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What is Data Integration?

● Data integration: to provide unified access to data residing in multiple, 
autonomous data sources
○ Data warehouse: create a single store (materialized view) of data from different 

sources offline. Multi-billion dollar business.
○ Virtual integration: support query over a mediated schema by applying online 

query reformulation. E.g., Kayak.com.

● In the RDF world: different names for similar concepts
○ Knowledge graph is equivalent to a data warehouse. Has been widely used in 

Search and Voice
○ Linked data is equivalent to virtual integration



Why is Data Integration Hard?
● Heterogeneity everywhere

○ Different data formats
Data Extraction

Schema Alignment

Entity Linkage

Data Fusion
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Why is Data Integration Hard?
● Heterogeneity everywhere

○ Conflicting values 
Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



Importance from a Practitioner’s Point of View
● Entity linkage is indispensable whenever 

integrating data from different sources
● Data extraction is important for integrating non-

relational data
● Data fusion is necessary in presence of erroneous 

data
● Schema alignment is helpful when integrating 

relational data, but not affordable for manual work 
if we integrate many sources

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Machine Learning?

● Machine learning: teach computers to learn with data, not by programming

● More Formal definition
A computer program is said to learn from experience E with respect to some class of 
tasks T and performance measure P if its performance at tasks in T, as measured by P, 
improves with experience E.

-- Tom Mitchell



Two Main Types of Machine Learning

● Supervised learning: learn by examples



Two Main Types of Machine Learning

● Unsupervised learning: find structure w/o examples



Two Main Types of Machine Learning

● Supervised learning: learn by examples
● Unsupervised learning: find structure w/o examples



Hyperplanes Kernel Tree-based Graphical Mdl Logic Prog Neural Netw

Linear/Logistic 
regression

SVM Decision tree,
Random forest

Bayes net, 
CRF

Pr soft logic,
Markov logic net

ANN, RNN, 
CNN

Techniques for Supervised ML



Key Lessons for ML [Domingos, 2012]

● Learning = Representation + Evaluation + Optimization
● It’s generalization that counts: generalize beyond training examples
● Data alone is not enough: “no free lunch” theorem--No learner can beat 

random guessing over all possible functions to be learned
● Intuition fails in high dimensions: “curse of dimensionality”
● More data beats a cleverer algorithm: Google showed that after providing 

300M images for DL image recognition, no flattening of the learning curve 
was observed.



DI & ML as Synergy

● ML for effective DI: AUTOMATION, AUTOMATION, 
AUTOMATION
○ Automating DI tasks with training data
○ Better understanding of semantics by neural network

● DI for effective ML: DATA, DATA, DATA
○ Create large-scale training datasets from different sources
○ Cleaning of data used for training 



Give me a Fulscrum, I will Move the Earth
-- Archimedes 



Give me a DI funnel, I will Move ML



Many Systems Where DI & ML Leverage Each Other

Increasing number of systems both in industry and 
academia.

Magellan 
NELL



Example System: Product Graph [Dong, KDD’18]



Goal of This Tutorial

● NO-GOALS
○ Present a comprehensive literature review for all topics we are covering 

● GOALS
○ Present state-of-the-art for DI & ML synergy
○ Show how ML has been transforming DI and vice versa
○ Give some taste on which tool is working best for which tasks
○ Discuss what remains challenging



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML
● Part IV. Conclusions and research directions 



Data Integration Overview
● Entity linkage: linking records to entities;  

indispensable when different sources exist
● Data extraction: extracting structured data; 

important when non-relational data exist
● Data fusion: resolving conflicts; necessary in 

presence of erroneous data
● Schema alignment: aligning types and attributes; 

helpful when different relational schemas exist

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



Recipe

● Problem definition
● Brief history
● State-of-the-art ML solutions
● Summary w. a short answer

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



Theme I. Which ML Model Works Best?



Which ML Model Works Best?

Tree-based models



Theme II. Does Supervised Learning Apply to DI?

● Supervised learning has made a big splash recently in many fields

● However, it is hard to bluntly apply supervised learning to DI tasks
○ Our goal is to integrate data from many different data sources in 

different domains 
○ The different sources present different data features and distributions
○ Collecting training labels for each source is a huge cost



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 
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What is Entity Linkage?

● Definition: Partition a given set R of records, such that each 
partition corresponds to a distinct real-world entity.

Are they the same entity?



Three Steps in Entity Linkage

● Blocking: efficiently create small blocks of 
similar records Blocking

Pairwise Matching

Clustering

A1 A2

B1
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C1
C2

D



Three Steps in Entity Linkage

● Pairwise matching: compare all record 
pairs in a block Blocking

Pairwise Matching

Clustering

A1 A2

B1
B2 B3

C1
C2

D



Three Steps in Entity Linkage

● Clustering: group records into entities

Blocking

Pairwise Matching

Clustering

A1 A2

B1
B2 B3

C1
C2

D



50 Years of Entity Linkage

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● Active learning for blocking & matching

F-msr: 80%-98% w. ~1000 labels

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

1969 (Pre-ML)

Rule-based and stats-based
● Blocking: e.g., same name
● Matching: e.g., avg similarity 

of attribute values
● Clustering: e.g., transitive 

closure, etc.
~2000 (Early ML)

Sup / Unsup learning
● Matching: Decision tree, SVM

F-msr: 70%-90% w. 500 labels
● Clustering: Correlation clustering,

Markov clustering



Rule-Based Solution

1969 (Pre-ML)

Rule-based and stats-based
● Blocking: e.g., same name
● Matching: e.g., avg similarity 

of attribute values
● Clustering: e.g., transitive 

closure, etc.

● [Fellegi and Sunter, 1969]
○ Match: sim(r, r’) > 𝜭h

○ Unmatch: sim(r, r’) < 𝜭l

○ Possible match: 
𝜭l < sim(r, r’) < 𝜭h



Early ML Models

● [Köpcke et al, VLDB’10]

~2000 (Early ML)

Sup / Unsup learning
● Matching: Decision tree, SVM

F-msr: 70%-90% w. 500 labels
● Clustering: Correlation clustering,

Markov clustering



State-of-the-Art ML Models [Dong, KDD’18]

● Features: attribute similarity measured in various 
ways. E.g., 
○ string sim: Jaccard, Levenshtein
○ number sim: absolute diff, relative diff

● ML models on Freebase vs. IMDb 
○ Logistic regression: Prec=0.99, Rec=0.6
○ Random forest: Prec=0.99, Rec=0.99

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels
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State-of-the-Art ML Models [Dong, KDD’18]

● Features: attribute similarity measured in various 
ways. E.g., 
○ name sim: Jaccard, Levenshtein
○ age sim: absolute diff, relative diff

