OpenIE: not limited by existing entities or attributes; e.g., 
(“Xin Luna Dong”, “was born in”, “China”),
(“Luna”, “is originally from”, “China”)



35 Years of Data Extraction

2008 (Semi-stru)

Extraction from semi-structured data
● WebTables: search, extraction
● DOM tree: wrapper induction

2013 (Deep ML)

Deep learning
● Use RNN, CNN, attention 

for RE
● Data programming / 

Heterogeneous learning 
● Revisit DOM extraction

1992 (Rule-based)

Early Extraction
● Rule-based: Hearst pattern, 

IBM System T
● Tasks: IS-A, events

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE



Extraction from Texts: Quick Tour

Named Entity 
Recognition

Entity Linking

Relation Extraction

Bill Gates founded Microsoft in 1975.



Extraction from Texts: Quick Tour

Named Entity 
Recognition

Entity Linking

Relation Extraction

Bill Gates founded Microsoft in 1975.

Person Company



Extraction from Texts: Quick Tour

Named Entity 
Recognition

Entity Linking

Relation Extraction

Bill Gates founded Microsoft in 1975.

Entity linkage: linking two structured records
Entity linking: linking a phrase in texts to an 
entity in a reference list (e.g., knowledge graph)



Extraction from Texts: Quick Tour

Named Entity 
Recognition

Entity Linking

Relation Extraction

Bill Gates founded Microsoft in 1975.

isFounder

We focus on Relation Extraction in 
the rest of the tutorial.



Extraction from Texts: Feature Based [Zhou et al., ACL’05]

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

● Models
○ Logistic regression
○ SVM (Support Vector Machine)

● Features
○ Lexical: entity, part-of-speech, neighbor
○ Syntactic: chunking, parse tree
○ Semantic: concept hierarchy, entity class

● Results
○ Prec=~60%, Rec=~50%



Extraction from Texts: Feature Based [Zhou et al., ACL’05]

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

Major
Lift



Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP’08]

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

● Models
○ SVM (Support Vector Machine)

● Kernels
○ Subsequence
○ Dependency tree
○ Shortest dependency path
○ Convolution dependency



~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP’08]

Dependency tree

Shortest dependency path



~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

● Models
○ SVM (Support Vector Machine)

● Kernels
○ Subsequence
○ Dependency tree
○ Shortest dependency path
○ Convolution dependency

● Results
○ Prec=~70%, Rec=~40%

Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP’08]



~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP’08]



Extraction from Texts: Deep Learning                                                 

● Same intuitions, different models
○ (2012-13) Recursive NN: dependency tree

[Socher et al., EMNLP’12] [Hashimoto et al., EMNLP’13]

○ (2014-15) CNN: shortest dependency path
[Zeng et al., COLING’14][Liu et al., ACL’15]

○ (2015+) LSTM: shortest dependency path,
lexical/syntactic/semantic features
[Xu et al., EMNLP’15][Shwartz et al., ACL’16]
[Nguyen, NAACL’16]

2013 (Deep ML)

Deep learning
● Use RNN, CNN, attention 

for RE
● Data programming / 

Heterogeneous learning 
● Revisit DOM extraction



Example System: HyperNET [Shwartz et al., ACL’16]                                                 

1. Diff features

2. LSTM on shortest paths
3. Combine all paths 4. Term 

embedding

Quality in identifying hypernyms: Prec = 0.9, Rec = 0.9 



~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

Label Generation for Extraction Training

● Semi-supervised learning
○ Iterative extraction [Carlson et al., AAAI’10]

Use new extractions to retrain models
E.g., NELL

Where are training labels from?



~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

Label Generation for Extraction Training

● Semi-supervised learning
○ Iterative extraction [Carlson et al., AAAI’10]

Use new extractions to retrain models
E.g., NELL

● Weak learning
○ Distant supervision [Mintz et al., ACL’09]

Rule-based annotation with seed data
E.g., DeepDive, Knowledge Vault

Where are training labels from?

Will cover in “DI for ML”



Distant Supervision [Mintz et al., ACL’09]

[Adapted example from Luke Zettlemoyer]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

Training Data



Distant Supervision [Mintz et al., ACL’09]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y

Training Data

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL’09]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training Data

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL’09]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training Data

(Bill Gates, Harvard)
Label: CollegeAttended
Feature: X attended Y

For negative examples, sample 
unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]



~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

Label Generation for Extraction Training

● Distant supervision: HyperNet++ 
[Christodoulopoulos & Mittal, 18]

Where are training labels from?

F-msr > 0.9 w. 1000 labels



● Semi-supervised learning
○ Iterative extraction [Carlson et al., AAAI’10]

Use new extractions to retrain models
E.g., NELL

● Weak learning
○ Distant supervision [Mintz et al., ACL’09]

Rule-based annotation with seed data
E.g., DeepDive, Knowledge Vault

○ Data programming [Ratner et al., NIPS’16]
Manually write labelling functions
E.g., Snorkle, Fouduer

Label Generation for Extraction Training                                              

2013 (Deep ML)

Deep learning
● Use RNN, CNN, attention 

for RE
● Data programming / 

Heterogeneous learning 
● Revisit DOM extraction

Will cover in “DI for ML”

Where are training labels from?



