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What is Data Integration?

e Data integration: to provide unified access to data residing in multiple,
autonomous data sources

o Data warehouse: create a single store (materialized view) of data from different
sources offline. Multi-billion dollar business.

o Virtual integration: support query over a mediated schema by applying online
query reformulation. E.g., Kayak.com.

e In the RDF world: different names for similar concepts

o Knowledge graph is equivalent to a data warehouse. Has been widely used in
Search and Voice

o Linked data is equivalent to virtual integration



Why is Data Integration Hard?

e Heterogeneity everywhere
o Different data formats
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Why is Data Integration Hard?

e Heterogeneity everywhere :
g Y Data Extraction
o Different ways to express the same classes and
attributes ’
IMDB WikiData .
.« Anahi Puent Schema Alignment
- ) Anah" d SEE RANK 1 uen e (Q1694
Actress = Music Department | Soundtrack : : "
Mexican singer-songwriter and actress
Mi
Anahi was born in Mexico. She's had roles in Tu y Yo, in @ ‘
which she played a 17 year old girl while she was 13, and ~ In more languages "evre
Vivo Por Elena, in which she played Talita, a naive and . .
innocent teenager. Anahi lives with her mother and sister Language Label E ntlty Ll N kage
name Marychelo. She hopes to become a fashion designer English Anahi Puente
one day, and is currently pursuing a career in singing.
See full bio » Chinese FIE - TR No on defined
‘ Born ‘ May 14, 1982 in Mexico City, Distrito Federal, Mexico Spanish Anahi Puente Cantal mpositora y actriz mexicana
‘ ‘ € 7 November 198|
More at IMDbPro » ~ 1 reference H
. Contact Info: View manager imported from Data FUSIOn
+ add value




Why is Data Integration Hard?

e Heterogeneity everywhere Data Extraction

¥

Schema Alignment 1

o Different references to the same entity

IMDB WikiData
/ s | Anahi Puente| iso4

Actress Music Department | Soundtrack : : "
Mexican singer-songwriter and actress
A . ) Mia
Anahi was born in Mexico. She's had roles in Tu y Yo, in
W.hICh she playeg a 1? year old girl whi!e she wgs 13, and In more languages ™
Vivo Por Elena, in which she played Talita, a naive and L Label
innocent teenager. Anahi lives with her mother and sister 201009 be Ent ty LI n kage
name Marychelo. She hopes to become a fashion designer English Anahi Puente
one day, and is currently pursuing a career in singing.
See full bio » Chinese FIE - TR No des on defined
Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico Spanish Anahi Puente Canta mpositora y actriz mexicana
date of birth € 7 November 198|
More at IMDbPro » ~ 1 reference D t F 1
. Contact Info: View manager imported from a a USIOn
+ add value




Why is Data Integration Hard?

e Heterogeneity everywhere Data Extraction

IMDB WikiData

Anahi _ sennc Anahi Puente (isos Schema Alignment 1

o Conflicting values [

Actress = Music Department | Soundtrack : : "
Mexican singer-songwriter and actress
A . ) , ) Mia
Anahi was born in Mexico. She's had roles in Tu y Yo, in

which she played a 17 year old girl while she was 13, and
Vivo Por Elena, in which she played Talita, a naive and

innocent teenager. Anahi lives with her mother and sister Language Label [ E ntlty Ll N kage

name Marychelo. She hopes to become a fashion designer English Anahi Puente
one day, and is currently pursuing a career in singing.

See full bio » Chinese FIE - TR No des on defined
Bornj§ May 14, 1982 |h Mexico City, Distrito Federal, Mexico Spanish Anahi Puente Canta mpositora y actriz mexicana
date of birth |7 November 198

More at IMDbPro » ~ 1 reference

-
. Contact Info: View manager imported from Data F us Ion

A

~ In more languages ©°"aure

+ add value




Importance from a Practitioner’s Point of View

e Entity linkage is indispensable whenever
integrating data from different sources

. 2

relational data Schema Alignment
e Data fusion is necessary in presence of erroneous

data
e Schema alignment is helpful when integrating

e Data extraction is important for integrating non-

L Data Extraction J

relational data, but not affordable for manual work

if we integrate many sources _
Data Fusion




What is Machine Learning?

e Machine learning: teach computers to learn with data, not by programming

e More Formal definition
A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E.
-- Tom Mitchell



Two Main Types of Machine Learning

e Supervised learning: learn by examples

Classification Regression
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Two Main Types of Machine Learning

e Unsupervised learning: find structure w/o examples
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Two Main Types of Machine Learning

e Supervised learning: learn by examples
e Unsupervised learning: find structure w/o examples
Supervised Learning  Unsupervised Learning

reduction
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Techniques for Supervised ML

Hyperplanes Kernel Tree-based Graphical Mdl Logic Prog Neural Netw
Linear/Logistic SVM Decision tree, Bayes net, Pr soft logic, ANN, RNN,
regression Random forest CRF Markov logic net CNN
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Key Lessons for ML [Domingos, 2012]

e [carning = Representation + Evaluation + Optimization

e It’s generalization that counts: generalize beyond training examples

e Data alone 1s not enough: “no free lunch” theorem--No learner can beat
random guessing over all possible functions to be learned

e Intuition fails in high dimensions: “curse of dimensionality”

e More data beats a cleverer algorithm: Google showed that after providing
300M 1mages for DL 1mage recognition, no flattening of the learning curve
was observed.



DI & ML as Synergy

e ML for effective DI: AUTOMATION, AUTOMATION,
AUTOMATION
o Automating DI tasks with training data
o Better understanding of semantics by neural network

e DI for effective ML: DATA, DATA, DATA
o Create large-scale training datasets from different sources
o Cleaning of data used for training



Give me a Fulscrum, I will Move the Earth
-- Archimedes




Give me a DI funnel, I will Move ML
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Goal of This Tutorial

e NO-GOALS
o Present a comprehensive literature review for all topics we are covering

e GOALS

Present state-of-the-art for DI & ML synergy

Show how ML has been transforming DI and vice versa

Give some taste on which tool 1s working best for which tasks

o O O O

Discuss what remains challenging



Outline

e Part I. Introduction
e Part II. ML for DI
e Part III. DI for ML

e Part IV. Conclusions and research directions




Data Integration Overview

indispensable when different sources exist '

Schema Alignment

Data extraction: extracting structured data;

Entity linkage: linking records to entities; {
important when non-relational data exist [

Data Extraction J

Data fusion: resolving conflicts; necessary in
presence of erroneous data

Schema alignment: aligning types and attributes;
helpful when different relational schemas exist

[ Data Fusion }




Recipe

e Brief history
e State-of-the-art ML solutions
e Summary w. a short answer

. 2

Schema Alignment

e Problem definition { Data Extraction J

{ Data Fusion }




Theme I. Which ML Model Works Best?




Which ML Model Works

MARK

1 John Deo Four 75 female
2 |Max Ruin Three 85 male
3 |Amold Three 55 male
4  |Krish Star Four 60 female
5 |John Mike Four 60 female
6  |Alex John Four 55 male
7 My John Rob Fifth 78 male
8 |Asruid Five 85 male
9 |TesQry Six 78 male
10 |Big John Four 55 female

Tree-based models
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Theme I1. Does Supervised Learning Apply to DI?

e Supervised learning has made a big splash recently in many fields

e However, it is hard to bluntly apply supervised learning to DI tasks
o Qur goal is to integrate data from many different data sources in
different domains
o The different sources present different data features and distributions
o Collecting training labels for each source is a huge cost



Outline

e Part I. Introduction

e Part II. ML for DI
o ML for entity linkage

Data Extraction

¥

Schema Alignment

. 2

o ML for data extraction [ }
o ML for data fusion
o ML for schema alignment [ Entity Linkage J

e Part III. DI for ML l’
e Part IV. Conclusions and research direction
Data Fusion




What is Entity Linkage?

e Definition: Partition a given set R of records, such that each
partition corresponds to a distinct real-world entity.

Are they the same entity?
IMDB

Anahl’ «af SEE RANK

Actress = Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in
which she played a 17 year old girl while she was 13, and
Vivo Por Elena, in which she played Talita, a naive and
innocent teenager. Anahi lives with her mother and sister
name Marychelo. She hopes to become a fashion designer
one day, and is currently pursuing a career in singing.
See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro »
. Contact Info: View manager

WikiData
Anahi Puente (060461

Mexican singer-songwriter and actress
Mia

~ In more languages ©°"aure

Language Label Description
English Anahi Puente Mexican singer-songwriter and actress
Chinese FIE - TR No description defined
Spanish Anahi Puente Cantante, compositora y actriz mexicana
date of birth € 7 November 1983 2 edit

~ 1 reference

imported from Italian Wikipedia

+ add reference

+ add value




Three Steps in Entity Linkage

e Blocking: efficiently create small blocks of

similar records

¥

Clustering

[ S —
A |




Three Steps in Entity Linkage

e Pairwise matching: compare all record

pairs 1n a block

_—_~

Blocking J

~

Clustering




Three Steps in Entity Linkage

® Clustering: group records into entities

Blocking J

¥

Pairwise Matching




50 Years of Entity Linkage

Rule-based and stats-based
e Blocking: e.g., same name
e Matching: e.g., avg similarity
of attribute values
e C(Clustering: e.g., transitive
closure, etc.

