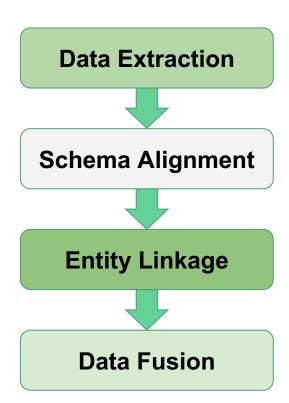

Outline

- Part I. Introduction
- Part II. ML for DI
- Part III. DI for ML
- Part IV. Conclusions and research directions


Data Integration Overview

- Entity linkage: linking records to entities; indispensable when different sources exist
- Data extraction: extracting structured data;
 important when non-relational data exist
- Data fusion: resolving conflicts; necessary in presence of erroneous data
- Schema alignment: aligning types and attributes; helpful when different relational schemas exist

Recipe

- Problem definition
- Brief history
- State-of-the-art ML solutions
- Summary w. a short answer

Theme I. Which ML Model Works Best?

Which ML Model Works Best?

ID	NAME	CLASS	MARK	SEX
1	John Deo	Four	75	female
2	Max Ruin	Three	85	male
3	Arnold	Three	55	male
4	Krish Star	Four	60	female
5	John Mike	Four	60	female
6	Alex John	Four	55	male
7	My John Rob	Fifth	78	male
8	Asruid	Five	85	male
9	Tes Qry	Six	78	male
10	Big John	Four	55	female

Tree-based models

??

Neural network

Theme II. Does Supervised Learning Apply to DI?

- Supervised learning has made a big splash recently in many fields
- However, it is hard to bluntly apply supervised learning to DI tasks
 - Our goal is to integrate data from many different data sources in different domains
 - The different sources present different data features and distributions
 - Collecting training labels for each source is a huge cost