● ML models on Freebase vs. IMDb 
○ Logistic regression: Prec=0.99, Rec=0.6
○ Random forest: Prec=0.99, Rec=0.99
○ XGBoost: marginally better, but sensitive to 

hyper-parameters

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels



State-of-the-Art ML Models [Dong, KDD’18]

● Expt 2. IMDb vs. Amazon movies
○ 200K labels, ~150 features
○ Random forest: Prec=0.98, Rec=0.95

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels

Ready for production, except 
requiring a lot of labels



State-of-the-Art ML Models [Das et al., SIGMOD’17]

● Falcon: apply active learning both for blocking 
and for matching; ~1000 labels

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels

Magellan 



State-of-the-Art ML Models [Dong, KDD’18]

● Apply active learning to minimize #labels

~2015 (ML)

Supervised learning
● Random forest for matching

F-msr: >95% w. ~1M labels
● AL for blocking & matching

F-msr: 80%-98% w. ~1000 
labels

Reaching prec=99% 
and rec=~99% 

requires 1.5M labels

For 99% precision and recall, 
active learning reduces #labels 

by 2 orders of magnitude



Deep Learning Models [Mudgal et al., SIGMOD’18]

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

● Bi-RNN w. attention
● Similar performance for structured data;

Significant improvement on texts and dirty data

Check-out at poster session 
on Wednesday!

Code at: deepmatcher.ml

Magellan 



Deep Learning Models [Trivedi et al., ACL’18]

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

● LinkNBed: Generate embeddings for entities as 
in knowledge embedding



Deep Learning Models [Trivedi et al., ACL’18]

2018 (Deep ML)

Deep learning
● Deep learning
● Entity embedding 

● LinkNBed: Generate embeddings for entities as 
in knowledge embedding

● Performance better than previous knowledge 
embedding methods, but not comparable to 
random forest

● Enable linking different types of entities



Challenges in Applying ML on EL

● How can we obtain abundant training data for many types, many 
sources, and dynamically evolving data??

● From two sources to multiple sources



● How can we obtain abundant training data for many types, many 
sources, and dynamically evolving data??

● From one entity type to multiple types

Challenges in Applying ML on EL



● How can we obtain abundant training data for many types, many 
sources, and dynamically evolving data??

● From static data to dynamic data

Challenges in Applying ML on EL



Recipe for Entity Linkage

● Problem definition: Link references to 
the same entity

● Short answers
○ RF w. attribute-

similarity features
○ DL to handle texts and noises
○ End-to-end solution is future work

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Data Extraction?

● Definition: Extract structured information, e.g., (entity, attribute, value) 
triples, from semi-structured data or unstructured data.

Diagram



What is Data Extraction?

● Definition: Extract structured information, e.g., (entity, attribute, value) 
triples, from semi-structured data or unstructured data.

Diagram

Focus of this tutorial



Three Types of Data Extraction

● Closed-world extraction: align to existing entities and attributes; e.g., 
(ID_Obama, place_of_birth, ID_USA)

● ClosedIE: align to existing attributes, but extract new entities; e.g., 
(“Xin Luna Dong”, place_of_birth, “China”)

● OpenIE: not limited by existing entities or attributes; e.g., 
(“Xin Luna Dong”, “was born in”, “China”),
(“Luna”, “is originally from”, “China”)



Three Types of Data Extraction

● Closed-world extraction: align to existing entities and attributes; e.g., 
(ID_Obama, place_of_birth, ID_USA)

● ClosedIE: align to existing attributes, but extract new entities; e.g., 
(“Xin Luna Dong”, place_of_birth, “China”)

● OpenIE: not limited by existing entities or attributes; e.g., 
(“Xin Luna Dong”, “was born in”, “China”),
(“Luna”, “is originally from”, “China”)

Focus of this tutorial



35 Years of Data Extraction

2008 (Semi-stru)

Extraction from semi-structured data
● WebTables: search, extraction
● DOM tree: wrapper induction

2013 (Deep ML)

Deep learning
● Use RNN, CNN, attention 

for RE
● Revisit DOM extraction
● Data programming / 

Heterogeneous learning 

1992 (Early-ML)

Early Extraction
● Rule-based: Hearst pattern, IBM 

System T
● Tasks: IS-A, events

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIE



35 Years of Data Extraction

2008 (Semi-stru)

Extraction from semi-structured data
● WebTables: search, extraction
● DOM tree: wrapper induction

2013 (Deep ML)

Deep learning
● Use RNN, CNN, attention 

for RE
● Revisit DOM extraction
● Data programming / 

Heterogeneous learning 

1992 (Early-ML)

Early Extraction
● Rule-based: Hearst pattern, IBM 

System T
● Tasks: IS-A, events

~2005 (Rel. Ex.)

Relation extraction from texts
● NER→EL→RE

○ Feature based: LR, SVM
○ Kernel based: SVM

● Distant supervision
● OpenIECome to our VLDB tutorial for text extraction and OpenIE!!



Why Semi-Structured Data? 

● Knowledge Vault @ Google showed big potential from DOM-tree extraction 
[Dong et al., KDD’14][Dong et al., VLDB’14]



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]

● Solution: find XPaths from DOM Trees 



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]

● Challenge: slight variations from page to page 



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]

One website may use 
multiple templates

(Unsupervised-clustering)

Identify representative 
webpages for annotation

Combine attr features 
and textual features to 
find a general XPath

(LR)



Wrapper Induction--Vertex [Gulhane et al., ICDE’11]

● Sample learned XPaths on IMDb
○ //*[@itemprop="name"]

○ //*[@class="bp_item bp_text_only"]/*/*/*[@class="bp_heading"]

○ //*[following-
sibling::*[position()=3][@class="subheading"]]/*[following-
sibling::*[position()=1][@class="attribute"]]

○ //*[preceding-sibling::node()[normalize-
space(.)!=""][text()="Language:"]

Ensure high recall

Ensure high precision



Distantly Supervised Extraction                                                  

● Annotation-based extraction
○ Pros: high precision and recall
○ Cons: does not scale--annotation per cluster per website

● Distantly-supervised extraction
○ Step 1. Use seed data to automatically annotate
○ Step 2. Use the (noisy) annotations for training
○ E.g., DeepDive, Knowledge Vault



Distant Supervision [Mintz et al., ACL’09]

[Adapted example from Luke Zettlemoyer]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

Training Data
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[Adapted example from Luke Zettlemoyer]
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Corpus Text
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Distant Supervision [Mintz et al., ACL’09]

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training Data

(Bill Gates, Harvard)
Label: CollegeAttended
Feature: X attended Y

For negative examples, sample 
unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]

● Extraction	experiments	on	SWDE	benchmark

Very high precision Competent w. Wrapper induction w. manual annotation



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]

● Extraction	on	long-tail	movie	websites



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB’18]

● Which	model	is	the	best?
○ Logistic	regression:	best	results	(20K	features	on	one	website)
○ Random	forest:	lower	precision	and	recall
○ Deep	learning??