Supervised learning
e Random forest for matching
F-msr: >95% w. ~1M labels
e Active learning for blocking & matching
F-msr: 80%-98% w. ~1000 labels

~2000 (Early ML) 2018 (Deep ML)
1969 (Pre-ML) ~2015 (ML)
Sup / Unsup learning Deep learning
e Matching: Decision tree, SVM e Deep learning
F-msr: 70%-90% w. 500 labels e Entity embedding

e (lustering: Correlation clustering,
Markov clustering



Rule-Based Solution

Rule-based and stats-based

e Blocking: e.g., same name :
e Matching: e.g., avg similarity ¢ [Fellegl and Sunter9 1969]

of attribute values . o >
e C(Clustering: e.g., transitive © MatCh' Slm(r’ I ) = 6h
closure, etc. O Unmatch: sim(r, I',) < 61

T_ o Possible match:

1969 (Pre-ML) 0,<sim(r,r’) <0,




Early ML Models

~2000 (Early ML)

F

Sup / Unsup learning

Matching: Decision tree, SVM
F-msr: 70%-90% w. 500 labels
Clustering: Correlation clustering,
Markov clustering

[Kopcke et al, VLDB’10]
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State-of-the-Art ML Models [Dong, KDD’18]

Supervised learning e Features: attribute similarity measured in various
e Random forest for matching ways. E. g.,
F-msr: >95% w. ~1M labels ) ) )
e AL for blocking & matching o string sim: Jaccard, Levenshtein

F-msr: 80%-98% w. ~1000 : . L
e o number sim: absolute diff, relative diff

labels
e ML models on Freebase vs. IMDDb

~2015 (ML) o Logistic regression: Prec=0.99, Rec=0.6

o Random forest: Prec=0.99, Rec=0.99




State-of-the-Art ML Models [Dong, KDD’18]

e Expt 1. IMDb vs. Freebase

Supervised learning

® Random forest for matching o Logistic regression: Prec=0.99, Rec=0.6
F-msr: >95% w. ~1M labels
e AL for blocking & matching o Random forest: Prec=0.99, Rec=0.99
F-msr: 80%-98% w. ~1000 Recall for 99% Precision vs. Training Data Size (log10)
% ® randomSample  ® randomSample_logReg
1 ° e o ®
0.9 =
~2015 (ML)
0.7 3
506 e e © o °
§ 05 R
<04
0.3
0.2
0.1
0
2 25 3 35 4 45 5 5.5 6 6.5

Training size (log 10)




State-of-the-Art ML Models [Dong, KDD’18]

Supervised learning e Features: attribute similarity measured in various

e Random forest for matching ways. E.g.
F-msr: >95% w. ~1M labels . _
e AL for blocking & matching o name sim: Jaccard, Levenshtein
F-msr: 80%-98% w. ~1000 : . . .
I e R o age sim: absolute diff, relative diff
e ML models on Freebase vs. IMDb
~2015 (ML) o Logistic regression: Prec=0.99, Rec=0.6

o Random forest: Prec=0.99, Rec=0.99
o XGBoost: marginally better, but sensitive to
hyper-parameters




State-of-the-Art ML Models [Dong, KDD’18]

Supervised learning e Expt 2. IMDb vs. Amazon movies

¢ Random forest for matching o 200K labels, ~150 features
F-msr: >95% w. ~1M labels

e AL for blocking & matching o Random forest: Prec=0.98, Rec=0.95
F-msr: 80%-98% w. ~1000 Precision-Recall

labels

~2015 (ML)

Precision

050 055 060 065 070 075 080 085 090 095

Recall




State-of-the-Art ML Models [Das et al., SIGMOD’17] |

=

Magellan

Supervised learning e Falcon: apply active learning both for blocking
® Random forest for matching and for matching; ~1000 labels
F-msr: >95% w. ~1M labels
e AL for blocking & matching Accuracy (%) Cost
~msr: 80%-98% w. ~1000 .
I ﬂbefs " Dataset P | R | Fr | (# Questions)
Products || 90.9 | 74.5 | 81.9 $57.6 (960)

~2015 (ML) Songs 96.099.3[97.6 1  $54.0 (900)
Citations || 92.0 | 98.5 | 95.2 $65.5 (1087




State-of-the-Art ML Models [Dong, KDD’18]

Supervised learning e Apply active learning to minimize #labels

e Random forest for matching
F-msr: >95% w. ~1M labels

Recall for 99% Precision vs. Training Data Size (log10)

° AL for blOCkil’lg & matchin g ® 1000+adaStratified500  ® randomSample
F-msr: 80%-98% w. ~1000 ! . so——
labels

~2015 (ML)

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Training size (log 10)




Deep Learning Models [Mudgal et al., SIGMOD’ 18]
e Bi-RNN w. attention Magellan

Check-out at poster session
on Wednesday! e Similar performance for structured data;
Code at: deepmatcher.ml Significant improvement on texts and dirty data
2018 (Deep ML) EERE IR
E H s ° H E } Sequences of Words
4 } 4
1. Attribute Embedding E E E
i . 4
Deep learning == == == } Word sasedings
e Deep learning 2. Atcibute Simarity 2 o
e Entity embedding e
- - — } Attribute Similarity
T } Entity Similarity
3. Classification m][]
[J Neural Network (NN)

NNs with the same
pattern share parameters




Deep Learning Models [Trivedi ctal., ACL’18]

Entity
Embeddings

Attribute
Embeddings

Relation
Embeddings

Type
Embeddings

e LinkNBed: Generate embeddings for entities as

Atomic Layer

Contextual Layer

in knowledge embedding
| e’ Subject Entity .
N (e | (@09 1 -4 Eod
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Representation Layer

Score
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Deep Learning Models [Trivedi ctal., ACL’18]

e LinkNBed: Generate embeddings for entities as
in knowledge embedding
e Performance better than previous knowledge

embedding methods, but not comparable to
2018 (Deep ML) random forest

I e Enable linking different types of entities

Deep learning
e Deep learning
e Entity embedding



Challenges in Applying ML on EL

e How can we obtain abundant training data for many types, many
sources, and dynamically evolving data??
e From two sources to multiple sources

Freebase IMDb Wikipedia Wikidata Netflix




Challenges in Applying ML on EL

e How can we obtain abundant training data for many types, many
sources, and dynamically evolving data??
e From one entity type to multiple types

Freebase IMDb Wikipedia Wikidata Netflix




Challenges in Applying ML on EL

e How can we obtain abundant training data for many types, many
sources, and dynamically evolving data??

~ & From static data to dynamic data

Freebase IMDb Wikipedia Wikidata Netflix




Recipe for Entity Linkage

e Problem definition: Link references to Data Extraction

¥

the same entity

e Short answers

. - NN Schema Alignment
o RF w. attribute- R roductionyy
\ Read 7

similarity features . @
o DL to handle texts and noises [ Entity Linkage }

¥

Data Fusion

o End-to-end solution is future work




Outline

e Part I. Introduction

e Part II. ML for DI

{ Data Extraction
o ML for entity linkage [

L 2

Schema Alignment }

o ML for data extraction
o ML for data fusion
o ML for schema alignment

e Part III. DI for ML
e Part IV. Conclusions and research direction

¥

Entity Linkage

¥

Data Fusion




What is Data Extraction?

e Definition: Extract structured information, e.g., (entity, attribute, value)
triples, from semi-structured data or unstructured data.
Web tables & Lists
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What is Data Extraction?

Web tables & Lists

triples, from semi-structured data or unstructured data.