Snorkel: Code as Supervision [Ratner et al., NIPS’16, VLDB’18]

[Slide by Alex Ratner]



Example System: Fonduer [Wu et al., SIGMOD’18]

New version of code coming soon: https://github.com/HazyResearch/fonduer

Fonduer combines a new 
biLSTM with multimodal 
features and data 
programming.



OpenIE from Texts

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

● ClosedIE
○ Only extracting facts corresponding to 

ontology
○ Normalize predicates by ontology
○ E.g., (Bill Gates, /person/isFounder, 

Microsoft)

● OpenIE [Banko et al., IJCAI’07]
○ Extract all relations expressed in texts
○ Predicates are unnormalized strings
○ E.g., (“Bill Gates”, “founded”, “Microsoft”)

Bill Gates founded Microsoft in 1975.

Where are predicates from?



OpenIE from Texts [Etzioni et al., IJCAI’11]  

Named Entity 
Recognition

Entity Linking

Relation Extraction

ClosedIE
Predicate 

Identification

Subject/Object 
Identification

Scoring

OpenIE Bill Gates founded 
Microsoft in 1975.



OpenIE from Texts [Etzioni et al., IJCAI’11]  

Bill Gates founded 
Microsoft in 1975.Named Entity 

Recognition

Entity Linking

Relation Extraction

ClosedIE
Predicate 

Identification

Subject/Object 
Identification

Scoring

OpenIE

● Predicate: longest 
sequence of words as light 
verb construction



OpenIE from Texts [Etzioni et al., IJCAI’11]  

Bill Gates founded 
Microsoft in 1975.Named Entity 

Recognition

Entity Linking

Relation Extraction

ClosedIE
Predicate 

Identification

Subject/Object 
Identification

Scoring

OpenIE

● Predicate: longest 
sequence of words as light 
verb construction

● Subject: learn left and right 
boundary

● Object: learn right boundary



OpenIE from Texts [Etzioni et al., IJCAI’11]  

Bill Gates founded 
Microsoft in 1975.Named Entity 

Recognition

Entity Linking

Relation Extraction

ClosedIE
Predicate 

Identification

Subject/Object 
Identification

Scoring

OpenIE

● Predicate: longest 
sequence of words as light 
verb construction

● Subject: learn left and right 
boundary

● Object: learn right boundary
● LR for triple confidence



OpenIE from Texts [Mausam et al., EMNLP’12]

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE

Where are predicates from?



Extraction from Semi-Structured Data

2008 (Semi-stru)

Extraction from semi-structured data
● WebTables: search, extraction
● DOM tree: wrapper induction



Why Semi-Structured Data? 

● Knowledge Vault @ Google showed big potential from DOM-tree 
extraction [Dong et al., KDD’14][Dong et al., VLDB’14]



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]  



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]  
● Solution: find XPaths from DOM Trees 



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]  
● Challenge: slight variations from page to page 



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]  
● Challenge: slight variations from page to page 



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]  

One website may use 
multiple templates

(Unsupervised-clustering)

Identify representative 
webpages for annotation

Combine attr features 
and textual features to 
find a general XPath

(LR)



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]  

● Sample learned XPaths on IMDb
○ //*[@itemprop="name"]

○ //*[@class="bp_item bp_text_only"]/*/*/*[@class="bp_heading"]

○ //*[following-sibling::*[position()=3][@class="subheading"]]/*[followin
g-sibling::*[position()=1][@class="attribute"]]

○ //*[preceding-sibling::node()[normalize-space(.)!=""][text()="Languag
e:"]

Ensure high recall

Ensure high precision



Distantly Supervised Extraction                                                  

● Annotation-based extraction
○ Pros: high precision and recall
○ Cons: does not scale--annotation per 

cluster per website

● Distantly-supervised extraction
○ Step 1. Use seed data to automatically 

annotate
○ Step 2. Use the (noisy) annotations for 

training
○ E.g., DeepDive, Knowledge Vault

2013 (Deep ML)

Deep learning
● Use RNN, CNN, attention 

for RE
● Data programming / 

Heterogeneous learning 
● Revisit DOM extraction



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]                                                  

Talk on Tue Research 11am, Poster on Tue Posters I 17:30pm



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]                                                  

● Extraction experiments on SWDE benchmark

Very high precision Competent w. Wrapper induction w. manual annotation



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]                                                  

● Extraction on long-tail movie websites



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]                                                  

● Which model is the best?
○ Logistic regression: best results (20K 

features on one website)
○ Random forest: lower precision and recall
○ Deep learning??