Challenges in Applying Deep Learning on Extracting 
Semi-structured Data
● Web layout is neither 1D sequence nor regular 2D grid, so CNN or RNN 

does not directly apply



Example System: Fonduer [Wu et al., SIGMOD’18]

Attend the talk in Research Session 13!
New version of code coming soon: https://github.com/HazyResearch/fonduer

Fonduer combines a new 
bi-directional LSTM 
with multimodal 
features and weak 
supervision (specifically 
data programming).



WebTable Extraction [Limaye et al., VLDB’10]

● Model	table	annotation	using	interrelated	random	variables,	represented	
by	a	probabilistic	graphical	model
○ Cell	text	(in	Web	table)	and	entity	label	(in	catalog)
○ Column	header	(in	Web	table)	and	type	label	(in	catalog)
○ Column	type	and	cell	entity	(in	Web	table)



WebTable Extraction [Limaye et al., VLDB’10]

● Model	table	annotation	using	interrelated	random	variables,	represented	
by	a	probabilistic	graphical	model
○ Pair	of	column	types	(in	Web	table)	and	relation	(in	catalog)
○ Entity	pairs	(in	Web	table)	and	relation	(in	catalog)



Challenges in Applying ML on DX

● Automatic data extraction cannot reach production quality requirement. How 
to improve precision?

● Every web designer has her own whim, but there are underlying patterns 
across websites. How to learn extraction patterns on different websites, 
especially for semi-structured sources?

● ClosedIE throws away too much data. How to apply OpenIE on all kinds of 
data?



Recipe for Data Extraction

● Problem definition: Extract structure 
from semi- or un-structured data

● Short answers
○ Wrapper induction

has high prec/rec
○ Distant supervision is critical for 

collecting training data
○ LR is often effective; more research 

is needed for DL

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion



What is Data Fusion?

● Definition: Resolving conflicting data and verifying facts.
● Example: “OK Google,How long is the Mississippi River?”



The Basic Setup of Data Fusion

Source River Attribute Value

KG Mississippi River Length 2,320 mi

KG Missouri River Length 2,341 mi

Wikipedia Mississippi River Length 2,202 mi

Wikipedia Missouri River Length 2,341 mi

USGS Mississippi River Length 2,340 mi

USGS Missouri River Length 2,540 mi

River Attribute Value

Mississippi 
River

Length ?

Missouri River Length ?

Fact Source reports 
a value for a fact

Conflicting value

Fact’s true value

Goal: Find the latent 
true value of facts.

Source Observations True Facts



The Basic Setup of Data Fusion

Source River Attribute Value

KG Mississippi River Length 2,320 mi

KG Missouri River Length 2,341 mi

Wikipedia Mississippi River Length 2,202 mi

Wikipedia Missouri River Length 2,341 mi

USGS Mississippi River Length 2,340 mi

USGS Missouri River Length 2,540 mi

River Attribute Value

Mississippi 
River

Length ?

Missouri River Length ?

Fact Source reports 
a value for a fact

Conflicting value

Fact’s true value

Idea: Use redundancy to infer 
the true value of each fact.

Source Observations True Facts



Majority Voting for Data Fusion

Source River Attribute Value

KG Mississippi River Length 2,320 mi

KG Missouri River Length 2,341 mi

Wikipedia Mississippi River Length 2,202 mi

Wikipedia Missouri River Length 2,341 mi

USGS Mississippi River Length 2,340 mi

USGS Missouri River Length 2,540 mi

River Attribute Value

Mississippi 
River

Length ?

Missouri River Length 2,341

Source Observations True Facts

MV’s assumptions
1. Sources report values independently
2. Sources are better than chance.

Majority voting can be limited. What if sources are 
correlated (e.g., copying)?

Idea: Model source quality for  accurate results.



40 Years of Data Fusion (beyond Majority Voting)

2007 (Probabilistic)

Probabilistic Graphical Models
● Use of generative models  
● Focus on unsupervised learning

2016 (Deep ML)

Deep learning
● Use Restricted Boltzmann 

Machine; one layer version 
is equivalent with Dawid-
Skene model

● Knowledge graph 
embeddings 

1979               
(Statistical learning)

Dawid-Skene model
● Model the error-rate of sources
● Expectation-maximization

~1996 (Rule-based)

Domain-specific Strategies
● Keep all values
● Pick a random value
● Take the average value
● Take the most recent value
● ...



A Probabilistic Model for Data Fusion

● Random variables: Introduce a latent random variable to represent the true value of 
each fact.

● Features: Source observations become features associated with different random 
variables.

● Model parameters: Weights related to the error-rates of each data source.

Error-rate = probability that a source 
provides value v' instead of value v

Normalizing constant

error-rate scores (model 
parameters)



The Challenge of Training Data

● How much data do we need to train the data fusion model?
● Theorem: We need a number of labeled examples proportional to the number of 

sources [Ng and Jordan, NIPS’01]
● Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions 
and training data is limited!

Idea 1: Leverage redundancy and use unsupervised learning.



The Dawid-Skene Algorithm [Dawid and Skene, 1979]

Iterative process to estimate data source error rates

1. Initialize “inferred” true value for each fact (e.g., use majority 
vote)

2. Estimate error rates for workers (using “inferred” true values)
3. Estimate “inferred” true values (using error rates, weight source 

votes according to quality)
4. Go to Step 2 and iterate until convergence

Assumptions: (1) average source error rate < 0.5, (2) dense source observations, (3) conditional independence of 
sources, (4) errors are uniformly distributed across all instances.



Probabilistic Graphical Models for Data Fusion

[Zhao et al., VLDB 2012]

Source 
Quality

Prior truth 
probability

Setup: Identify true 
source claims

Example:

Extensive work on modeling source observations and source 
interactions to address limitations of basic Dawid-Skene.



Probabilistic Graphical Models for Data Fusion

[Zhao et al., VLDB 2012]
[Dong et al., VLDB 2015]

Modeling both source quality 
and extractor accuracy

Extensive work on modeling source observations and source 
interactions to address limitations of basic Dawid-Skene.



Probabilistic Graphical Models for Data Fusion

Extensive work on modeling source observations and source 
interactions to address limitations of basic Dawid-Skene.