Biological
level

{ ot Whole body
(e}
His ideas and body of work -- whic| ©
E:':' The Last Supper|Leda and the Swa| ©  nterai organ
=== = _ influenced countless artists and mad| o
R e R . o Tissue
- . |ltalian Renaissance. &
v

Cell

Definition: Extract structured information, e.g., (entity, attribute, value)

Diagram

Pri

ion Post Regenerate

Regeneration from a
small body fragment

Limb, fin, tail, head,
tentacle, siphon,
arm, stalk

Heart, liver, lens

Epidermis, gut
lining

Axon, muscle fiber

[
i i
4-0-¢

E - BE - B
O+ . o . o4

TRENDS in

Ecology & Evalution




Three Types of Data Extraction

e C(losed-world extraction: align to existing entities and attributes; e.g.,
(ID_Obama, place of birth, ID USA)

e C(losedIE: align to existing attributes, but extract new entities; e.g.,
(“Xin Luna Dong”, place of birth, “China”)

e OpenlE: not limited by existing entities or attributes; e.g.,

29 ¢¢

(“Xin Luna Dong”, “was born in”, “China”),
(“Luna”, “is originally from”, “China”)



Three Types of Data Extraction

e C(losed-world extraction: align to existing entities and attributes; e.g.,
(ID_Obama, place of birth, ID USA)

e C(losedIE: align to existing attributes, but extract new entities; e.g.,

(“Xin Luna Dong”, place of birth, “China”) h

e OpenlE: not limited by existing entities or attributes; e.g.,

29  ¢¢

(“Xin Luna Dong”, “was born in”, “China”),
(“Luna”, “is originally from”, “China”)



35 Years of Data Extraction

Early Extraction Extraction from semi-structured data
e Rule-based: Hearst pattern, IBM e WebTables: search, extraction
System T e DOM tree: wrapper induction
e Tasks: IS-A, events
1992 (Early-ML) 2008 (Semi-stru)
Relation extraction from texts Deep learning
e NER—EL—RE e Use RNN, CNN, attention
o Feature based: LR, SVM for RE
o Kernel based: SVM e Revisit DOM extraction
e Distant supervision e Data programming /

e OpenlE Heterogeneous learning



35 Years of Data Extraction

Early Extraction Extraction from semi-structured data
e Rule-based: Hearst pattern, IBM e WebTables: search, extraction
System T e DOM tree: wrapper induction
e Tasks: IS-A, events
~2005 (Rel. EX.) 2013 (Deep ML)
1992 (Early-ML) 2008 (Semi-stru)
Relation extraction from texts Deep learning
e NER—EL—RE e Use RNN, CNN, attention
o Feature based: LR, SVM for RE
o Kernel based SVM e Revisit DOM extraction

Come to our VLDB tutorlal for text extraction and OpenIE”




Why Semi-Structured Data?

e Knowledge Vault @ Google showed big potential from DOM-tree extraction

[Dong et al., KDD’14][Dong et al., VLDB’14]

Accu

Accu (conf > .7)

0.36

0.52

1.1M

DOM

(301M) v (1280M)

1.7M

Accu
0.43
0.09

Accu (conf > .7)
0.63
0.62




Wrapper Induction--Vertex [Gulhanc et al., ICDE’11]

Title Genre Release Date

AND CREW TRIVIA USER REVIEWS

+ Top Gun (1986)

T 16 May 1986 (USA

Watch Now @

From $2.99 (SD) on Amazon Video

As students at the United States Navy's elite fighter weapons school compete to be best in the
class, one daring young pilot learns a few things from a civilian instructor that are not taught
in the classroom.

Director: Tony Scott € DireCtor

Writers: Jim Cash, Jack Epps Jr. 1 more credit » Cto rs
Stars: Tom Cruise, Tim Robbins, Kelly McGillis™ See full cast & crew »

Metascore Reviews V\ Popularity
From metacritic.com 401 user 173 critic 404 (# 71)

Extracted relationships
* (Top Gun, type.object.name, “Top Gun”)

(Top Gun, film.film.genre, Action)

(Top Gun, film.film.directed by, Tony Scott)

(Top Gun, film.film.starring, Tom Cruise)

(Top Gun, film.film.runtime, “1h 50min”)

(Top Gun, film.film.release_Date_s, “16 May
1986")



Wrapper Induction--Vertex [Gulhanc et al., ICDE’11]
e Solution: find XPaths from DOM Trees

Edit filmography

Filmography

Jump to: Actor | Producer | Soundtrack | Director

Actor (46 credits)

Top Gun: Maverick (pre-production)
Maverick

M:I 6 - Mission Impossible (fiiming)
Ethan Hunt

American Made (completed)
Barry Seal

Luna Park (announced)

The Mummy
Nick Morton

Jack Reacher: Never Go Back
Jack Reacher

Mission: Impossible - Rogue Nation
Ethan Hunt

Edge of Tomorrow
Cage

Oblivion
Jack

Jack Reacher
Reacher

Rock of Ages
Stacee Jaxx

Mission: Impossible - Ghost Protocol
Ethan Hunt

Knight and Day
Roy Miller

Valkyrie
Colonel Claus von Stauffenberg

Tropic Thunder

v Show all Show

Writer  Thanks | Self | Archive footage
Hide A

2019

2018

2017

2017

2016

2015

2014

2013/1

2012

2012

2011

2010

2008
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"filmo-head-actor" class="head" data-category="actor" onclick=
"toggleFilmoCategory(this);">.</div>
v<div class="filmo-category-section">
v<div class="filmo-row odd" id="actor-tt1745960">
<span class="year_column">

&nbsp; 2019
</span>
¥ <b>
<a href="/title/tt1745960/?ref =nm flmg act 1">Top Gun: Maverick</a>
</b>

T
<a href="/r/legacy-inprod-name/title/tt1745960" class="in_production">pre-

production</a>

")

<br>

<a href="/character/ch@@05702/?ref =nm flmg act 1">Maverick</a>
</div>

P <div class="filmo-row even" id="actor-tt4912910">.</div>
P <div class="filmo-row odd" id="actor-tt3532216">..</div>
P <div class="filmo-row even" id="actor-tt1123441">.</div>
v<div class="filmo-row odd" id="actor-tt2345759">

<span class="year_column">

&nbsp; 2017

</span>
¥ <b>

<a href="/title/tt2345759/?ref =nm flmg act 5">The Mummy</a>

</b>

<br>

<a href="/character/ch8573416/?ref =nm flmg act 5">Nick Morton</a>
</div>

P <div class="filmo-row even" id="actor-tt3393786">.</div>
P <div class="filmo-row odd" id="actor-tt2381249">.</div>
P <div class="filmo-row even" id="actor-tt1631867">.</div>
P <div filmo-row odd" id="actor-tt1483013">.</div>
> <div filmo-row even” id="actor-tt0790724">.</div>
> <div filmo-row odd" id="actor-tt1336608">..</div>




Wrapper Induction--Vertex [Gulhanc et al., ICDE’11]

e Challenge: slight variations from page to page

/html/body/div[1]/div/div[4]/div[3]/div[3]/div[3]/div[3]/div[4]/div[26]/b/a
/html/body/div[1]/div/div[4]/div[3]/div[3]/div[3]/div[3]/div[2]/div[10]/b/a

Figure 2: Example of XPaths corresponding to the acted in
predicate on two IMDDb pages. They differ at two node indices,
and the second path corresponds to the producer of predicate
from the first page.



Wrapper Induction--Vertex [Gulhanc et al., ICDE’11]

|dentify representative @
webpages for annotation -

Learn Sample pagesT l Annotations

Web site al Annotate

sampl@—'[ Pages ]_’L Learn XSLT RulesJ

3
One website may use Sample|pages Combine attr features
multiple templates Monitor | and textual features to
. ) Changed sites Rul i .
(Unsupervised-clustering) [ Rues find a general XPath
. (LR)
l Rules
Extract ‘

Web site
pages > Extract *| Records




Wrapper Induction--Vertex [Gulhanc et al., ICDE’11]

e Sample learned XPaths on IMDb
o //*[(@itemprop="name" ]

o //*[(@class="bp item bp text only"]/*/*/|(@class="bp heading"]

o //*[following-
sibling::*[position()=3][@class="subheading"]]/*[following-
sibling::*[position()=1][@class="attribute"]]

o //*[preceding-sibling::node()[normalize-

space(.)!=""][text()="Language:"] ‘




Distantly Supervised Extraction

e Annotation-based extraction
o Pros: high precision and recall
o Cons: does not scale--annotation per cluster per website

e Distantly-supervised extraction
o Step 1. Use seed data to automatically annotate
o Step 2. Use the (noisy) annotations for training
o E.g., DeepDive, Knowledge Vault



Distant Supervision [Mintz et al., ACL'09]

Corpus Text Training Data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...
Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL'09]

Corpus Text Training Data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...
Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL'09]

Corpus Text Training Data
Bill Gates founded Microsoft in 1975. (Bill Gates, Microsoft)
Bill Gates, founder of Microsoft, ... Label: Founder
Bill Gates attended Harvard from ... Feature: X founded Y
Google was founded by Larry Page ... Feature: X, founder of Y
Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL'09]

Corpus Text

Training Data

Bill Gates founded Microsoft in 1975. ((Bill Gates, Microsoft) )

Bill Gates, founder of Microsoft, ... Label: Founder

Bill Gates attended Harvard from ... Feature: X founded Y

Google was founded by Larry Page ... kFea‘rure: X, founder of Y )
~ )

(Bill Gates, Harvard)
Freebase Label: CollegeAttended

_ Feature: X attended Y )

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

For negative examples, sample
unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]

Entity

Identification

Relation
Annotation

Automatic Label Generation

Watch Now @
pisc

From $2.99 (SD) on Amazon Video

As students at the United States Navy's elite fighter weapons school compete to be best in the
class, one daring young pilot learns a few things from a civilian instructor that are not taught
in the classroom.

