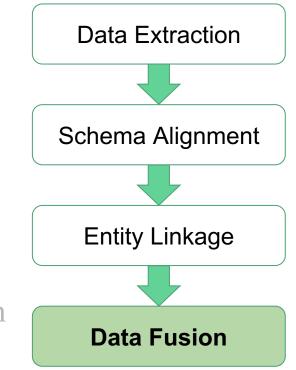
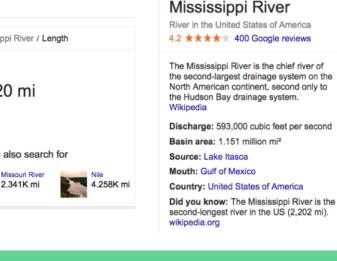
Outline

- Part I. Introduction
- Part II. ML for DI
 - ML for entity linkage
 - ML for data extraction
 - ML for data fusion
 - ML for schema alignment
- Part III. DI for ML
- Part IV. Conclusions and research direction



What is Data Fusion?

- **Definition:** Resolving conflicting data and verifying facts.
- **Example:** "OK Google, How long is the Mississippi River?"



Mississippi River Facts - Mississippi National River and Recreation ... https://www.nps.gov/miss/riverfacts.htm *

Nov 14, 2017 - The staff of Itasca State Park at the Mississippi's headwaters suggest the main stem of the river is 2,552 miles long. The US Geologic Survey has published a number of 2,300 miles, the EPA says it is 2,320 miles long, and the Mississippi National River and Recreation Area suggests the river's length is 2,350 miles.

	Longest manystern mers of the onition states								
. •	Name •	Mouth ^[5] •	Length +	Source coordinates ^[11] *	Mouth coordinates ^[11] •	Watershed area ^[12]	Discharge ^[12] •	States, provinces, and image ^{[5][11]}	
1	Missouri River	Mississippi River	2,341 mi 3,768 km ^[13]	Q 45°55'39"N 111°30'29"W ⁽¹⁴⁾	@ 38°48'49"N 90°07'11"W	529,353 mi ² 1,371,017 km ^{2[15]} ‡ ^[n 2]	69,100 ft ³ /s 1,956 m ³ /s [n 3]	Montana ⁸ , North Dakota, South Dakota, Nebraska, Iowa, Kansas, Missouri ^m	
2	Mississippi River	Gulf of Mexico	2,202 mi 3,544 km ^[17] [n 4]	@ 47*14'22"N 95°12'29"W ^[18]	@ 29°09'04"N 89°15'12"W	1,260,000 mi ² 3,270,000 km ^{2[19]} ‡ ^[n 5]	650,000 ft ³ /s 18,400 m ³ /s	Minnesota ⁴ , Wisconsin, Iowa, Illinois, Missouri, Kentucky, Tennessee, Arkansas, Mississippi, Louisiana ^m	

Mississippi River / Length

2.320 mi

People also search for

The Basic Setup of Data Fusion

Source Observations

Source	River	Attribute	Value
KG	Mississippi River	Length	2,320 mi
KG	Missouri River	Length	2,341 mi
Wikipedia	Mississippi River	Length	2,202 mi
Wikipedia	Missouri River	Length	2,341 mi
USGS	Mississippi River	Length	→ 2,340 mi
USGS	Missouri River	Length	2,540 mi
	Fact Conflicting va	a valu	e reports e for a fact

True Facts

River	Attribute	Value		
Mississippi River	Length	?		
Missouri River	Length	?		
	1			

Fact's true value

Goal: Find the **latent** true value of facts.

The Basic Setup of Data Fusion

Source Observations

Source	River	Attribute	Value
KG	Mississippi River	Length	2,320 mi
KG	Missouri River	Length	2,341 mi
Wikipedia	Mississippi River	Length	2,202 mi
Wikipedia	Missouri River	Length	2,341 mi
USGS	Mississippi River	Length	→ 2,340 mi
USGS	Missouri River	Length	2,540 mi
	Fact Conflicting va	a valu	e reports e for a fact

True Facts

River	Attribute	Value		
Mississippi River	Length	?		
Missouri River	Length	?		