[Platanios et al., ICML 2016]

Modeling source dependencies



PGMs in Data Fusion [Li et al., VLDB’14]

Bayesian models capture source observations and source interactions.



PGMs in Data Fusion [Li et al., VLDB’14]

Modeling the quality of data sources leads to improved accuracy.



Dawid-Skene and Deep Learning [Shaham et al., ICML’16]

Theorem: The Dawid and Skene model is equivalent to a Restricted Boltzmann Machine 
(RBM) with a single hidden node.

When the conditional independence assumption of Dawid-Skene does not hold, a better 
approximation may be obtained from a deeper network.

Dawid and Skene model. A RBM with d visible and m hidden 
units.

Sketch of a two-hidden-layer RBM-
based DNN.



Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

A knowledge graph can be encoded as a tensor.



Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

Neural networks can be used to obtain richer 
representations.



Knowledge Graph Embeddings

● TransE: score(h,r,t)=-||h+r-t||1/2

● Hot field with increasing interest 
[Survey by Wang et al., TKDE 2017]

Example: Learn embeddings from IMDb data and 
identify various types of errors in WikiData [Dong et 
al., KDD’18]

Head entity

Relationship

Tail entity



The Challenge of Training Data

● How much data do we need to train the data fusion model?
● Theorem: We need a number of labeled examples proportional to the number of 

sources [Ng and Jordan, NIPS’01]
● Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions 
and training data is limited!

Idea 1: Leverage redundancy and used unsupervised learning.
Idea 2: Limit model parameters and use a small number of training data.



SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD’17]

Limit the informative parameters of the model by using domain knowledge
Key Idea: Sources have (domain specific) features that are indicative of error rates
Example:

● newly registered similar to existing domain
● traffic statistics
● text quality (e.g., misspelled words, grammatical errors) 
● sentiment analysis

● avg. time per task
● number of tasks
● market used
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SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD’17]



Challenges in Data Fusion
● There are few solutions for unstructured data. Mostly work on fact 

verification [Tutorial by Dong et al., KDD`2018]. Most data Fusion solutions 
assume data extraction. Can state-of-the art DL help?

● Using training data is key and semi-supervised learning can significantly 
improve the quality of Data Fusion results. How can one collect training data 
effectively without manual annotation?

● We have only scratched the surface of what representation learning and deep 
learning methods can offer. Can deep learning streamline data fusion? What 
are its limitations?



Recipe for Data Fusion
● Problem definition: Resolve conflicts and 

obtain correct values
● Short answers

○ Reasoning about source 
quality is key and works for easy cases

○ Semi-supervised learning has shown 
BIG potential

○ Representation learning provides 
positive evidence for streamlining data 
fusion.

Data Extraction

Schema Alignment

Entity Linkage

Data Fusion

Production
Ready



Outline

● Part I. Introduction
● Part II. ML for DI

○ ML for entity linkage
○ ML for data extraction
○ ML for data fusion
○ ML for schema alignment

● Part III. DI for ML
● Part IV. Conclusions and research direction 

Data Extraction

Schema Alignment

Entity Linkage

Data FusionCome to our VLDB tutorial for schema alignment and 
universal schema!!



Revisit Theme I. Which ML Model Works Best?

No single winner, although ensemble models and deep 
learning models show promising results.



Revisit Theme II. Does Supervised Learning Apply to 
DI?

Active learning, semi-supervised methods, and weak 
supervision lead to dramatically more efficient solutions.



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML

○ Training data creation
○ Data cleaning

● Part IV. Conclusions and research directions 



ML is data-hungry



Successful ML requires Data Integration

Large collections of manually curated training data 
are necessary for progress in ML.



Successful ML requires Data Integration

Large collections of manually curated training 
data are necessary for progress in ML.



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML

○ Training data creation
○ Data cleaning

● Part IV. Conclusions and research directions 



50 Years of Artificial Intelligence

2010s            
(Representation Learning)

Deep learning
● Automatically learn 

representations
● Impressive with high-

dimensional data
● Data hungry!

1970s (Rules)

Expert systems
● Manually curated knowledge bases of facts 

and rules
● Use of inference engines
● No support for high-dimensional data

1990s (Features)

Classical ML
● Low complexity models
● Strong priors that capture domain 

knowledge (feature engineering)
● Small amounts of training data

Graphical models and 
logic
● Relational 

statistical learning
● Markov logic 

network

2009 (PGMs) 



The ML Pipeline in the Deep Learning Era 

Data Collection Data Labeling Representation Learning
and Training



The ML Pipeline in the Deep Learning Era 

Data Collection Data Labeling Representation Learning
and Training

Main pain point today, most time spent in labeling data.



Training Data: Challenges and Opportunities

● Collecting training data is expensive and slow.
● We are overfitting to our training data. [Recht et al., 2018]

○ Hand-labeled training data does not change
● Training data is the point to inject domain knowledge

○ Modern ML is too complex to hand-tune features and priors



Training Data: Challenges and Opportunities

● Collecting training data is expensive and slow.
● We are overfitting to our training data. [Recht et al., 2018]

○ Hand-labeled training data does not change
● Training data is the point to inject domain knowledge

○ Modern ML is too complex to hand-tune features and priors

How do we get training data more effectively?



The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect) 
labels; prediction on a larger set, and then training of a model.

Semi-supervised learning and ensemble learning

Examples:

● use of non-expert labelers (crowdsourcing),
● use of curated catalogs (distant supervision) 
● use of heuristic rules (labeling functions)

NELL



The Rise of Weak Supervision



The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect) labels; prediction on a 
larger set, and then training of a model.

Related to semi-supervised learning and ensemble learning

Examples: use of non-expert labelers (crowdsourcing), use of curated catalogs 
(distant supervision), use of heuristic rules (labeling functions)

Methods developed to tackle data integration 
problems are closely related to weak supervision.



Learning from Crowds [Raykar et al., JMLR’10] 

Setup: Supervised learning but instead of gold groundtruth one has access to 
multiple annotators providing (possibly noisy) labels (no absolute gold standard).

Task: Learn a classifier from multiple noisy labels.

Closely related to Dawid-Skene! 

Difference: Estimating the ground truth and the annotator 
performance is a byproduct here. Goal is to learn a classifier.



Learning from Crowds [Raykar et al., JMLR’10] 

Example Task: Binary classification



Learning from Crowds [Raykar et al., JMLR’10] 

Example Task: Binary classification

Annotator performance:

Sensitivity (true positive rate) Specificity ( 1 - false positive rate)



Learning from Crowds [Raykar et al., JMLR’10] 

Example Task: Binary classification

Annotator performance:

Sensitivity (true positive rate) Specificity ( 1 - false positive rate)

Learning:
Model 
parameters
{w, α, β}

EM algorithm to obtain maximum-likelihood estimates. Difference 
with Dawid-Skene is the estimation of w.