2013 (Deep ML)

Deep learning
● Use RNN, CNN, attention 

for RE
● Data programming / 

Heterogeneous learning 
● Revisit DOM extraction



Challenges in Applying Deep Learning on 
Extracting Semi-structured Data

● Web layout is neither 1D sequence nor regular 2D grid, so CNN or 
RNN does not directly apply



2008 (Semi-stru)

Extraction from 
semi-structured data

● WebTables: search, 
extraction

● DOM tree: wrapper 
induction

WebTable Extraction [Limaye et al., VLDB’10]  
● Model table annotation using interrelated random 

variables, represented by a probabilistic graphical model
○ Cell text (in Web table) and entity label (in catalog)

○ Column header (in Web table) and type label (in catalog)

○ Column type and cell entity (in Web table)

Check-out 10-Year Best 
Paper Award for WebTable 

Search on Thursday!



2008 (Semi-stru)

Extraction from 
semi-structured data

● WebTables: search, 
extraction

● DOM tree: wrapper 
induction

WebTable Extraction [Limaye et al., VLDB’10]  
● Model table annotation using interrelated random 

variables, represented by a probabilistic graphical model
○ Pair of column types (in Web table) and relation (in catalog)

○ Entity pairs (in Web table) and relation (in catalog)

Check-out 10-Year Best 
Paper Award for WebTable 

Search on Thursday!



Challenges in Applying ML on DX

● Automatic data extraction cannot reach production quality requirement. 
How to improve precision?

● Every web designer has her own whim, but there are underlying 
patterns across websites. How to learn extraction patterns on different 
websites, especially for semi-structured sources?

● ClosedIE throws away too much data. How to apply OpenIE on all kinds 
of data?



Recipe for Data Extraction

● Problem definition: Extract structure 
from semi- or un-structured data

● Short answers
○ Wrapper induction

has high prec/rec
○ Distant supervision is critical for 

collecting training data
○ DL effective for texts and LR is 

often effective for semi-stru data

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Data Fusion?

● Definition: Resolving conflicting data and verifying facts.

● Example: “OK Google,How long is the Mississippi River?”



The Basic Setup of Data Fusion

Source River Attribute Value

KG Mississippi River Length 2,320 mi

KG Missouri River Length 2,341 mi

Wikipedia Mississippi River Length 2,202 mi

Wikipedia Missouri River Length 2,341 mi

USGS Mississippi River Length 2,340 mi

USGS Missouri River Length 2,540 mi

River Attribute Value

Mississippi 
River

Length ?

Missouri River Length ?

Fact Source reports 
a value for a fact

Conflicting value

Fact’s true value

Goal: Find the latent 
true value of facts.

Source Observations True Facts



The Basic Setup of Data Fusion

Source River Attribute Value

KG Mississippi River Length 2,320 mi

KG Missouri River Length 2,341 mi

Wikipedia Mississippi River Length 2,202 mi

Wikipedia Missouri River Length 2,341 mi

USGS Mississippi River Length 2,340 mi

USGS Missouri River Length 2,540 mi

River Attribute Value

Mississippi 
River

Length ?

Missouri River Length ?

Fact Source reports 
a value for a fact

Conflicting value

Fact’s true value

Idea: Use redundancy to infer 
the true value of each fact.

Source Observations True Facts



Majority Voting for Data Fusion

Source River Attribute Value

KG Mississippi River Length 2,320 mi

KG Missouri River Length 2,341 mi

Wikipedia Mississippi River Length 2,202 mi

Wikipedia Missouri River Length 2,341 mi

USGS Mississippi River Length 2,340 mi

USGS Missouri River Length 2,540 mi

River Attribute Value

Mississippi 
River

Length ?

Missouri River Length 2,341

Source Observations True Facts

MV’s assumptions
1. Sources report values independently
2. Sources are better than chance.

Majority voting can be limited. What if sources 
are correlated (e.g., copying)?

Idea: Model source quality for  accurate results.



40 Years of Data Fusion (beyond Majority Voting)

2007 (Probabilistic)

Probabilistic Graphical Models
● Use of generative models  
● Focus on unsupervised learning

2016 (Deep ML)

Deep learning
● Use Restricted Boltzmann 

Machine; one layer 
version is equivalent with 
Dawid-Skene model

● Knowledge graph 
embeddings 

1979               
(Statistical learning)

Dawid-Skene model
● Model the error-rate of sources
● Expectation-maximization

~1996 (Rule-based)

Domain-specific Strategies
● Keep all values
● Pick a random value
● Take the average value
● Take the most recent value
● ...



A Probabilistic Model for Data Fusion

● Random variables: Introduce a latent random variable to represent the true 

value of each fact.

● Features: Source observations become features associated with different 

random variables.

● Model parameters: Weights related to the error-rates of each data source.