Fact's true value

Idea: Use *redundancy* to infer the true value of each fact.

Majority Voting for Data Fusion

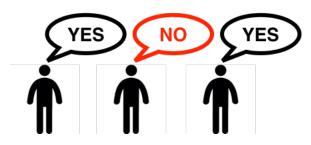
Source Observations

Source	River	Attribute	Value
KG	KG Mississippi River Length		2,320 mi
KG	Missouri River	Length	2,341 mi
Wikipedia	Mississippi River	Length	2,202 mi
Wikipedia	Missouri River	Length	2,341 mi
USGS	Mississippi River	Length	2,340 mi
USGS	Missouri River	Length	2,540 mi

Majority voting can be limited. What if sources are correlated (e.g., copying)?Idea: Model source quality for accurate results.

True Facts

River	Attribute	Value
Mississippi River	Length	?
Missouri River	Length	2,341



MV's assumptions

- I. Sources report values independently
- 2. Sources are better than chance.

40 Years of Data Fusion (beyond Majority Voting)

Dawid-Skene model

- Model the error-rate of sources
- Expectation-maximization

Probabilistic Graphical Models

- Use of generative models
- Focus on unsupervised learning

•	~1996 (Rule-based)		2016 (Deep ML)
1979 (Statistical learning)	 200 Domain-specific Strategies Keep all values Pick a random value Take the average value Take the most recent value 	e	 Deep learning Use Restricted Boltzmann Machine; one layer version is equivalent with Dawid- Skene model Knowledge graph embeddings

A Probabilistic Model for Data Fusion

- **Random variables:** Introduce a *latent random variable* to represent the true value of each fact.
- **Features:** Source observations become features associated with different random variables.
- Model parameters: Weights related to the error-rates of each data source.

$$P(\text{Fact} = v | \text{data}) = \frac{1}{Z} \exp \sum_{s \in \text{Sources } v'} \sum_{s \in \text{Values}} \sigma_S^{v,v'} \cdot 1[S \text{ reports Fact} = v']$$
Normalizing constant
$$\sigma_S^{v,v'} = \log \left(\frac{\text{Error-rate of Source } S}{1 - \text{Error-rate of Source } S} \right)$$

$$Error-rate = \text{probability that a source}$$

$$P(\text{Fact} = v | \text{data}) = \frac{1}{Z} \exp \sum_{s \in \text{Sources } v'} \sum_{s \in \text{Values}} \sigma_S^{v,v'} \cdot 1[S \text{ reports Fact} = v']$$

error-rate scores (model

The Challenge of Training Data

- How much data do we need to train the data fusion model?
- **Theorem:** We need a number of labeled examples proportional to the number of sources [Ng and Jordan, NIPS'01]
- Model parameters: Weights related to the error-rates of each data source.

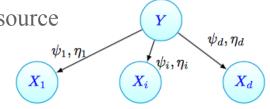
But the number of sources can be in the thousands or millions and training data is limited!

Idea 1: Leverage redundancy and use unsupervised learning.

The Dawid-Skene Algorithm [Dawid and Skene, 1979]

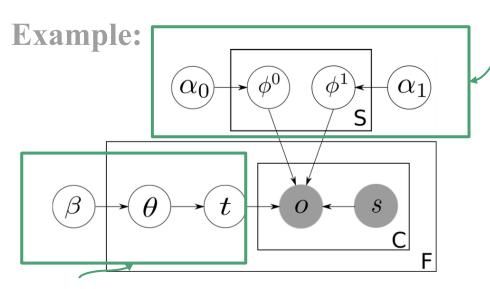
Iterative process to estimate data source error rates

- Initialize "inferred" true value for each fact (e.g., use majority vote)
- 2. Estimate error rates for workers (using "inferred" true values)
- Estimate "inferred" true values (using error rates, weight source votes according to quality)
- 4. Go to Step 2 and iterate until convergence



Assumptions: (1) average source error rate < 0.5, (2) dense source observations, (3) conditional independence of sources, (4) errors are uniformly distributed across all instances.