Distant Supervision [Mintz et al., ACL’09]

Goal: Extracting structured knowledge from text.

Hypothesis: If two entities belong to a certain relation, any sentence containing those two 
entities is likely to express that relation.

Idea: Use a database of relations to gets lots of noisy training examples

○ Instead of hand-creating seed tuples (bootstrapping)
○ Instead of using hand-labeled corpus (supervised)

Benefits: has the advantages of supervised learning (leverage reliable hand-created 
knowledge), has the advantages of unsupervised learning (leverage unlimited amounts of 
text data).



Remember: Distant Supervision [Mintz et al., ACL’09]

Example task: Relation extraction.

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, …
Bill Gates attended Harvard from …
Google was founded by Larry Page ...

Founder: (Bill Gates, Microsoft)
Founder: (Larry Page, Google)
CollegeAttended: (Bill Gates, Harvard)

Corpus Text

Freebase

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y
Feature: X, founder of Y

Training Data

(Bill Gates, Harvard)
Label: CollegeAttended
Feature: X attended Y

For negative examples, sample 
unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL’09]

Entity Linking is an inherent problem in 
Distant Supervision.

The quality of matches can vary 
significantly and has a direct effect on  
extraction quality.



Snorkel: Code as Supervision [Ratner et al., NIPS’16, VLDB’18]

[Slide by Alex Ratner]



Snorkel: Code as Supervision [Ratner et al., NIPS’16, VLDB’18]

[Slide by Alex Ratner]



Alex (the creator of Snorkel) is on the market!

https://ajratner.github.io

Alex Ratner

Find out more about Snorkel 
MeTaL and weak supervision 

for Multi-task Learning at

Friday in Montgomery 



Challenges in Creating Training Data
● Richly-formatted data is still a challenge. How can attack weak supervision 

when data includes images, text, tables, video, etc.?

● Combining weak supervision with other data enrichment techniques such as 
data augmentation is an exciting direction. How can reinforcement learning 
help here (http://goo.gl/K2qopQ)?

● How can we combine weak supervision with techniques from semi-
supervised?

● Most work on weak supervision focuses on text or images. What about 
relational data? How can weak supervision be applied there?



Recipe for Creating Training Data

● Problem definition: Go beyond gold labels to noisy 
training data.

● Short answers
○ Transition from “gold” labels to “high-

confidence” labels.
○ Modeling error rates is key. The notion of data 

source is different.
○ Need for debugging tools, bias detection, and 

recommendations of weak supervision signals.



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML

○ Training data creation
○ Data cleaning

● Part IV. Conclusions and research directions 



Successful ML requires Data Integration

Large collections of manually curated training 
data are necessary for progress in ML.



Noisy data is a bottleneck

Source: Crowdflower

Cleaning and organizing data comprises 60% of the 
time spent on an analytics of AI project.



50 Years of Data Cleaning

1990s          

(Warehouses) 

Data transforms
● Part of ETL
● Errors within a source and 

across sources
● Transformation workflows 

and mapping rules; domain-
knowledge is crucial

2000s (Data Repairs)

Constraints and Probabilities
● Dichotomies for consistent 

query answering
● Minimality-based repairs to 

obtain consistent instances
● Statistical repairs
● Anomaly detection

1970s (Nulls)                   

E. F. Codd
● Understanding relations (installment #7). 

FDT - Bulletin of ACM SIGMOD, 7(3):23–
28, 1975.

● Null-related features of DBs 1980s 
(Normalization)

Integrity Constraints
● Normal forms to reduce 

redundancy and 
integrity

● FDs, MVDs etc.



Where are we today?
Machine learning and statistical analysis are becoming more prevalent.

Error detection (Diagnosis)

● Anomaly detection [Chandola et al., ACM CSUR, 2009]

● Bayesian analysis (Data X-Ray) [Wang et al., SIGMOD’15]

● Outlier detection over streams (Macrobase) [Bailis et al., SIMGOD’17]



Where are we today?
Machine learning and statistical analysis are becoming more prevalent.

Data Repairing (Treatment)

● Classical ML (SCARE, ERACER) [Yakout et al., VLDB’11, SIGMOD’13, Mayfield et al., SIGMOD’10]

● Boosting [Krishan et al.,  2017]

● Weakly-supervised ML (HoloClean) [Rekatsinas et al., VLDB’17]



Error Detection: MacroBase [Bailis et al., SIGMOD’17]

[Figure by Kai Sheng Tai]

Streaming Feature Selection

Setup: Online learning of a classifier (e.g., LR)

Goal: Return top-k discriminative features

Weight-Median Sketch                                                 
Sketch of a classifier for fast updates and queries 
for estimates of each weight and comes with 
approximation guarantees

A data analytics tool that prioritizes attention in large datasets.
Code at: macrobase.stanford.edu



Data Repairing: BoostClean [Krishnan et al., 2017]

Ensemble learning for error detection and data 
repairing.

Relies on domain-specific detection and repairing.

Builds upon boosting to identify repairs that will 
maximize the performance improvement of a 
downstream classifier.

On-demand cleaning!



Scalable machine learning for data enrichment

Code available at:
http://www.holoclean.io



Data Repairing: HoloClean [Rekatsinas et al., VLDB’17]

Holistic data cleaning 
framework: combines a 
variety of heterogeneous 
signals (e.g., integrity 
constraints, external 
knowledge, quantitative 
statistics)



Data Repairing: HoloClean [Rekatsinas et al., VLDB’17]

Scalable learning and 
inference: Hard constraints 
lead to complex and non-
scalable models. Novel 
relaxation to features over 
individual cells.



Data Repairing: HoloClean [Rekatsinas et al., VLDB’17]

HoloClean is 2x more accurate. 
Competing methods either do 
not scale or perform no correct 
repairs.



Probabilistic Unclean Databases [De Sa et al., 2018]

A two-actor noisy channel model for managing 
erroneous data.

Preprint: A Formal Framework For Probabilistic 
Unclean Databases

https://arxiv.org/abs/1801.06750



Challenges in Data Cleaning

● Error detection is still a challenge. To what extent is ML useful for error 
detection? Tuple-scoped approaches seem to be dominating. Is deep learning 
useful?

● We need a formal framework to describe when automated solutions are 
possible.

● A major bottleneck is the collection of training data. Can we leverage weak 
supervision and data augmentation more effectively? 

● Limited end-to-end solutions. Data cleaning workloads (mixed relational and 
statistical workloads) pose unique scalability challenges.