Error-rate = probability that a source 
provides value v' instead of value v

Normalizing constant

error-rate scores 
(model parameters)



The Challenge of Training Data

● How much data do we need to train the data fusion model?

● Theorem: We need a number of labeled examples proportional to the number 

of sources [Ng and Jordan, NIPS’01]

● Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or 
millions and training data is limited!

Idea 1: Leverage redundancy and use unsupervised learning.



The Dawid-Skene Algorithm [Dawid and Skene, 1979]

Iterative process to estimate data source error rates

1. Initialize “inferred” true value for each fact (e.g., use majority 

vote)

2. Estimate error rates for workers (using “inferred” true values)

3. Estimate “inferred” true values (using error rates, weight 

source votes according to quality)

4. Go to Step 2 and iterate until convergence

Assumptions: (1) average source error rate < 0.5, (2) dense source observations, (3) conditional independence 

of sources, (4) errors are uniformly distributed across all instances.



An Intro in Probabilistic Graphical Models
Bayesian Networks (BNs)

Local Markov Assumption: A variable X is independent of its 

non-descendants given its parents (and only its parents).



An Intro in Probabilistic Graphical Models
Bayesian Networks (BNs)

Local Markov Assumption: A variable X is independent of its 

non-descendants given its parents (and only its parents).

Recipe for BNs

Set of random variables X

Directed acyclic graph (each X[i] is a vertex)

Conditional probability tables P(X | Parents(X))

Joint distribution: Factorizes over conditional probability tables



An Intro in Probabilistic Graphical Models
Where do independence assumptions come from?

Causal structure captures domain knowledge

[Example by Andrew McCallum]



An Intro in Probabilistic Graphical Models
Factored joint distribution

[Example by Andrew McCallum]



Probabilistic Graphical Models for Data Fusion

[Zhao et al., VLDB 2012]

Source 
Quality

Prior truth 
probability

Setup: Identify true 
source claims

Example:

Extensive work on modeling source observations and source 
interactions to address limitations of basic Dawid-Skene.



Probabilistic Graphical Models for Data Fusion

[Zhao et al., VLDB 2012]

[Dong et al., VLDB 2015]

Modeling both source quality 
and extractor accuracy

Extensive work on modeling source observations and source 
interactions to address limitations of basic Dawid-Skene.



Probabilistic Graphical Models for Data Fusion

Extensive work on modeling source observations and source 
interactions to address limitations of basic Dawid-Skene.

[Platanios et al., ICML 2016]

Modeling source 
dependencies



PGMs in Data Fusion [Li et al., VLDB’14]

Bayesian models capture source observations and source interactions.



PGMs in Data Fusion [Li et al., VLDB’14]

Modeling the quality of data sources leads to improved accuracy.



Dawid-Skene and Deep Learning [Shaham et al., ICML’16]

Theorem: The Dawid and Skene model is equivalent to a Restricted Boltzmann 

Machine (RBM) with a single hidden node.

When the conditional independence assumption of Dawid-Skene does not hold, a 

better approximation may be obtained from a deeper network.

Dawid and Skene model. A RBM with d visible and m 
hidden units.

Sketch of a two-hidden-layer 
RBM-based DNN.



Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

A knowledge graph can be encoded as a tensor.



Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

Neural networks can be used to obtain richer 
representations.



Knowledge Graph Embeddings

● TransE: score(h,r,t)=-||h+r-t||1/2
● Hot field with increasing interest 

[Survey by Wang et al., TKDE 2017]

Example: Learn embeddings from IMDb data 
and identify various types of errors in WikiData 
[Dong et al., KDD’18]

Head entity

Relationship

Tail entity



The Challenge of Training Data

● How much data do we need to train the data fusion model?

● Theorem: We need a number of labeled examples proportional to the number 

of sources [Ng and Jordan, NIPS’01]

● Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or 
millions and training data is limited!

Idea 1: Leverage redundancy and used unsupervised learning.
Idea 2: Limit model parameters and use a small number of training data.



SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD’17]

Limit the informative parameters of the model by using domain knowledge

Key Idea: Sources have (domain specific) features that are indicative of error rates

Example:

● newly registered similar to existing domain
● traffic statistics
● text quality (e.g., misspelled words, grammatical errors) 
● sentiment analysis

● avg. time per task
● number of tasks
● market used



Fact value reported 
by a Source
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SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD’17]



Challenges in Data Fusion
● There are few solutions for unstructured data. Mostly work on fact 

verification [Tutorial by Dong et al., KDD`2018]. Most data Fusion 
solutions assume data extraction. Can state-of-the art DL help?

● Using training data is key and semi-supervised learning can significantly 
improve the quality of Data Fusion results. How can one collect training 
data effectively without manual annotation?

● We have only scratched the surface of what representation learning 
and deep learning methods can offer. Can deep learning streamline 
data fusion? What are its limitations?