Director: Tony Scott
Writers: Jim Cash, Jack Epps Jr. 1 more credit »
Stars: Tom Cruise, Tim Robbins, Kelly McGillis | See full cast & crew »

Metascore Reviews WA Popularity

Genre Release Date

+ Top Gun (1986)

From $2.99 (SD) on Amazon Video

As students at the United States Navy's elite fighter weapons school compete to be best in the
class, one daring young pilot learns a few things from a civilian instructor that are not taught

in the classroom.
ctor

.
Director: Tony Scott € D| rg
Writers: Jim Cash, Jack Epps Jr. 1 more cvc/ Agto rs
Stars: Tom Cruise, Tim Robbins, Kelly McGillis““See full cast

Metascore Reviews \a _Popularity

Watch Now @

Extracted triples

* (Top Gun, type.object.name, “Top Gun”)

e (Top Gun, film.film.genre, Action)

* (Top Gun, film.film.directed_by, Tony Scott)
* (Top Gun, film.film.starring, Tom Cruise)

* (Top Gun, film.film.runtime, “1h 50min”)

. (Toga Gun, film.film.release_Date_s, “16 May
1986”)




Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]

e Extraction experiments on SWDE benchmark

Vertical Predicate Vertex++ CERES-Full Vertical Predicate Vertex++ CERES-Full
P R FI P R FI P R Fl P R Fl

Title 1.00 1.00 1.00 1.00 1.00 1.00 Name 1.00 1.00 1.00 1.00 1.00 1.00

Movie Director 099 099 099 099 099 099 .o o Type 1.00 1.00 1.00 0.72 0.80 0.76
Genre 0.88 0.87 0.87 093 097 095 Phone 097 092 094 085 095 0.90

MPAA Rating 1.00 1.00 1.00 NA NA NA Website 1.00 1.00 1.00 090 1.00 0.95

Average 097 097 097 097 099 0.98 Average 099 098 099 087 094 0.90

Name 099 099 099 1.00 1.00 1.00 Title 099 099 099 1.00 0.9 0.95

Team 1.00 1.00 1.00 091 1.00 0095 Book Author 097 096 096 0.72 0.88 0.79
NBAPlayer  weioht 100 1.00 100 1.00 1.00 1.00 Publisher 085 085 085 097 077 0.86
: Publication Date  0.90 090 090 1.00 0.40 0.57

Height 100 1.00 1.00 1.00 050 095 ISBN-13 094 094 094 099 019 032

Average L0 L0 10 055 0% 098 Average 093 093 093 094 063 0.70




Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]

e Extraction on long-tail movie websites

#Websites / #Webpages 33 / 434K

Language English and 6 other languages

Animated films, Documentary films, Financial
performance, etc.
70K (16%)

1:2.6
1:3.0
1.25M
90%

# Annotated pages
Annotated : Extracted #entities
Annotated : Extracted #triples

# Extractions




Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]

e Which modelis the best?
O Logistic regression: best results (20K features on one website)
O Random forest: lower precision and recall
O Deep learning??



Challenges in Applying Deep Learning on Extracting
Semi-structured Data

e Web layout is neither 1D sequence nor regular 2D grid, so CNN or RNN

does not directly apply
Company Credits

Production Co:||Lucasfilm), Walt Disney Pictures, Allison Shearmur Productions|See more D
Show more on [MDbPro F

Technical Specs

Runtime: | 135 min

Sound Mix: [Dolby Atmos| | PTS|(DTS: X)
| |Dolby Surround 7.1 -

olor: [ Color
Aspect Ratio: | 2.39 :
See|full technical specs

12-Track Digital Sound|| Auro 11.1 ||Dolby Digital

]_
=

1
[ »|




Example System: Fonduer [wuetal, SIGMOD’18]

Transistor Datasheet

ISMBT3904;. .MMBT3904!

NPN Silicon Switching Transistors
+ High DC current gain: 0.1 mA to 100 mA
* Low collector-emitter saturation voltage

Maximum Ratings

Parameter Symbol Value Unit
Collector-emitter voltage Veso 40 A\
Collector-base voltage Veso 60
Emitter-base voltage Veso 6
Collector current Ic 200 mA
bl oo e s tios P mV
HasCollectorCument 330
(Transistor Part , Current) 250
; T 150 °C
e SMBT3094  200mA M -65 ... 150
MMBT3094 200mA ‘
THINGS

Richly formatted data: information

are expressed via textual, structural,
tabular, and visual cues.

[[1 SMBT3904 1]] .. MMBT3904 [[2 200 2]] [ Em
Sentence s; Sentences, | Col Rigned
Bi-LSTM with Attention Extended Feature Library

Attend the talk in Research Session 13!
New version of code coming soon: https://github.com/HazyResearch/fonduer

200 Font: Arial; Size: 10

snorkel

Fonduer combines a new
bi-directional LSTM
with multimodal
features and weak
supervision (specifically
data programming).



WebTable Extraction [Limaye et al., VLDB’10]

e Model table annotation using interrelated random variables, represented

by a probabilistic graphical model
o Cell text (in Web table) and entity label (in catalog)
o Column header (in Web table) and type label (in catalog)
o Column type and cell entity (in Web table)




WebTable Extraction [Limaye et al., VLDB’10]

e Model table annotation using interrelated random variables, represented
by a probabilistic graphical model

O

Pair of column types (in Web table) and relation (in catalog)
O

Entity pairs (in Web table) and relation (in catalog)

2
G 7
\\ ¢ /’I ‘\il
Nz TR RN
Nyt i W
| */{\ ] ,’ 1 \ ®s(b23, €32, e33)
o A R e
01(1,1,en) /’.@ ,-‘)r)'»,l N"T/
/1
| :‘/ ! [W II‘\
/ o '
_,;7’ ______ !
7/!' v ™
& &y

D3(t3, e33)



Challenges in Applying ML on DX

e Automatic data extraction cannot reach production quality requirement. How
to improve precision?

e Every web designer has her own whim, but there are underlying patterns
across websites. How to learn extraction patterns on different websites,
especially for semi-structured sources?

® ClosedIE throws away too much data. How to apply OpenlE on all kinds of
data?



Recipe for Data Extraction

e Problem definition: Extract structure Data Extraction

e Short answers

. . /- N [ Schema Alignment }
o Wrapper induction L(roguction®
2 eady S

from semi- or un-structured data

has high prec/rec @
Entity Linkage

¥

Data Fusion

o Distant supervision is critical for

collecting training data

o LR is often effective; more research
is needed for DL




Outline

e Part I. Introduction
e Part II. ML for DI

Data Extraction

¥

o ML for entity linkage Sch Al t
. chema Alignmen
o ML for data extraction 9

© ML for data fusion ‘
o ML for schema alignment [ Entity Linkage }

e Part III. DI for ML l’
e Part IV. Conclusions and research direction
Data Fusion




What is Data Fusion?

e Definition: Resolving conflicting data and verifying facts.

e Example: “OK Google,How long is the Mississippi River?”

Mississippi River Mississippi River Facts - Mississippi National River and Recreation ...
River in the United States of America https://www.nps.gov/miss/riverfacts.htm v - .
Mississippi River / Length 42 %kk k- 400 Google reviews Nov 14, 2017 - The staff of Itasca State Park at the Mississippi's headwaters suggest the main stem of the
river is 2,552 miles long. The US Geologic Survey has published a number of 2,300 miles, the EPA says
The Mississippi River is the chief river of it is 2,320 miles long, and the Mississippi National River and Recreation Area suggests the river's length
the second-largest drainage system on the is 2,350 miles.
2 320 ml North American continent, second only to
’ the Hudson Bay drainage system.
Wikipedia
Discharge: 593,000 cubic feet per second oo| Neme o Mout® o Lengm o m:::n::o("l % e...:::.("l . ":"',';J" o| Dischargel’? o States, provinces, and image!®i'!)
Basin area: 1.151 million mi* [ | _ [ seasame | 68,100 1% Montana®, North Dakota, South Dakota, Nebraska, lowa,
People also search for Source: Lake Itasca 1 |MissouriRiver | Mssissippi River :’;‘: ::.l'-\l :1‘;05:;9 wﬁ‘l ;:,‘:_:; N 1;;;;‘,0'1 k1) 195 mss Kansas, Missouri™
- Missouri River Nile Mouth: Gulf of Mexico Minnesota®, Wisconsin, lowa, llincis, Missourl,
a 2341K mi - 4.258K mi Country: United States of America . Kenucy Akaneas, Mssasiop, Lovisiane™
mi ,000 mi a9
Did you know: The Mississippi River is the 2 |osssoniver |GutoiModco | sstenmn | @TWEN @mosoin | T, 650000 ;
second-longest river in the US (2,202 mi). e sz eMSIZW | gy 100

wikipedia.org




The Basic Setup of Data Fusion

Source Observations

True Facts
River Attribute Value
Mississippi
Length ?
River eng //
Missouri River Length / ?