Recipe for Data Cleaning

● Problem definition: Detect and repair        erroneous 
data.

● Short answers
○ ML can help partly-automate cleaning. Domain-

expertise is still required.
○ Scalability of ML-based data cleaning methods is a 

pressing challenge. Exciting systems research!
○ We need more end-to-end systems!



Outline

● Part I. Introduction
● Part II. ML for DI
● Part III. DI for ML

○ Creating training data
○ Data cleaning

● Part IV. Conclusions and research direction 



DI and ML: A Natural Synergy 

● Data integration is one of the oldest problems in data management 

● Transition from logic to probabilities revolutionized data integration
○ Probabilities allow us to reason about inherently noisy data
○ Similar to the AI-revolution in the 80s [https://vimeo.com/48195434]

● Modern machine learning and deep learning have the power to streamline DI



DI and ML: A Natural Synergy 

● Data is bottleneck of modern ML and AI applications

● DI-related methods and algorithms have revolutionized the way supervision is 
performed.
○ Weak supervision signals are integrated into training datasets

● Data integration solutions (e.g., data cataloging solutions) can lead to cheaper 
collection of training data and more effective data enrichment



Opportunities for DI
One System vs. An Ecosystem: Every RBMS is a monolithic system. This paradigm has failed for DI. Tools for 
different DI tasks are prevalent. We need abstractions and execution frameworks for such ecosystems.

Humans-in-the-loop: DI tasks can be very complex. Is weak supervision the right approach to inject domain 
knowledge? What about quality evaluation?

Multi-modal DI: ML-based DI has focused on structured data with the exception of DI over images using 
crowdsourcing and some recent efforts that target textual data. DL is the de facto solution to reasoning about high 
dimensional data. Can is help develop unified DI solutions for visual, textual, and structured data?

Efficient Model Serving: This means efficient model serving. Many compute-intensive operations such as 
normalization and blocking are required. Featurization may also rely on compute-heavy tasks (e.g., computing string 
similarity). What is the role of pipelining and RDBMS-style optimizations?



Opportunities for ML
Data Catalogs: Data augmentation relies on data transformations performed on data records in a 
single dataset. How can we leverage data catalogs and data hubs to enable data augmentation go 
beyond a single dataset? 

Valuable Data for ML applications: Our community has focused on assessing the value of data 
[Dong et al., VLDB’12, Koutris et al., JACM 2015]. These ideas are not pervasive to ML but if ML is 
to become a commodity [Jordan, 2018] we need methods to reason about the value of data.

DI for Benchmarks: Increasing efforts on creating manually curated benchmarks for ML. Current 
efforts rely on manual collection and curation. How can we leverage meta-data and existing DI 
solutions to automate such efforts?

“How reliable are our current measures of progress in machine learning?”
Do CIFAR-10 Classifiers Generalize to CIFAR-10?, Ben Recht et al., 2018



DI & ML as Synergy

● ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION
○ Automating DI tasks with training data
○ Ensemble learning and deep learning provide promising solutions
○ Better understanding of semantics by neural network

● DI for effective ML: DATA, DATA, DATA
○ The software 2.0 stack is data hungry
○ Create large-scale training datasets from different sources
○ Cleaning of data used for training 

Thank you!



References Part I: Introduction
Bengio, Y., Goodfellow, I.J. & Courville, A., 2015. Deep learning. Nature, 521(7553), pp.436–444.

Bishop, C.M., 2016. Pattern Recognition and Machine Learning, Springer New York.

Doan, A., Halevy, A.Y. & Ives, Z.G., 2012. Principles of Data Integration, Morgan Kaufmann.

Domingos, P., 2012. A Few Useful Things to Know About Machine Learning. Communications of the ACM, 55(10), pp.78–87.

Dong, X. et al., 2014. Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion. In Proceedings of the 20th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’14. New York, NY, USA: ACM, pp. 601–610.

Dong, X.L. & Srivastava, D., 2015. Big data integration. Synthesis Lectures on Data Management, 7(1), pp.1–198.

Dong, X.L. & Srivastava, D., 2013. Big Data Integration. Proceedings of the VLDB Endowment International Conference on Very Large 

Data Bases, 6(11), pp.1188–1189.

Getoor, L. & Machanavajjhala, A., 2012. Entity resolution: theory, practice & open challenges. PVLDB, 5(12), pp.2018–2019.

Goodfellow, I. et al., 2016. Deep learning, MIT press Cambridge.

Halevy, A., Norvig, P. & Pereira, F., 2009. The Unreasonable Effectiveness of Data. IEEE intelligent systems, 24(2), pp.8–12.

Konda, P. et al., 2016. Magellan: Toward Building Entity Matching Management Systems. PVLDB, 9(12), pp.1197–1208.



References Part I: Introduction
Kumar, A., Boehm, M. & Yang, J., 2017. Data Management in Machine Learning: Challenges, Techniques, and Systems. In Proceedings 

of the 2017 ACM International Conference on Management of Data. SIGMOD ’17. New York, NY, USA: ACM, pp. 1717–1722.

Lockard, C. et al., 2018. CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web. arXiv [cs.AI]. Available at: 

http://arxiv.org/abs/1804.04635.

Mohri, M., Rostamizadeh, A. & Talwalkar, A., 2012. Foundations of Machine Learning, MIT Press.

Polyzotis, N. et al., 2017. Data Management Challenges in Production Machine Learning. In Proceedings of the 2017 ACM International 

Conference on Management of Data. SIGMOD ’17. New York, NY, USA: ACM, pp. 1723–1726.

Ratner, A. et al., 2017. Snorkel: Rapid Training Data Creation with Weak Supervision. PVLDB, 11(3), pp.269–282.

Rekatsinas, T. et al., 2017. HoloClean: Holistic Data Repairs with Probabilistic Inference. PVLDB, 10(11), pp.1190–1201.

Wu, S. et al., 2018. Fonduer: Knowledge Base Construction from Richly Formatted Data. In Proceedings of the 2018 International 

Conference on Management of Data. ACM, pp. 1301–1316.

Zheng, G. et al., 2018. OpenTag: Open Attribute Value Extraction from Product Profiles. In KDD. Available at: 

https://people.mpi-inf.mpg.de/~smukherjee/research/OpenTag-KDD18.pdf.



References Part II: Entity Linkage
Bhattacharya, I. & Getoor, L., 2006. A latent dirichlet model for unsupervised entity resolution. In SDM. SIAM, pp. 47–58.

Das, S. et al., 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to Build Cloud Services. In Sigmod. pp. 1431–1446.