Recipe for Data Fusion
● Problem definition: Resolve conflicts 

and obtain correct values
● Short answers

○ Reasoning about source 
quality is key and works for easy cases

○ Semi-supervised learning has shown 
BIG potential

○ Representation learning provides 
positive evidence for streamlining data 
fusion.

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Schema Alignment?

● Definition: Align schemas and understand which attributes have the 
same semantics. 



Quick Tour for Schema Alignment

Mediated Schema

Attribute Matching

Schema Mapping



Quick Tour for Schema Alignment
● Mediated schema: a unified and virtual view of 

the salient aspects of the domain

Mediated Schema

Attribute Matching

Schema Mapping



Quick Tour for Schema Alignment
● Attribute matching: correspondences between 

schema attributes

Mediated Schema

Attribute Matching

Schema Mapping



Quick Tour for Schema Alignment
● Schema mapping: transformation between 

records in different schemas

Mediated Schema

Attribute Matching

Schema Mapping



30 Years of Schema Alignment

2005 (Dataspaces)

Pay-as-you-go dataspaces
● Probabilistic schema 

alignment

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema

~1990 (Desc Logics)

Description Logics
● Gav vs. Lav. vs. Glav
● Answering queries 

using views
● Warehouse vs. EII

1994 (Early ML)

Semi-Auto mapping
● Learning to match
● Schema mapping: Clio
● Data exchange



Early ML Models

~2000 (Early ML)

Semi-Auto mapping
● Learning to match
● Schema mapping: Clio
● Data exchange

[Rahm and Bernstein, VLDBJ’2001]

Signals: name, description, type, key, graph structure, values



Early ML Models

~2000 (Early ML)

Semi-Auto mapping
● Learning to match
● Schema mapping: Clio
● Data exchange

[Doan et al., Sigmod’01]

Base learners: kNN, naive Bayes, etc. Meta learner--Stacking



Early ML Models

~2000 (Early ML)

Semi-Auto mapping
● Learning to match
● Schema mapping: Clio
● Data exchange

[Doan et al., Sigmod’01]

Avg Accuracy: 71-92%
Meta learning and 
constraints help

More data instances help



Collective Mapping Discovery by PSL [Kimmig et al, ICDE’17]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema

Step 1. Generate candidate mappings
       E.g.,

Step 2. Solve PSL 1.Prefer fewer mappings: penalty=#atoms

3. Tuples inferred from the 
mapping should exist

2. An existing tuple can be 
inferred from the mappings



Universal Schema [Riedel et al., NAACL’13][Yao et al., AKBC’13]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema

● Attribute matching → Instance inference

Relation prediction

Type prediction

Matrix factorization



Universal Schema [Riedel et al., NAACL’13]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema

● Attribute matching → Instance inference
● f(es, r, eo) is computed

using embeddings;
the higher, the more 
likely to be true

● DistMult is a relation
embedding model 

Feature 
Model (F):

Entity 
Model (E):

Limitation: Cannot 
apply to new entities 
or relations

[Toutanova et al., EMNLP’15]



● Relation: organizationFoundedBy

Columnless Univ. Schema w. CNN [Toutanova et al., 
EMNLP’15]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema

Similarity of phrases
→ CNN



Columnless Univ. Schema w. CNN [Toutanova et al., 
EMNLP’15]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema



● Similar sequences of context tokens should be 
embedded similarly

Columnless Univ. Schema w. RNN [Verga et al., ACL’16]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema



● Infer relation from a set of observed relations
● Similar to schema mapping w. signals from values

Rowless Univ. Schema [Verga et al., ACL’16]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema



Rowless Univ. Schema [Verga et al., ACL’16]

2013 (Deep ML)

Logic & Deep learning
● Collective disc. by PSL
● Universal schema

Rowless & 
Columnless

Recall still 
low

Similar for new 
entity pairs



Schema Mapping vs. Universal Schema

Schema matching Universal schema

Granularity Column-level decision Cell-level decision

Expressiveness Mainly 1:1 mapping Allow overlap, 
subset/superset, etc.

Signals Name, description, type, key, 
graph structure, values Values

Results Accu: 70-90% MRR=~0.3, Hits@10=~0.5

Community Database NLP



● How can we combine techs from schema matching and universal 
schema??

Challenges in Applying Deep Learning on SM

Known Known

Known Unknown

Unknown Unknown

Leverage knowledge by inference

Leverage knowledge on types

Rowless



Recipe for Schema Alignment

● Problem definition: Align attributes 
with the same semantics

● Short answers
○ Interactive semi-

automatic mapping
○ DL-based universal schema 

revived the field
○ Combine schema matching and 

universal schema for future

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Revisit Theme I. Which ML Model Works Best?

For structured data, RF works well, and LR is often effective
For texts and semantics, deep learning shows big promise



Revisit Theme II. Does Supervised Learning Apply 
to DI?

Active learning, semi-supervised learning, and weak 
supervision lead to dramatically more efficient solutions.