Source River Attribute Value

KG Mississippi River Length 2,320 mi
KG Missouri River Length 2,341 mi
Wikipedia /—v Mississippi River Length 2,202 mi
Wikipedia / Missouri River Length 2,341 mi
USGS / Mississippi River Length » 2,340 mi

USGS \ Missouri River Agth 2,540 mi

\ Fact

Conflicting value

Source reports

a value for a fact

l

Fact’s true value

Goal: Find the latent
true value of facts.




The Basic Setup of Data Fusion

Source Observations True Facts
Source River Attribute Value River Attribute Value
KG Mississippi River Length 2,320 mi MiSSjssippi Lengh |+
KG Missouri River Length 2,341 mi River /
Wikipedia /—v Mississippi River Length 2,202 mi [ Missouri River Length / ?
Wikipedia / Missouri River Length 2,341 mi ’
USGS / Mississippi River Length » 2,340 mi Fact’s true value
USGS \ Missouri River Agth 2,540 mi
\ Idea: Use redundancy to infer
Fact Source reports the true value of each fact.

a value for a fact
Conflicting value



Majority Voting for Data Fusion

Source Observations

True Facts
River Attribute Value
Mississiopi
1ss‘1s51pp1 Length 9
River
Missouri River Length 2,341

Source River Attribute Value

KG Mississippi River Length 2,320 mi
KG Missouri River Length 2,341 mi
Wikipedia Mississippi River Length 2,202 mi
Wikipedia Missouri River Length 2,341 mi
USGS Mississippi River Length 2,340 mi

USGS Missouri River Length 2,540 mi

Majority voting can be limited. What if sources are
correlated (e.g., copying)?

Idea: Model source quality for accurate results.




40 Years of Data Fusion (beyond Majority Voting)

Dawid-Skene model Probabilistic Graphical Models
e Model the error-rate of sources e Use of generative models
e Expectation-maximization e Focus on unsupervised learning
~1996 (Rule-based) 2016 (Deep ML)
1979 2007 (Probabilistic) Deen learni
CHC C Domain-specific Strategies cep learning
(Statistical learning) P . e Use Restricted Boltzmann

e Keep all values

Machine; one layer version
is equivalent with Dawid-
Skene model

e Knowledge graph
embeddings

e Pick a random value

e Take the average value

e Take the most recent value
[ J



A Probabilistic Model for Data Fusion

e Random variables: Introduce a latent random variable to represent the true value of
each fact.

e Features: Source observations become features associated with different random
variables.

e Model parameters: Weights related to the error-rates of each data source.

K@‘_ror-rate scores (model
1 , parameters)
P(Fact = U%Z exp Z Z og" - 1[S reports Fact = ']

Normalizing constant

UU,U' — 1o Error-rate of Source S Error-rate = probability that a source
s T\ 1C Error-rate of Source S provides value v’ instead of value v

s € Sources v/ € Values




The Challenge of Training Data

e How much data do we need to train the data fusion model?

e Theorem: We need a number of labeled examples proportional to the number of
sources [Ng and Jordan, NIPS’01]

e Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions
and training data is limited!

Idea 1: Leverage redundancy and use unsupervised learning.



The Dawid-Skene Algorithm [Dawid and Skene, 1979]

[terative process to estimate data source error rates

1. Initialize “inferred” true value for each fact (e.g., use majority
vote)

2. Estimate error rates for workers (using “inferred” true values)

3. Estimate “inferred” true values (using error rates, weight source

. . Va1
votes according to quality) 1,1 o

Vi Mi
4. Go to Step 2 and iterate until convergence @

Assumptions: (1) average source error rate < 0.5, (2) dense source observations, (3) conditional independence of

sources, (4) errors are uniformly distributed across all instances.




Probabilistic Graphical Models for Data Fusion

Examp

le:

Source
Quality

Setup: Identify true
source claims

| Entity (Movie) | Attribute (Cast) | Source

Harry Potter | Daniel Radcliffe IMDB

Harry Potter Emma Waston IMDB

@ Harry Potter Rupert Grint IMDB

C Harry Potter | Daniel Radcliffe Netflix
Harry Potter | Daniel Radcliffe | BadSource.com
— Harry Potter Emma Waston | BadSource.com
Prior ruih [Zhoctal, VLDB 2012 Hary Pt | Jory Dpe [ B om

probabil

ity

Extensive work on modeling source observations and source
interactions to address limitations of basic Dawid-Skene.




Probabilistic Graphical Models for Data Fusion
Modeling both source quality

and extractor accuracy
\ _/

DEOSOIR = She

C

Wi

F jl \\ -~
ONO)
[Zhao et al., VLDB 2012] e

[Dong et al., VLDB 2015]
Extensive work on modeling source observations and source
interactions to address limitations of basic Dawid-Skene.




Probabilistic Graphical Models for Data Fusion

o 6
00 CRP(a) CRP(’)’) l Qe

) | 00

By w; ) 4
D B
Sd
D
511\‘
Modeling source dependencies

[Platanios et al., ICML 2016]

Extensive work on modeling source observations and source
interactions to address limitations of basic Dawid-Skene.




PGMs in Data Fusion [Lietal, VLDB’14]

Table 6: Summary of data-fusion methods. X indicates that the method considers the particular evidence.

Source

Item

Value

Value

Value

Category ackIod T RVAoRS trustworthiness | trustworthiness | Popularity | similarity | formatting Copying
Baseline Vote X
HUB X X
Web-link AVGLOG X X
based INVEST X X
POOLEDINVEST X X
2-ESTIMATES X X
IR based 3-ESTIMATES X X X
COSINE X X
TRUTHFINDER X X X
. ACCUPR X X
Bayesian based POPACCU X X X
AcCcuSIM X X X
ACCUFORMAT X X X X
Copying affected AccuCory X X X X X

Bayesian models capture source observations and source interactions.




PGMs in Data Fusion [Lietal, VLDB’14]

Stock Flight
Category Method prec w. | prec w/o. | Trust | Trust || prec w. | prec w/o. | Trust | Trust
trust trust dev diff trust trust dev diff
Baseline Vote - 908 - - - .864 - -

HUB 913 907 11 .08 939 857 2 14

Web-link AVGLOG 910 .899 17 -.13 919 .839 .24 .001
based INVEST 924 764 .39 -.31 945 754 .29 -12
POOLEDINVEST 924 856 1.29 | 0.29 945 921 17.26 | 7.45

2-ESTIMATES 910 903 .15 -.14 .87 754 46 -.35

IR based 3-ESTIMATES 910 905 .16 -.15 .87 .708 95 -.94
COSINE 910 900 21 -17 .87 791 A48 -.41

TRUTHFINDER 923 911 .15 12 .957 793 25 .16

ACCUPR 910 .899 .14 -.11 91 .868 .16 -.06

PoPACCU .909 .892 .14 -.11 .958 925 17 -.11

Bayesian AccuSim 918 913 17 -.16 903 844 2 -.09
based ACCUFORMAT 918 911 17 -.16 903 .844 2 -.09
ACCUSIMATTR 950 .929 17 -.16 952 .833 .19 -.08
ACCUFORMATATTR 948 930 17 -.16 952 .833 .19 -.08

Copying affected AccuCory 958 892 28 -.11 960 943 .16 -.14

Modeling the quality of data sources leads to improved accuracy.



Dawid-Skene and Deep Learning [Shaham etal., ICML’16]

Theorem: The Dawid and Skene model is equivalent to a Restricted Boltzmann Machine
(RBM) with a single hidden node.

& ® oERONRO

Dawid and Skene model. A RBM with d visible and m hidden Sketch of a two-hidden-layer RBM-
units. based DNN.

When the conditional independence assumption of Dawid-Skene does not hold, a better

approximation may be obtained from a deeper network.




Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

Spock Science Fiction Obi-Wan Kenobi J-th entity
9\ R /? ent1ty ol |
played characterln genre genre characterln played relatlon
6— stanedln\—>5 starredIn 46

Leonard Nimoy Star Trek ~ Star Wars Alec Guinness

A knowledge graph can be encoded as a tensor.




Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

j-th entity
entity 4
Y}

k-th
relation

Neural networks can be used to obtain richer
representations.




Knowledge Graph Embeddings

4 Head entity

h S :
Relationship Example: Learn embeddings from IMDb data and
r 1dentify various types of errors in WikiData [Dong et
al., KDD’18]
Tail entity , ,
Subject Relation Target Reason
The M(gits(:ersy Padilla writtenBy Cé;a;u l?lr:rigo Linkage error
- Bajrangi Bhaijaan writtenBy Yo 'gi)nlggney Wrong relationship
Bnnty M Rﬂlﬁm Smce Piste noire writtenBy Jalil Naciri Wrong relationship
Enter the Ninja musicComposedBy Michael Lewis Linkage error
® TranSE: Score(harat):_| |h+r—t| | 1/2 The S;c]:)t:jgife of musicComposedBy Hal Hartley Cannot confirm
e Hot field with increasing interest

[Survey by Wang et al., TKDE 2017]




The Challenge of Training Data

e How much data do we need to train the data fusion model?

e Theorem: We need a number of labeled examples proportional to the number of
sources [Ng and Jordan, NIPS’01]

e Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions
and training data is limited!

Idea 1: Leverage redundancy and used unsupervised learning.
Idea 2: Limit model parameters and use a small number of training data.



SLiMFast: Discriminative Data Fusion (rekasinas et al.. SioMoD17]

Limit the informative parameters of the model by using domain knowledge
Key Idea: Sources have (domain specific) features that are indicative of error rates

Example:

What Queen Elizabeth Just Did For
Donald Trump Makes Obama Look
Like An{ldiot}

o

V.-

newly registered similar to existing domain

traffic statistics
text quality (e.g., misspelled words, grammatical errors)

sentiment analysis

PERRTERRRRNTNITNYY o ave. time per task
fI{ICROWDSOURONG | - "
LA HHIMBER OF Tasks

eIty e market used



SLiMFast: Discriminative Data Fusion (rekasinas et al.. SioMoD17]

Fact value reported

®

o by a Source 0.8

= o ’ SLiMFast is

G 25% mor —>

5 S ( O— Modef 3 0.7 . ?e

L3 parameters 8 accurate

g5 |/ 3

s 3 0.6

2° L O- < o e e—

3 ) S— =

L ) Unknown 05
true value 1% 5% 10% 20%
of a fact Percentage of data used for training

O‘ \ O SLiMFast % | R o ACCU MV

Genomics data: 2.7k sources (articles), 571 objects (gene-
disease), 4 domain features (year, citation, author, journal)




Challenges in Data Fusion

e There are few solutions for unstructured data. Mostly work on fact
verification [Tutorial by Dong et al., KDD 2018]. Most data Fusion solutions
assume data extraction. Can state-of-the art DL help?

e Using training data 1s key and semi-supervised learning can significantly
improve the quality of Data Fusion results. How can one collect training data
effectively without manual annotation?

e We have only scratched the surface of what representation learning and deep
learning methods can offer. Can deep learning streamline data fusion? What

are 1ts limitations?
D



Recipe for Data Fusion

e Problem definition: Resolve conflicts and .
Data Extraction

¥

obtain correct values 1
Schema Alignment }

e Short answers
o Reasoning about source

quality is key and works for easy cases @
© Semi-supervised learning has shown Entity Linkage
BIG potential @

o Representation learning provides

positive evidence for streamlining data Lzt [l

fusion.



Outline

e Part I. Introduction [ Data Extraction }
e Part II. ML for DI l,
o ML for entity linkage ;
. Schema Alignment
o ML for data extraction
o ML for data fusion ‘
© ML for schema alignment [ Entity Linkage }

e Part III. DI for ML

Come to our VLDB tutorial for schema alignment and

universal schemal!




Revisit Theme I. Which ML Model Works Best?

DI tasks Hyperplanes Kernal Tree-based (e.g., Graphical models Logic programs Neural networks
(e.g.,Log Reg) (e.g., SVM) Random forest) (e.g., CRF) (e.g, soft logic) (e.g., RNN)
Entity resolution X X X X X
Data fusion X X
DOM extraction X
Text extraction X X X
Schema alignment X X X

No single winner, although ensemble models and deep
learning models show promising results.




Revisit Theme I1. Does Supervised Learning Apply to
DI?

Recall for 99% Precision vs. Training Data Size (log10)

® 1000+adaStratified500  ® randomSample

[y

@ 0 oosuns ® ° ° ® ®

© o o o o
oo N o

recision

& 04

© o o
=N W

o

2 2.5 3 3.5 4 45 5 5.5 6 6.5
Training size (log 10)

Active learning, semi-supervised methods, and weak
supervision lead to dramatically more efficient solutions.




Outline

e Part I. Introduction
e Part II. ML for DI
o Part III. DI for ML

o Training data creation
o Data cleaning
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ML is data-hungry
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Successful ML requires Data Integration

IMAGENET MovielLens
Fawga

COCO is a large-scale object detection,
segmentation, and captioning dataset.

Large collections of manually curated training data

State-of-the-art Al are necessary for progress in ML.
needs to jointly
analyze available data




Successful ML requires Data Integration

IMAGENET MovielLens
Fawga

COCO is a large-scale object detection,
segmentation, and captioning dataset.

Large collections of manually curated training

State-of-the-art Al data are necessary for progress in ML.
needs to jointly
analyze available data




Outline

e Part I. Introduction
e Part II. ML for DI
e Part III. DI for ML

o Training data creation
o Data cleaning

e Part IV. Conclusions and research directions




50 Years of Artificial Intelligence

Expert systems Graphical models and
e Manually curated knowledge bases of facts logic
and rules e Relational
e Use of inference engines statistical learning
e No support for high-dimensional data e Markov logic 2010s
twork . .
1990s (Features) Hemor (Representation Learning)
1970s (Rules) 2009 (PGMs) I .
Classical ML Deep learning

e Automatically learn
representations

e Impressive with high-
dimensional data

e Data hungry!

e [ow complexity models

e Strong priors that capture domain
knowledge (feature engineering)

e Small amounts of training data



The ML Pipeline in the Deep Learning Era

Data Collection Data Labeling Representation Learning
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The ML Pipeline in the Deep Learning Era
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Data Collection | Data Labeling : Representation Learning
I . and Training
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Main pain point today, most time spent in labeling data.




Training Data: Challenges and Opportunities

e (ollecting training data is expensive and slow.
e We are overfitting to our training data. [Recht et al., 2018]
o Hand-labeled training data does not change
e Training data is the point to inject domain knowledge
o Modern ML i1s too complex to hand-tune features and priors



Training Data: Challenges and Opportunities

e (ollecting training data is expensive and slow.
e We are overfitting to our training data. [Recht et al., 2018]
o Hand-labeled training data does not change
e Training data is the point to inject domain knowledge
o Modern ML i1s too complex to hand-tune features and priors

How do we get training data more effectively?




The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect)
labels; prediction on a larger set, and then training of a model.

Semi-supervised learning and ensemble learning

NELL
Examples:
| dD DeepDive
e use of non-expert labelers (crowdsourcing),
o
e use of curated catalogs (distant supervision) oo
e use of heuristic rules (labeling functions) e
i 1oloClean

snorkel




The Rise of Weak Supervision

Alexa — Customer embrace of Alexa continues, with Alexa-enabled devices among the best-
selling items across all of Amazon. We’re seeing extremely strong adoption by other companies
and developers that want to create their own experiences with Alexa. There are now more than
30,000 skills for Alexa from outside developers, and customers can control more than 4,000
smart home devices from 1,200 unique brands with Alexa. The foundations of Alexa continue
to get smarter every day too. We’ve developed and implemented an on-device fingerprinting
technique, which keeps your device from waking up when it hears an Alexa commercial on TV.
(This technology ensured that our Alexa Super Bowl commercial didn’t wake up millions of
devices.) Far-field speech recognition (already very good) has improved by 15% over the last
year; and in the U.S., U.K., and Germany, we’ve improved Alexa’s spoken language
understanding by more than 3§06 over the last 12 months through enhancements in Alexa’s
machine learning components jand the use of semi-supervised learning techniques. (These semi-
supervised learning techniques reduced the amount of labeled data needed to achieve the same
accuracy improvement by 40 times!) [Finally, we’ve dramatically reduced the amount of time
required to teach Alexa new langua@@® by using machine translation and transfer learning
techniques, which allows us to serve customers in more countries (like India and Japan).



The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect) labels; prediction on a
larger set, and then training of a model.

