Data Integration and Machine Learning: A Natural Synergy

Xin Luna Dong @ Amazon.com
Theo Rekatsinas @ UW-Madison
Sigmod 2018
Acknowledgement
What is Data Integration?

- **Data integration**: to provide unified access to data residing in multiple, autonomous data sources
 - **Data warehouse**: create a single store (materialized view) of data from different sources offline. Multi-billion dollar business.
 - **Virtual integration**: support query over a mediated schema by applying online query reformulation. E.g., Kayak.com.

- In the RDF world: different names for similar concepts
 - **Knowledge graph** is equivalent to a data warehouse. Has been widely used in Search and Voice
 - **Linked data** is equivalent to virtual integration
Why is Data Integration Hard?

- Heterogeneity everywhere
 - Different data formats
Why is Data Integration Hard?

- Heterogeneity everywhere
 - Different ways to express the same classes and attributes

IMDB

WikiData

- Data Extraction
- Schema Alignment
- Entity Linkage
- Data Fusion
Why is Data Integration Hard?

- Heterogeneity everywhere
 - Different references to the same entity
Why is Data Integration Hard?

- Heterogeneity everywhere
 - Conflicting values

Data Extraction → Schema Alignment → Entity Linkage → Data Fusion
Importance from a Practitioner’s Point of View

- Entity linkage is indispensable whenever integrating data from different sources
- Data extraction is important for integrating non-relational data
- Data fusion is necessary in presence of erroneous data
- Schema alignment is helpful when integrating relational data, but not affordable for manual work if we integrate many sources
What is Machine Learning?

- **Machine learning**: teach computers to *learn* with data, not by programming

- **More Formal definition**
 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E.

 -- Tom Mitchell
Two Main Types of Machine Learning

- Supervised learning: learn by examples
Two Main Types of Machine Learning

- Unsupervised learning: find structure w/o examples
Two Main Types of Machine Learning

- Supervised learning: learn by examples
- Unsupervised learning: find structure w/o examples
Techniques for Supervised ML

<table>
<thead>
<tr>
<th>Hyperplanes</th>
<th>Kernel</th>
<th>Tree-based</th>
<th>Graphical Mdl</th>
<th>Logic Prog</th>
<th>Neural Netw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear/Logistic regression</td>
<td>SVM</td>
<td>Decision tree, Random forest</td>
<td>Bayes net, CRF</td>
<td>Pr soft logic, Markov logic net</td>
<td>ANN, RNN, CNN</td>
</tr>
</tbody>
</table>

Hyperplanes
- Linear/Logistic regression

Kernel
- SVM

Tree-based
- Decision tree
- Random forest

Graphical Mdl
- Bayes net
- CRF

Logic Prog
- Pr soft logic
- Markov logic net

Neural Netw
- ANN
- RNN
- CNN
Key Lessons for ML [Domingos, 2012]

- Learning = Representation + Evaluation + Optimization
- It’s generalization that counts: generalize beyond training examples
- Data alone is not enough: “no free lunch” theorem--No learner can beat random guessing over all possible functions to be learned
- Intuition fails in high dimensions: “curse of dimensionality”
- More data beats a cleverer algorithm: Google showed that after providing 300M images for DL image recognition, no flattening of the learning curve was observed.
DI & ML as Synergy

- **ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION**
 - Automating DI tasks with training data
 - Better understanding of semantics by neural network

- **DI for effective ML: DATA, DATA, DATA**
 - Create large-scale training datasets from different sources
 - Cleaning of data used for training
Give me a Fulscrum, I will Move the Earth

-- Archimedes
Give me a DI funnel, I will Move ML
Many Systems Where DI & ML Leverage Each Other

Increasing number of systems both in industry and academia.
Example System: Product Graph [Dong, KDD’18]
Goal of This Tutorial

● NO-GOALS
 ○ Present a comprehensive literature review for all topics we are covering

● GOALS
 ○ Present state-of-the-art for DI & ML synergy
 ○ Show how ML has been transforming DI and vice versa
 ○ Give some taste on which tool is working best for which tasks
 ○ Discuss what remains challenging