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML

○ Training data creation
○ Data cleaning

● Part IV. Conclusions and research directions 



ML is data-hungry



Successful ML requires Data Integration

Large collections of manually curated training 
data are necessary for progress in ML.



Successful ML requires Data Integration

Large collections of manually curated training 
data are necessary for progress in ML.



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML

○ Training data creation
○ Data cleaning

● Part IV. Conclusions and research directions 



50 Years of Artificial Intelligence

2010s            
(Representation Learning)

Deep learning
● Automatically learn 

representations
● Impressive with 

high-dimensional data
● Data hungry!

1970s (Rules)

Expert systems
● Manually curated knowledge bases of 

facts and rules
● Use of inference engines
● No support for high-dimensional data

1990s (Features)

Classical ML
● Low complexity models
● Strong priors that capture domain 

knowledge (feature engineering)
● Small amounts of training data

Graphical models and 
logic

● Relational 
statistical 
learning

● Markov logic 
network

   2009 (PGMs) 



The ML Pipeline in the Deep Learning Era 

Data Collection Data Labeling Representation Learning
and Training



The ML Pipeline in the Deep Learning Era 

Data Collection Data Labeling Representation Learning
and Training

Main pain point today, most time spent in labeling data.



Training Data: Challenges and Opportunities

● Collecting training data is expensive and slow.
● We are overfitting to our training data. [Recht et al., 2018]

○ Hand-labeled training data does not change
● Training data is the point to inject domain knowledge

○ Modern ML is too complex to hand-tune features and priors



Training Data: Challenges and Opportunities

● Collecting training data is expensive and slow.
● We are overfitting to our training data. [Recht et al., 2018]

○ Hand-labeled training data does not change
● Training data is the point to inject domain knowledge

○ Modern ML is too complex to hand-tune features and priors

How do we get training data more effectively?



The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to 
collect) labels; prediction on a larger set, and then 
training of a model.

Semi-supervised learning and ensemble learning

Examples: 

● use of non-expert labelers (crowdsourcing),
● use of curated catalogs (distant supervision) 
● use of heuristic rules (labeling functions)

NELL



The Rise of Weak Supervision



The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect) labels; prediction 
on a larger set, and then training of a model.

Related to semi-supervised learning and ensemble learning

Examples: use of non-expert labelers (crowdsourcing), use of curated 
catalogs (distant supervision), use of heuristic rules (labeling functions)

Methods developed to tackle data integration 
problems are closely related to weak supervision.



Learning from Crowds [Raykar et al., JMLR’10] 

Setup: Supervised learning but instead of gold groundtruth one has access 
to multiple annotators providing (possibly noisy) labels (no absolute gold 
standard).

Task: Learn a classifier from multiple noisy labels.

Closely related to Dawid-Skene! 

Difference: Estimating the ground truth and the annotator 
performance is a byproduct here. Goal is to learn a classifier.



Learning from Crowds [Raykar et al., JMLR’10] 

Example Task: Binary classification



Learning from Crowds [Raykar et al., JMLR’10] 

Example Task: Binary classification

Annotator performance: 

Sensitivity (true positive rate)                     Specificity ( 1 - false positive rate)



Learning from Crowds [Raykar et al., JMLR’10] 

Example Task: Binary classification

Annotator performance: 

Sensitivity (true positive rate)                     Specificity ( 1 - false positive rate)

Learning:
Model 
parameters
{w, α, β}

EM algorithm to obtain maximum-likelihood estimates. 
Difference with Dawid-Skene is the estimation of w.



Distant Supervision [Mintz et al., ACL’09]

Goal: Extracting structured knowledge from text.

Hypothesis: If two entities belong to a certain relation, any sentence containing 
those two entities is likely to express that relation.

Idea: Use a database of relations to gets lots of noisy training examples

○ Instead of hand-creating seed tuples (bootstrapping)
○ Instead of using hand-labeled corpus (supervised)

Benefits: has the advantages of supervised learning (leverage reliable 
hand-created knowledge), has the advantages of unsupervised learning (leverage 
unlimited amounts of text data).



Distant Supervision [Mintz et al., ACL’09]

[Adapted example from Luke Zettlemoyer]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

Training Data



Distant Supervision [Mintz et al., ACL’09]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y

Training Data

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL’09]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training Data

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL’09]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training Data

(Bill Gates, Harvard)
Label: CollegeAttended
Feature: X attended Y

For negative examples, sample 
unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL’09]

Entity Linking is an inherent problem 
in Distant Supervision.

The quality of matches can vary 
significantly and has a direct effect on  
extraction quality.



Snorkel: Code as Supervision [Ratner et al., NIPS’16, VLDB’18]

[Slide by Alex Ratner]



Snorkel: Code as Supervision [Ratner et al., NIPS’16, VLDB’18]

[Slide by Alex Ratner]



Alex (the creator of Snorkel) is on the market!

https://ajratner.github.io

Alex Ratner

You can find Alex at the 
poster session tonight! 