Probabilistic Graphical Models for Data Fusion



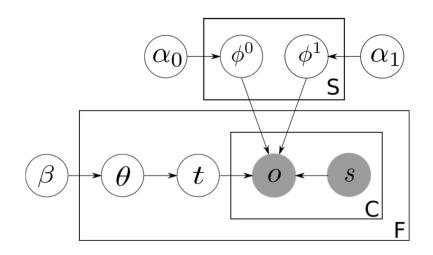
Prior truth [Zhao et al., VLDB 2012] probability

Source Quality Setup: Identify true source claims

Entity (Movie)	Attribute (Cast)	Source
Harry Potter	Daniel Radcliffe	IMDB
Harry Potter	Emma Waston	IMDB
Harry Potter	Rupert Grint	IMDB
Harry Potter	Daniel Radcliffe	Netflix
Harry Potter	Daniel Radcliffe	BadSource.com
Harry Potter	Emma Waston	BadSource.com
Harry Potter	Johnny Depp	BadSource.com
Pirates 4	Johnny Depp	Hulu.com
	•••	

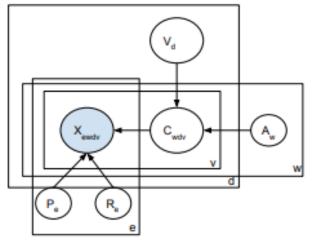
Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

Probabilistic Graphical Models for Data Fusion



[Zhao et al., VLDB 2012]

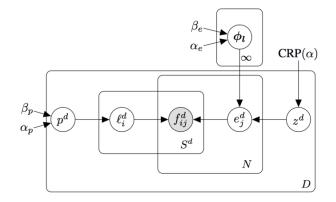
Modeling both source quality and extractor accuracy

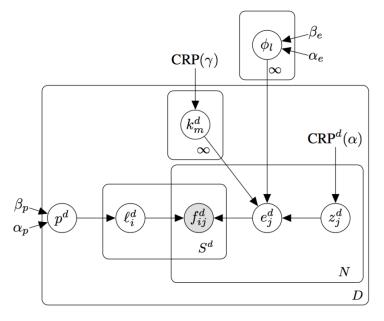


[Dong et al., VLDB 2015]

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

Probabilistic Graphical Models for Data Fusion





[Platanios et al., ICML 2016]

Extensive work on modeling source observations and source interactions to address limitations of basic Dawid-Skene.

PGMs in Data Fusion [Li et al., VLDB'14]

Table 6: Summary of data-fusion methods. X indicates that the method considers the particular evidence.

Category	Method	#Providers	Source	Item	Value	Value	Value	Copying
			trustworthiness	trustworthiness	Popularity	similarity	formatting	0000
Baseline	Vote	X						
	HUB	X	Х					
Web-link	AvgLog	X	X					
based	INVEST	X	X					
	POOLEDINVEST	X	X					
	2-ESTIMATES	X	Х					
IR based	3-ESTIMATES	X	X	X				
	COSINE	X	X					
	TRUTHFINDER	X	Х			X		
Devecien based	ACCUPR	X	X					
Bayesian based	POPACCU	X	X		X			
	ACCUSIM	X	X			X		
	ACCUFORMAT	X	X			X	X	
Copying affected	ACCUCOPY	X	X			X	X	Х

Bayesian models capture source observations and source interactions.