Doan, A. et al., 2017. Human-in-the-Loop Challenges for Entity Matching: A Midterm Report. In Proceedings of the 2nd Workshop on 

Human-In-the-Loop Data Analytics, HILDA@SIGMOD 2017, Chicago, IL, USA, May 14, 2017. pp. 12:1–12:6.

Fellegi, I.P. & Sunter, A.B., 1969. A Theory for Record Linkage. Journal of the Americal Statistical Association, 64(328), pp.1183–1210.

Getoor, L. & Machanavajjhala, A., 2012. Entity resolution: theory, practice & open challenges. PVLDB, 5(12), pp.2018–2019.

Gokhale, C. et al., 2014. Corleone: Hands-off Crowdsourcing for Entity Matching. In Proceedings of the 2014 ACM SIGMOD 

International Conference on Management of Data. SIGMOD ’14. New York, NY, USA: ACM, pp. 601–612.

Hassanzadeh, O. et al., 2009. Framework for Evaluating Clustering Algorithms in Duplicate Detection. PVLDB, 2(1), pp.1282–1293.

Ji, H., 2014. Entity Linking and Wikification Reading List. Available at: http://nlp.cs.rpi.edu/kbp/2014/elreading.html.

Konda, P. et al., 2016. Magellan: Toward Building Entity Matching Management Systems. PVLDB, 9(12), pp.1197–1208.

Kopcke, H., Thor, A. & Rahm, E., 2010. Evaluation of entity resolution approaches on real-world match problems. PVLDB, 3(1), 

pp.484–493.



References Part II: Entity Linkage
Mudgal, S. et al., 2018. Deep Learning for Entity Matching: A Design Space Exploration. In Proceedings of the 2018 International

Conference on Management of Data. ACM, pp. 19–34.

Pujara, J. & Getoor, L., 2016. Generic Statistical Relational Entity Resolution in Knowledge Graphs. In AAAI.

Rakshit Trivedi, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos, Jun Ma and Hongyuan Zha., LinkNBed: Multi-Graph 

Representation Learning with Entity Linkage. In 56th Annual Meeting of the Association for Computational Linguistics. ACL.

Sarawagi, S. & Bhamidipaty, A., 2002. Interactive deduplication using active learning. In SIGKDD.

Singla, P. & Domingos, P., 2006. Entity Resolution with Markov Logic. In ICDM. Washington, DC, USA: IEEE Computer Society, pp. 

572–582.

Stonebraker, M. et al., 2013. Data Curation at Scale: The Data Tamer System. In CIDR.

Verroios, V., Garcia-Molina, H. & Papakonstantinou, Y., 2017. Waldo: An Adaptive Human Interface for Crowd Entity Resolution. In

Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 

2017. pp. 1133–1148.



References Part II: Data Extraction
Das, R. et al., 2017. Chains of reasoning over entities, relations, and text using recurrent neural networks. In EACL.

Dong, X. et al., 2014. Knowledge Vault: A Web-scale Approach to Probabilistic Knowledge Fusion. In Proceedings of the 20th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’14. New York, NY, USA: ACM, pp. 601–610.

Dong, X.L., 2017. Challenges and Innovations in Building a Product Knowledge Graph. In AKBC.

Gulhane, P. et al., 2011. Web-scale information extraction with vertex. In 2011 IEEE 27th International Conference on Data Engineering. 

pp. 1209–1220.

He, R. et al., 2017. An Unsupervised Neural Attention Model for Aspect Extraction. In ACL.

Hoffmann, R. et al., 2011. Knowledge-based Weak Supervision for Information Extraction of Overlapping Relations. In Proceedings of 

the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1. HLT ’11.   

Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 541–550.

Limaye, G., Sarawagi, S. & Chakrabarti, S., 2010. Annotating and Searching Web Tables Using Entities, Types and Relationships. 

Proceedings of the VLDB Endowment International Conference on Very Large Data Bases, 3(1-2), pp.1338–1347.

Lockard, C. et al., 2018. CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web. arXiv [cs.AI]. Available at: 

http://arxiv.org/abs/1804.04635.



References Part II: Data Extraction
Mintz, M. et al., 2009. Distant supervision for relation extraction without labeled data. In ACL.

Mitchell, T. et al., 2018. Never-ending Learning. Communications of the ACM, 61(5), pp.103–115.

Neelakantan, A., Roth, B. & McCallum, A., 2015. Compositional vector space models for knowledge base completion. In ACL.

Riedel, S. et al., 2013. Relation Extraction with Matrix Factorization and Universal Schemas. In HLT-NAACL.

Shin, J. et al., 2015. Incremental Knowledge Base Construction Using DeepDive. Proceedings of the VLDB Endowment International 

Conference on Very Large Data Bases, 8(11), pp.1310–1321.

Wu, S. et al., 2018. Fonduer: Knowledge Base Construction from Richly Formatted Data. In Proceedings of the 2018 International 

Conference on Management of Data. ACM, pp. 1301–1316.

Zhang, C. et al., 2017. DeepDive: Declarative Knowledge Base Construction. CACM, 60(5), pp.93–102.



References Part II: Data Fusion
Dawid, A.P. & Skene, A.M., 1979. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. Journal of the Royal 

Statistical Society. Series C, Applied statistics, 28(1), pp.20–28.

Dong, X.L. et al., 2014. From Data Fusion to Knowledge Fusion. PVLDB.

Dong, X.L. et al., 2015. Knowledge-based Trust: Estimating the Trustworthiness of Web Sources. Proceedings of the VLDB Endowment 

International Conference on Very Large Data Bases, 8(9), pp.938–949.

Dong, X.L. & Naumann, F., 2009. Data Fusion: Resolving Data Conflicts for Integration. Proceedings of the VLDB Endowment 

International Conference on Very Large Data Bases, 2(2), pp.1654–1655.

Gao, J. et al., 2016. Mining Reliable Information from Passively and Actively Crowdsourced Data. In KDD. pp. 2121–2122.

Jaffe, A., Nadler, B. & Kluger, Y., 2015. Estimating the accuracies of multiple classifiers without labeled data. In Artificial Intelligence and 

Statistics. Artificial Intelligence and Statistics. pp. 407–415.

Li, H., Yu, B. & Zhou, D., 2013. Error rate analysis of labeling by crowdsourcing. In ICML Workshop: Machine Learning Meets 

Crowdsourcing. Atlanta, Georgia, USA.

Li, Q. et al., 2014. A Confidence-aware Approach for Truth Discovery on Long-tail Data. Proceedings of the VLDB Endowment International 

Conference on Very Large Data Bases, 8(4), pp.425–436.



References Part II: Data Fusion
Li, X. et al., 2013. Truth Finding on the Deep Web: Is the Problem Solved? PVLDB, 6(2).