Challenges in Creating Training Data

● Richly-formatted data is still a challenge. How can attack weak 
supervision when data includes images, text, tables, video, etc.?

● Combining weak supervision with other data enrichment techniques 
such as data augmentation is an exciting direction. How can 
reinforcement learning help here (http://goo.gl/K2qopQ)?

● How can we combine weak supervision with techniques from 
semi-supervised?

● Most work on weak supervision focuses on text or images. What about 
relational data? How can weak supervision be applied there?

http://goo.gl/K2qopQ


Recipe for Creating Training Data

● Problem definition: Go beyond gold labels to 
noisy training data.

● Short answers
○ Transition from “gold” labels to 

“high-confidence” labels.
○ Modeling error rates is key. The notion of data 

source is different.
○ Need for debugging tools, bias detection, and 

recommendations of weak supervision signals.



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML

○ Training data creation
○ Data cleaning

● Part IV. Conclusions and research directions 



Successful ML requires Data Integration

Large collections of manually curated training 
data are necessary for progress in ML.



Noisy data is a bottleneck

Source: Crowdflower

Cleaning and organizing data comprises 60% of 
the time spent on an analytics of AI project.



50 Years of Data Cleaning

1990s          

(Warehouses) 

Data transforms
● Part of ETL
● Errors within a source and 

across sources
● Transformation workflows 

and mapping rules; 
domain-knowledge is 
crucial

2000s (Data Repairs)

Constraints and Probabilities
● Dichotomies for consistent 

query answering
● Minimality-based repairs to 

obtain consistent instances
● Statistical repairs
● Anomaly detection

1970s (Nulls)                   

E. F. Codd
● Understanding relations (installment 

#7). FDT - Bulletin of ACM SIGMOD, 
7(3):23–28, 1975.

● Null-related features of DBs1980s 
(Normalization)

Integrity Constraints
● Normal forms to 

reduce redundancy 
and integrity

● FDs, MVDs etc.



Where are we today?

Machine learning and statistical analysis are becoming more prevalent.

Error detection (Diagnosis)

● Anomaly detection [Chandola et al., ACM CSUR, 2009]

● Bayesian analysis (Data X-Ray) [Wang et al., SIGMOD’15]

● Outlier detection over streams (Macrobase) [Bailis et al., SIMGOD’17]



Where are we today?

Machine learning and statistical analysis are becoming more prevalent.

Data Repairing (Treatment)

● Classical ML (SCARE, ERACER) [Yakout et al., VLDB’11, SIGMOD’13, Mayfield et al., SIGMOD’10]

● Boosting [Krishan et al.,  2017]

● Weakly-supervised ML (HoloClean) [Rekatsinas et al., VLDB’17]



Error Detection: MacroBase [Bailis et al., SIGMOD’17]

[Figure by Kai Sheng Tai]

Streaming Feature Selection

Setup: Online learning of a classifier (e.g., LR)

Goal: Return top-k discriminative features

Weight-Median Sketch                                                 
Sketch of a classifier for fast updates and 
queries for estimates of each weight and 
comes with approximation guarantees

A data analytics tool that prioritizes attention in large datasets.
Code at: macrobase.stanford.edu



Data Repairing: BoostClean [Krishnan et al., 2017]

Ensemble learning for error detection and 
data repairing.

Relies on domain-specific detection and 
repairing.

Builds upon boosting to identify repairs that 
will maximize the performance improvement 
of a downstream classifier.

On-demand cleaning!



Scalable machine learning for data enrichment

Code available at:
http://www.holoclean.io



Data Repairing: HoloClean [Rekatsinas et al., VLDB’17]

Holistic data cleaning 
framework: combines a 
variety of heterogeneous 
signals (e.g., integrity 
constraints, external 
knowledge, quantitative 
statistics)



Data Repairing: HoloClean [Rekatsinas et al., VLDB’17]

Scalable learning and 
inference: Hard constraints 
lead to complex and 
non-scalable models. Novel 
relaxation to features over 
individual cells. 



Data Repairing: HoloClean [Rekatsinas et al., VLDB’17]

HoloClean is 2x more 
accurate. Competing 
methods either do not scale 
or perform no correct repairs.



Probabilistic Unclean Databases [De Sa et al., 2018]

A two-actor noisy channel model for 
managing erroneous data.

Preprint: A Formal Framework For 
Probabilistic Unclean Databases

https://arxiv.org/abs/1801.06750



Challenges in Data Cleaning

● Error detection is still a challenge. To what extent is ML useful for error 
detection? Tuple-scoped approaches seem to be dominating. Is deep 
learning useful?

● We need a formal framework to describe when automated solutions are 
possible.

● A major bottleneck is the collection of training data. Can we leverage 
weak supervision and data augmentation more effectively? 