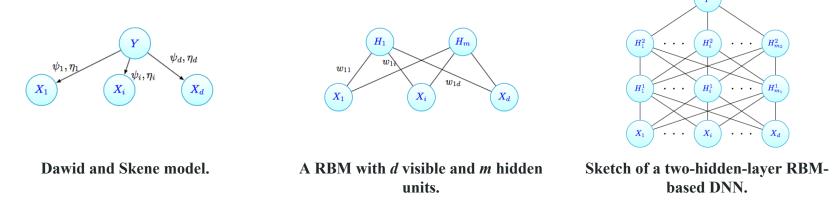
PGMs in Data Fusion [Li et al., VLDB'14]

		Stock			Flight				
Category	Method	prec w.	prec w/o.	Trust	Trust	prec w.	prec w/o.	Trust	Trust
		trust	trust	dev	diff	trust	trust	dev	diff
Baseline	Vote	-	.908	-	-	-	.864	-	-
	HUB	.913	.907	.11	.08	.939	.857	.2	.14
Web-link	AvgLog	.910	.899	.17	13	.919	.839	.24	.001
based	INVEST	.924	.764	.39	31	.945	.754	.29	12
	POOLEDINVEST	.924	.856	1.29	0.29	.945	.921	17.26	7.45
	2-ESTIMATES	.910	.903	.15	14	.87	.754	.46	35
IR based	3-ESTIMATES	.910	.905	.16	15	.87	.708	.95	94
	COSINE	.910	.900	.21	17	.87	.791	.48	41
	TRUTHFINDER	.923	.911	.15	.12	.957	.793	.25	.16
	ACCUPR	.910	.899	.14	11	.91	.868	.16	06
	POPACCU	.909	.892	.14	11	.958	.925	.17	11
Bayesian	ACCUSIM	.918	.913	.17	16	.903	.844	.2	09
based	ACCUFORMAT	.918	.911	.17	16	.903	.844	.2	09
	ACCUSIMATTR	.950	.929	.17	16	.952	.833	.19	08
	ACCUFORMATATTR	.948	.930	.17	16	.952	.833	.19	08
Copying affected	ACCUCOPY	.958	.892	.28	11	.960	.943	.16	14

Modeling the quality of data sources leads to improved accuracy.

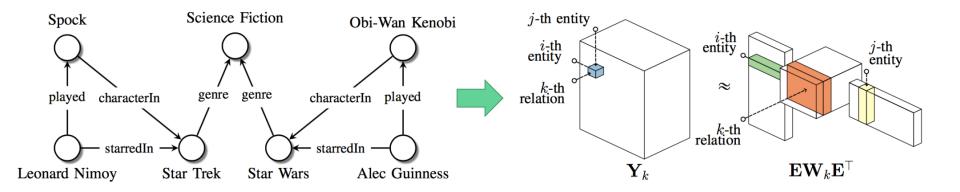
Dawid-Skene and Deep Learning [Shaham et al., ICML'16]

Theorem: The Dawid and Skene model is *equivalent* to a Restricted Boltzmann Machine (RBM) with a single hidden node.



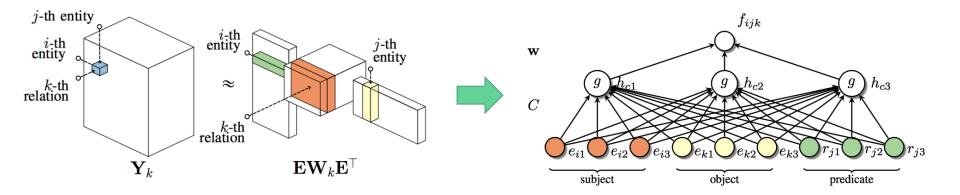
When the conditional independence assumption of Dawid-Skene does not hold, a better approximation may be obtained from a deeper network.

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]



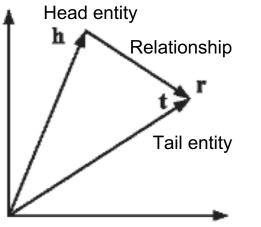
A knowledge graph can be encoded as a tensor.

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]



Neural networks can be used to obtain richer representations.