Related to semi-supervised learning and ensemble learning

Examples: use of non-expert labelers (crowdsourcing), use of curated catalogs
(distant supervision), use of heuristic rules (labeling functions)

Methods developed to tackle data integration
problems are closely related to weak supervision.




Learning from Crowds [Raykar et al., IMLR’10]

Setup: Supervised learning but instead of gold groundtruth one has access to
multiple annotators providing (possibly noisy) labels (no absolute gold standard).

Task: Learn a classifier from multiple noisy labels.

Closely related to Dawid-Skene!

Difference: Estimating the ground truth and the annotator
performance is a byproduct here. Goal is to learn a classifier.




Learning from Crowds [Raykar et al., IMLR’10]

D= {(xia YZ)}'ll,il
Example Task: Binary classification N examples, with labels y; = ¢!, ..., yR

provided by R different annotators



Learning from Crowds [Raykar et al., IMLR’10]
D= {(X’HY'Z) 111\;1
Example Task: Binary classification N examples, with labels y; = ¢!, ..., yR

provided by R different annotators
Annotator performance:

Sensitivity (true positive rate) Specificity ( 1 - false positive rate)
o =Prly! =1y = 1] 7 =Prly’ = 0]y = 0]



Learning from Crowds [Raykar et al., IMLR’10]
D= {(xzayz) 11121
Example Task: Binary classification N examples, with labels y; = ¢!, ..., yR

provided by R different annotators
Annotator performance:

Sensitivity (true positive rate) Specificity ( 1 - false positive rate)
ol =Prly! =1ly=1] 37 = Pr[y/ = 0ly = 0]
pi = 0_('wTa:,-).
. N s = TPl — o], Model
Learning: Pr[D|6] = H [aipi + bi(1 — pi)] JH parameters
= {w, a, B}

bi = ﬁ[ﬁfll—yf [1— 7).
EM algorithm to obtain maximume-likelihood estimates. Difference
with Dawid-Skene is the estimation of w.




Distant Supervision [Mintz et al., ACL'09]

Goal: Extracting structured knowledge from text.

Hypothesis: If two entities belong to a certain relation, any sentence containing those two
entities is likely to express that relation.

Idea: Use a database of relations to gets lots of noisy training examples

o Instead of hand-creating seed tuples (bootstrapping)
o Instead of using hand-labeled corpus (supervised)

Benefits: has the advantages of supervised learning (leverage reliable hand-created

knowledge), has the advantages of unsupervised learning (leverage unlimited amounts of

text data).
D



Remember: Distant Supervision [Mintz et al., ACL’09]

Example task: Relation extraction.

Corpus Text Training Data
: . : . : )

Bill Gates founded Microsoft in 1975. (Bill Gates, Microsoft)

Bill Gates, founder of Microsoft, ... Label: Founder

Bill Gates attended Harvard from ... Feature: X founded Y

Google was founded by Larry Page ... kFeature: X, founder of Y )
~ )

Bill Gates, Harvard)
Freeb ( =
reebase Label: CollegeAttended

_ Feature: X attended Y )

Founder: (Bill Gates, Microsoft) _

Founder: (Larry Page, Google) For negative examples, sample

CollegeAttended: (Bill Gates, Harvard) unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]
D



Distant Supervision [Mintz et al., ACL'09]

Entity Linking is an inherent problem in Relation

Distant Supervision. ,
/business/person/company

/people/person/place_lived
/location/location/contains

_ /business/company/founders
The quality of matches can vary [people/person/nationality

significantly and has a direct effect on /location/neighborhood/neighborhood_of

extraction qu al ity /people/person/children
. /people/deceased_person/place_of_death
/people/person/place_of_birth

/location/country/administrative_divisions

Freebase Matches

#sents
302
450

2793
95
723
68
30
68
162
424

% true
60.0
51.0
48.4
41.0
397
80.0
22.1
12.0




Snorkel: Code as Supervision [Ratner et al., NIPS’16, VLDB'18]

-------------------------

Input: Labeling Functions, Generative Noise-Aware : Ex. Application:
: Knowledge Base :

Creation (KBC)

Unlabeled data Model Discriminative Model

hl,l

Output: Probabilistic
Training Labels hi3

We use the resulting
prob. labels to train

Users write labeling We model the labeling
functions to generate functions’ behavior to
noisy labels de-noise them

a model

[Slide by Alex Ratner]



Snorkel: Code as Supervision [Ratner et al., NIPS’16, VLDB'18]

L3 Cleveland Clinic @WLSCQ&SJN

Caltech g scanford
Snorkel biomedical workshop in collaboration with Ho?;}m?st(jhm(g
)NLM the NIH MObiIize Center WZO KIM m ALLEN STITUTE
mobilize 15 companies and research groups attended
How well did these new Snorkel users do? 9 —
For a newbie, | write pretty darn good
kel #Mact labeling
functions. Thanks @M t
= Mand-abeled (7 hre) a teve )
e 7 1(y New Snorkel users matched or beat 7-
o P Gt 0 7 hours of hand-labeling ,
- -
i ‘ s ° 2 8X Faster than hand-labeling data
-] & |}
E— . Average improvement 3rd Place Score
- - on 45-5% in model performance

No machine learning experience
Beginner-level Python

[Slide by Alex Ratner]



Alex (the creator of Snorkel) is on the market!

Alex Ratner

Find out more about Snorkel
MeTaL and weak supervision
for Multi-task Learning at

Friday in Monteome
https://ajratner.github.io Y gomery




Challenges in Creating Training Data

e Richly-formatted data is still a challenge. How can attack weak supervision
when data includes images, text, tables, video, etc.?

e (Combining weak supervision with other data enrichment techniques such as
data augmentation 1s an exciting direction. How can reinforcement learning
help here (http://goo.gl/K2qopQ)?

e How can we combine weak supervision with techniques from semi-
supervised?

e Most work on weak supervision focuses on text or images. What about

relational data? How can weak supervision be applied there?
D



Recipe for Creating Training Data

e Problem definition: Go beyond gold labels to noisy
training data.

o Transition from “gold” labels to “high-

e Short answers @
(22)

R

confidence” labels.

2,

o Modeling error rates is key. The notion of data
source is different.

© Need for debugging tools, bias detection, and
recommendations of weak supervision signals.



Outline

e Part I. Introduction
e Part II. ML for DI
e Part III. DI for ML

o Training data creation
o Data cleaning

e Part IV. Conclusions and research directions




Successful ML requires Data Integration

IMAGENET MovielLens
Fawga

COCO is a large-scale object detection,
segmentation, and captioning dataset.

Large collections of manually curated training

State-of-the-art Al data are necessary for progress in ML.
needs to jointly
analyze available data




Noisy data is a bottleneck

2% 5% What data scientists spend the most time doing
4%

® Building training sets: 3%
® (leaning and organizing data: 60%
® Collecting data sets; 19%
Mining data for patterns: 9%
® Refining algorithms: 4%
® Other: 5%

Source: Crowdflower

Cleaning and organizing data comprises 60% of the
time spent on an analytics of Al project.




50 Years Of Data Cleaning Data transforms

E. F. Codd e Part OfETL
e Errors within a source and

e Understanding relations (installment #7). ACIOSS SOUrCes

FDT - Bulletin of ACM SIGMOD, 7(3):23— e Transformation workflows

28, 1975. and mapping rules; domain-

e Null-related features of DBs 19805 knowledge is crucial

Normalization 2000s (Data Repairs)

1970s (Nulls) 1990s

Integrity Constraints Constra.ints anq Probabilities
e Normal forms to reduc@Warehouses) e Dichotomies for consistent
redundancy and query an§wering .
integrity L M1n1‘ma11ty—'based. repairs to
e FDs, MVDs etc. obtain consistent instances
e  Statistical repairs
e Anomaly detection



Where are we today?

Machine learning and statistical analysis are becoming more prevalent.

Error detection (Diagnosis)

e Anomaly detection [Chandola et al., ACM CSUR, 2009]
e Bayesian analysis (Data X-Ray) [Wang et al., SIGMOD’15]
e Qutlier detection over streams (Macrobase) [Bailis et al., SIMGOD’17]

g

Histogram of age

",

il

outfer summary
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Where are we today?