● Limited end-to-end solutions. Data cleaning workloads (mixed relational 
and statistical workloads) pose unique scalability challenges.



Recipe for Data Cleaning

● Problem definition: Detect and repair        
erroneous data.

● Short answers
○ ML can help partly-automate cleaning. 

Domain-expertise is still required.
○ Scalability of ML-based data cleaning methods is 

a pressing challenge. Exciting systems research!
○ We need more end-to-end systems!
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DI and ML: A Natural Synergy  

● Data integration is one of the oldest problems in data management 

● Transition from logic to probabilities revolutionized data integration
○ Probabilities allow us to reason about inherently noisy data
○ Similar to the AI-revolution in the 80s [https://vimeo.com/48195434]

● Modern machine learning and deep learning have the power to 
streamline DI

https://vimeo.com/48195434


Revisit: Recipe for Data Extraction

● Problem definition: Extract structure 
from semi- or un-structured data

● Short answers
○ Wrapper induction

has high prec/rec
○ Distant supervision is critical for 

collecting training data
○ DL effective for texts and LR is 

often effective for semi-stru data

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Revisit: Recipe for Schema Alignment

● Problem definition: Align attributes 
with the same semantics

● Short answers
○ Interactive semi-

automatic mapping
○ DL-based universal schema 

revived the field
○ Combine schema matching and 

universal schema for future

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Revisit: Recipe for Entity Linkage

● Problem definition: Link references to 
the same entity

● Short answers
○ RF w. attribute-

similarity features
○ DL to handle texts and noises
○ End-to-end solution is future work

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Recipe for Data Fusion
● Problem definition: Resolve conflicts 

and obtain correct values
● Short answers

○ Reasoning about source 
quality is key and works for easy cases

○ Semi-supervised learning has shown 
BIG potential

○ Representation learning provides 
positive evidence for streamlining data 
fusion.

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



DI and ML: A Natural Synergy  

● Data is bottleneck of modern ML and AI applications

● DI-related methods and algorithms have revolutionized the way 
supervision is performed.
○ Weak supervision signals are integrated into training datasets

● Data integration solutions (e.g., data cataloging solutions) can lead to 
cheaper collection of training data and more effective data enrichment



Revisit: Recipe for Creating Training Data

● Problem definition: Go beyond gold labels to 
noisy training data.

● Short answers
○ Transition from “gold” labels to 

“high-confidence” labels.
○ Modeling error rates is key. The notion of data 

source is different.
○ Need for debugging tools, bias detection, and 

recommendations of weak supervision signals.



Recipe for Data Cleaning

● Problem definition: Detect and repair        
erroneous data.

● Short answers
○ ML can help partly-automate cleaning. 

Domain-expertise is still required.
○ Scalability of ML-based data cleaning methods is 

a pressing challenge. Exciting systems research!
○ We need more end-to-end systems!



Opportunities for DI

One System vs. An Ecosystem: Every RBMS is a monolithic system. This paradigm has failed for DI. Tools for 
different DI tasks are prevalent. We need abstractions and execution frameworks for such ecosystems.

Humans-in-the-loop: DI tasks can be very complex. Is weak supervision the right approach to inject domain 
knowledge? What about quality evaluation?

Multi-modal DI: ML-based DI has focused on structured data with the exception of DI over images using 
crowdsourcing and some recent efforts that target textual data. DL is the de facto solution to reasoning about 
high dimensional data. Can is help develop unified DI solutions for visual, textual, and structured data?

Efficient Model Serving: This means efficient model serving. Many compute-intensive operations such as 
normalization and blocking are required. Featurization may also rely on compute-heavy tasks (e.g., computing 
string similarity). What is the role of pipelining and RDBMS-style optimizations?



Opportunities for ML
Data Catalogs: Data augmentation relies on data transformations performed on data records 
in a single dataset. How can we leverage data catalogs and data hubs to enable data 
augmentation go beyond a single dataset? 

Valuable Data for ML applications: Our community has focused on assessing the value of 
data [Dong et al., VLDB’12, Koutris et al., JACM 2015]. These ideas are not pervasive to ML but 
if ML is to become a commodity [Jordan, 2018] we need methods to reason about the value of 
data.

DI for Benchmarks: Increasing efforts on creating manually curated benchmarks for ML. 
Current efforts rely on manual collection and curation. How can we leverage meta-data and 
existing DI solutions to automate such efforts?

“How reliable are our current measures of progress in machine learning?”

Do CIFAR-10 Classifiers Generalize to CIFAR-10?, Ben Recht et al., 2018



DI & ML as Synergy

● ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION
○ Automating DI tasks with training data
○ Ensemble learning and deep learning provide promising solutions
○ Better understanding of semantics by neural network

● DI for effective ML: DATA, DATA, DATA
○ The software 2.0 stack is data hungry
○ Create large-scale training datasets from different sources
○ Cleaning of data used for training 

Thank you!
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