Li, Y. et al., 2016. A Survey on Truth Discovery. SIGKDD Explor. Newsl., 17(2), pp.1–16.

Nickel, M. et al., 2016. A Review of Relational Machine Learning for Knowledge Graphs. Proceedings of the IEEE, 104(1), pp.11–33.

Pasternack, J. & Roth, D., 2010. Knowing what to believe (when you already know something). In COLING. pp. 877–885.

Platanios, E. A., Dubey, A., & Mitchell, T. (2016, June). Estimating accuracy from unlabeled data: A bayesian approach. In International 

Conference on Machine Learning(pp. 1416-1425).

Rekatsinas, T. et al., 2017. SLiMFast: Guaranteed Results for Data Fusion and Source Reliability. In Proceedings of the 2017 ACM 

International Conference on Management of Data. SIGMOD ’17. New York, NY, USA: ACM, pp. 1399–1414.

Shaham, U. et al., 2016. A Deep Learning Approach to Unsupervised Ensemble Learning. In International Conference on Machine 

Learning. International Conference on Machine Learning. pp. 30–39.

Wang, Q. et al., 2017. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE transactions on knowledge and 

data engineering, 29(12), pp.2724–2743.

Yin, X., Han, J. & Yu, P.S., 2007. Truth discovery with multiple conflicting information providers on the web. In Proceedings of the 13th 

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 1048–1052.



References Part II: Data Fusion
Zhang, Y. et al., 2014. Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing. In Z. Ghahramani et al., eds. 

Advances in Neural Information Processing Systems 27. Curran Associates, Inc., pp. 1260–1268.

Zhao, B. et al., 2012. A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration. Proceedings of the VLDB 

Endowment International Conference on Very Large Data Bases, 5(6), pp.550–561.



References Part III: Training Data Creation
Chapelle, O., Scholkopf, B. & Eds., A.Z., 2009. Semi-Supervised Learning (Chapelle, O. et al., Eds.; 2006) [Book reviews]. IEEE 

transactions on neural networks / a publication of the IEEE Neural Networks Council, 20(3), pp.542–542.

Dawid, A.P. & Skene, A.M., 1979. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm. Journal of the Royal 

Statistical Society. Series C, Applied statistics, 28(1), pp.20–28.

Mintz, M. et al., 2009. Distant supervision for relation extraction without labeled data. In ACL.

Mitchell, T., 2017. Learning from Limited Labeled Data (But a Lot of Unlabeled Data). Available at: 

https://lld-workshop.github.io/slides/tom_mitchell_lld.pdf.

Platanios, E.A., Dubey, A. & Mitchell, T., 2016. Estimating Accuracy from Unlabeled Data: A Bayesian Approach. In International 

Conference on Machine Learning. International Conference on Machine Learning. pp. 1416–1425.

Ratner, A. et al., 2017. Snorkel: Rapid Training Data Creation with Weak Supervision. PVLDB, 11(3), pp.269–282.

Ratner, A.J. et al., 2016. Data programming: Creating large training sets, quickly. In Advances in Neural Information Processing 

Systems. pp. 3567–3575.

Raykar, V.C. et al., 2010. Learning From Crowds. Journal of machine learning research: JMLR, 11, pp.1297–1322.

Recht, B. et al., 2018. Do CIFAR-10 Classifiers Generalize to CIFAR-10? arXiv [cs.LG]. Available at: http://arxiv.org/abs/1806.00451.



References Part III: Training Data Creation
Roth, B. & Klakow, D., 2013. Combining generative and discriminative model scores for distant supervision. In Proceedings of the 2013 

Conference on Empirical Methods in Natural Language Processing. pp. 24–29.

Russell, S. & Stefano, E., 2017. Label-free supervision of neural networks with physics and domain knowledge. Proceedings of AAAI.

Salimans, T. et al., 2016. Improved techniques for training gans. In Advances in Neural Information Processing Systems. pp. 

2234–2242.

Schapire, R.E. & Freund, Y., 2012. Boosting: Foundations and Algorithms. Adaptive computation and machine learning.



References Part III: Data Cleaning
Bailis, P. et al., 2017. MacroBase: Prioritizing Attention in Fast Data. In Proceedings of the 2017 ACM International Conference on 

Management of Data. SIGMOD ’17. New York, NY, USA: ACM, pp. 541–556.

Chu, X. et al., 2016. Data Cleaning: Overview and Emerging Challenges. In Proceedings of the 2016 International Conference on 

Management of Data. SIGMOD ’16. New York, NY, USA: ACM, pp. 2201–2206.

Chandola, V., Banerjee, A. & Kumar, V., 2009. Anomaly Detection: A Survey. ACM Comput. Surv., 41(3), pp.15:1–15:58.

Galhardas, H. et al., 2001. Declarative data cleaning: Language, model, and algorithms. In VLDB. pp. 371–380.

Hellerstein, J.M., 2008. Quantitative data cleaning for large databases. Statistical journal of the United Nations Economic Commission 

for Europe. Available at: http://db.cs.berkeley.edu/jmh/papers/cleaning-unece.pdf.

Ilyas, I.F., 2016. Effective Data Cleaning with Continuous Evaluation. IEEE Data Eng. Bull., 39, pp.38–46.

Krishnan, S. et al., 2016. ActiveClean: Interactive Data Cleaning for Statistical Modeling. Proceedings of the VLDB Endowment 

International Conference on Very Large Data Bases, 9(12), pp.948–959.

Krishnan, S. et al., 2017. BoostClean: Automated Error Detection and Repair for Machine Learning. arXiv [cs.DB]. Available at: 

http://arxiv.org/abs/1711.01299.



References Part III: Data Cleaning
Mayfield, C., Neville, J. & Prabhakar, S., 2010. ERACER: A Database Approach for Statistical Inference and Data Cleaning. In 

Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. SIGMOD ’10. New York, NY, USA: ACM, 

pp. 75–86.

Rekatsinas, T. et al., 2017. HoloClean: Holistic Data Repairs with Probabilistic Inference. PVLDB, 10(11), pp.1190–1201.

Wang, X., Dong, X.L. & Meliou, A., 2015. Data X-Ray: A Diagnostic Tool for Data Errors. In Proceedings of the 2015 ACM SIGMOD 

International Conference on Management of Data. SIGMOD ’15. New York, NY, USA: ACM, pp. 1231–1245.

Yakout, M., Berti-Équille, L. & Elmagarmid, A.K., 2013. Don’T Be SCAREd: Use SCalable Automatic REpairing with Maximal Likelihood 

and Bounded Changes. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. SIGMOD ’13. 

New York, NY, USA: ACM, pp. 553–564.