Machine learning and statistical analysis are becoming more prevalent.
Data Repairing (Treatment)

e (lassical ML (SCARE, ERACER) [vakout etal., VLDB’11, SIGMOD’ 13, Mayfield et al., SIGMOD’10]
® Boosting [Krishan et al., 2017]

e Weakly-supervised ML (HoloClean) [rekatsinas et al., VLDB’17]

Each cell is a random variable

. . Address City |State| Zip
Reliable  Flexible EX o Boost & Clean
Mg““s Chicago| IL | 60608 Constraints introduce
e St . correlations
3465 S " .
Morgan sT_| OMicago | IL | 60609 c3: City, State, Address — Zip train model
Mg‘r‘::nssT Chicago | IL | 60609 |e__ ‘ 1
34655 ’ External data introduce evidence
Morgan ST Cicago | IL 60608 T t A
Ext Address | Ext City |Ext State| Ext Zip es ccuracy

Evaluator
B465 SMOMGEN | Gricago | 1L 60608




I
Error Detection: MacroBase [Bailis et al., SIGMOD’17] a

e extract . .
."\_ % G l\/\/\/\/\/ domain-specific Streaming Feature Selection
NV Yo * signals

TRANSFORM Setup: Online learning of a classifier (e.g., LR)

i identify data S
\/ in tails Goal: Return top-k discriminative features

CLASSIFY
f find disproportionately ~ Weight-Median Sketch
correlated attributes : .
EXPLAIN Sy Intiers Sketch of a classifier for fast updates and queries

roree ™ Lbhonee, usy  Tor estimates of each weight and comes with
{iPhone5, Canada} {iPhone5, USA}
[Figure by Kai Sheng Tai]
A data analytics tool that prioritizes attention in large datasets.

Code at: macrobase.stanford.edu

approximation guarantees



Data Repairing: BoostClean [Krishnan et al., 2017]

Test Training
data data
Boost & Clean Detector Library
Detectors
IsoDetect —_—
Repair Library
|
Test Accuracy Robust
Evaluator Deployer Classifier C*

Ensemble learning for error detection and data
repairing.

Relies on domain-specific detection and repairing.

Builds upon boosting to identify repairs that will
maximize the performance improvement of a
downstream classifier.

On-demand cleaning!




Scalable machine learning for data enrichment

i\

B |
s 10loClean

Code available at:
http://www.holoclean.io




e

Data Repairing: HoloClean [rekatsinas et al., VLDB’17] ) i

Each cell is a random

Address | City |State| Zip / variable
34658 |- Value co-occurrences
t1 Morgan ST Chicago f IL 60608 .
= < — capture data statistics
t2 Chi IL 60609 . .
Morgan ST | 29 Constraints introduce 7 O
3 Mg:;asnSST Chicago | IL | 60609 correlations cl: 1p — lty
“ Loms f ) - -
. t1.City t1.Zip
Address=
3465 S
Morgan St”

O: Unknown (to be inferred) RV
B : Factor (encodes correlations)

Holistic data cleaning
framework: combines a
variety of heterogeneous
signals (e.g., integrity
constraints, external
knowledge, quantitative
statistics)




e

Data Repairing: HoloClean [rekatsinas et al., VLDB’17] ) i

“Assignment Chicago

Address | Cay State| Zip t1.Ci violates Zip -> City  §calable learning and
2058 : City due to t4” . )
' | MorgansT Chesgo 1L | 60605 M\ , inference: Hard constraints
vy w1 . .w3
2 | porgansT | Chicago | 1L | 60600 \_/
lead to complex and non-
B | 4688 |Cnicago| 1L | 60609 t4.City
P N P g —~ scalable models. Novel
ST ’
Morgan wi . W, .w3 .
o . relaxation to features over
“Address= Assignment Cicago o
3465 S violates Zip -> City individual cells.

Morgan St” due to t1”




e

Data Repairing: HoloClean [rekatsinas et al., VLDB’17] ) !

Accuracy of repairs

HoloClean vs State-of-the-Art

1.0
0 _- T . T T T
Hospital Flights Food Physician
(1K tuples)  (2.7Ktuples) (330K tuples) (2.1M tuples)
Dataset
@ HoloClean () External Only
@ Constraints Only @ Quantitative Stats Only

HoloClean: our approach combining all signals and using inference
Holistic[Chu,2013]: state-of-the-art for constraints & minimality
KATARA[Chu,2015]: state-of-the-art for external data
SCARE[Yakout,2013]: state-of-the-art ML & qualitative statistics

HoloClean 1s 2x more accurate.
Competing methods either do
not scale or perform no correct
repairs.




Probabilistic Unclean Databases [De saet al., 2018]

Unclean Database Generation

(A) Schema, Attribute Domain, and Constraint Specification

Tuple ID Business Listing Integrity Constraints

PK: Business ID
FD: Zip Code = City, State

Tuple Business

Identifi D City |State| Zip Code

(B) The Two-Actor Generation Process
Tuple Identifiers

Business | ity |state| Zip Code
i t Ports Madi wi 53703
Tuple Constraints | _| orter ison
Generator 2 Graft | Madison| Wi 53703
@ 13 |EVP Coffee | Madison| WI 53703
Intentional Data Model 7 Sample of clean intended data [

Butli;en City |State| Zip Cod

. t1 | Porter |Madison| WI | 53703

[ — Realizer | _ [ [ Grait | verona | Wi | 53703
Model R 3 | EVP Coffes| Madison| WI | 53703

t4 Graft Chicago| IL 60609

Dirty data instance .J*
observed after
applying the Realizer

A two-actor noisy channel model for managing

erroneous data.

Preprint: A Formal Framework For Probabilistic

Unclean Databases

https://arxiv.org/abs/1801.06750




Challenges in Data Cleaning

e Error detection is still a challenge. To what extent is ML useful for error
detection? Tuple-scoped approaches seem to be dominating. Is deep learning
useful?

® We need a formal framework to describe when automated solutions are
possible.

e A major bottleneck 1s the collection of training data. Can we leverage weak
supervision and data augmentation more effectively?

e Limited end-to-end solutions. Data cleaning workloads (mixed relational and

statistical workloads) pose unique scalability challenges.
D



Recipe for Data Cleaning

e Problem definition: Detect and repair erroneous
data. ‘::: P P /Eachce[l isaraﬁdomvariable
[Se=r = ot
® Shortanswers e

o ML can help partly-automate cleaning. Doma & === =
expertise is still required.
o Scalability of ML-based data cleaning methods is a

pressing challenge. Exciting systems research!
© We need more end-to-end systems!



Outline

e Part I. Introduction
e Part II. ML for DI
e Part III. DI for ML

o Creating training data
o Data cleaning

e Part IV. Conclusions and research direction




DI and ML: A Natural Synergy

e Data integration is one of the oldest problems in data management

e Transition from logic to probabilities revolutionized data integration
o Probabilities allow us to reason about inherently noisy data
o Similar to the Al-revolution in the 80s [https://vimeo.com/48195434]

e Modern machine learning and deep learning have the power to streamline DI



DI and ML: A Natural Synergy

e Data is bottleneck of modern ML and AT applications

e DlI-related methods and algorithms have revolutionized the way supervision is
performed.
o Weak supervision signals are integrated into training datasets

e Data integration solutions (e.g., data cataloging solutions) can lead to cheaper
collection of training data and more effective data enrichment



Opportunities for DI

One System vs. An Ecosystem: Every RBMS is a monolithic system. This paradigm has failed for DI. Tools for
different DI tasks are prevalent. We need abstractions and execution frameworks for such ecosystems.

Humans-in-the-loop: DI tasks can be very complex. Is weak supervision the right approach to inject domain
knowledge? What about quality evaluation?

Multi-modal DI: ML-based DI has focused on structured data with the exception of DI over images using
crowdsourcing and some recent efforts that target textual data. DL is the de facto solution to reasoning about high
dimensional data. Can is help develop unified DI solutions for visual, textual, and structured data?

Efficient Model Serving: This means efficient model serving. Many compute-intensive operations such as
normalization and blocking are required. Featurization may also rely on compute-heavy tasks (e.g., computing string
similarity). What is the role of pipelining and RDBMS-style optimizations?



Opportunities for ML

Data Catalogs: Data augmentation relies on data transformations performed on data records in a
single dataset. How can we leverage data catalogs and data hubs to enable data augmentation go
beyond a single dataset?

Valuable Data for ML applications: Our community has focused on assessing the value of data
[Dong et al., VLDB’12, Koutris et al., JACM 2015]. These ideas are not pervasive to ML but if ML is
to become a commodity [Jordan, 2018] we need methods to reason about the value of data.

DI for Benchmarks: Increasing efforts on creating manually curated benchmarks for ML. Current
efforts rely on manual collection and curation. How can we leverage meta-data and existing DI
solutions to automate such efforts?

“How reliable are our current measures of progress in machine learning?” ( /‘
Do CIFAR-10 Classifiers Generalize to CIFAR-10?, Ben Recht et al., 2018 M |_ Pe rf




DI & ML as Synergy

e ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION
o Automating DI tasks with training data
o Ensemble learning and deep learning provide promising solutions
o Better understanding of semantics by neural network

e DI for effective ML: DATA, DATA, DATA
o The software 2.0 stack 1s data hungry
o Create large-scale training datasets from different sources
o Cleaning of data used for training

Thank you!
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