Knowledge Graph Embeddings



Entity and Relation Space

- TransE: score(h,r,t)=- $||h+r-t||_{1/2}$
- Hot field with increasing interest [Survey by Wang et al., TKDE 2017]

Example: Learn embeddings from IMDb data and identify various types of errors in WikiData [Dong et al., KDD'18]

Subject	Relation	Target	Reason
The Moises Padilla Story	lla writtenBy César Ámigo Aguilar		Linkage error
Bajrangi Bhaijaan	writtenBy	Yo Yo Honey Singh	Wrong relationship
Piste noire	writtenBy	Jalil Naciri	Wrong relationship
Enter the Ninja	musicComposedBy	Michael Lewis	Linkage error
The Secret Life of Words	musicComposedBy	Hal Hartley	Cannot confirm

The Challenge of Training Data

- How much data do we need to train the data fusion model?
- **Theorem:** We need a number of labeled examples proportional to the number of sources [Ng and Jordan, NIPS'01]
- Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or millions and training data is limited!

Idea 1: Leverage redundancy and used unsupervised learning. Idea 2: Limit model parameters and use a small number of training data.

SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD'17]

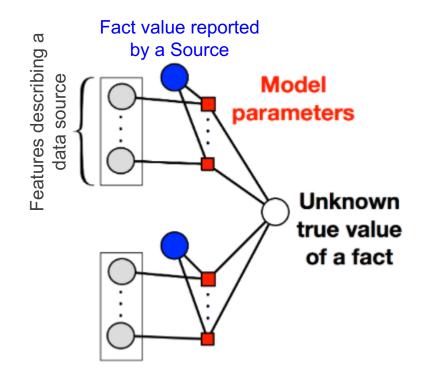
Limit the informative parameters of the model by using domain knowledge Key Idea: Sources have (domain specific) features that are indicative of error rates Example:

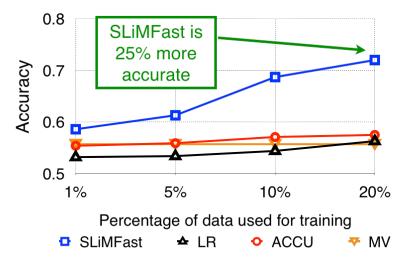
What Queen Elizabeth Just Did For Donald <u>Trump</u> Makes Obama Look Like An Idiot

One of the many sectors appropriate theory type and theorem enter Downet Trang is it is not according to a serie for of another basing. These and block approx, having a sectorial to the series of the basing and theory is all sectors. But the active of magnet basins throughout the world are basing as any different data; According to approx, gauges Estabelli of Downet Inter and east balance are and a trang a term includer or

- newly registered similar to existing domain
- traffic statistics
- text quality (e.g., misspelled words, grammatical errors)
- sentiment analysis
- avg. time per task
- number of tasks
- market used

SLiMFast: Discriminative Data Fusion [Rekatsinas et al., SIGMOD'17]





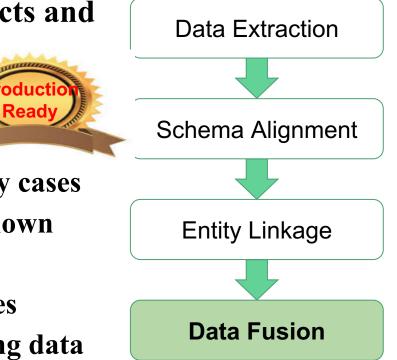
Genomics data: 2.7k sources (articles), 571 objects (genedisease), 4 domain features (year, citation, author, journal)

Challenges in Data Fusion

- There are few solutions for unstructured data. Mostly work on fact verification [Tutorial by Dong et al., KDD`2018]. Most data Fusion solutions assume data extraction. Can state-of-the art DL help?
- Using training data is key and semi-supervised learning can significantly improve the quality of Data Fusion results. How can one collect training data effectively without manual annotation?
- We have only scratched the surface of what representation learning and deep learning methods can offer. Can deep learning streamline data fusion? What are its limitations?

Recipe for Data Fusion

- Problem definition: Resolve conflicts and obtain correct values
- Short answers
 - **Reasoning about source** Ο quality is key and works for easy cases
 - Semi-supervised learning has shown Ο **BIG** potential
 - **Representation learning provides** Ο positive evidence for streamlining data fusion.



lead