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What is Data Integration?

e Data integration: to provide unified access to data residing in multiple,

autonomous data sources
o Data warehouse: create a single store (materialized view) of data from
different sources offline. Multi-billion dollar business.
o Virtual integration: support query over a mediated schema by applying
online query reformulation. E.g., Kayak.com.

e Inthe RDF world: different names for similar concepts
o Knowledge graph is equivalent to a data warehouse. Has been widely
used in Search and Voice
o Linked data is equivalent to virtual integration



Why is Data Integration Hard?

e Heterogeneity everywhere
o Different data formats

Web tables & Lists

DOM Trees
b IREIRCS Free texts ‘

1. Washigi - Diagram

Schema Alignment J
2 J m" A ! [ i gi\(;)gl)gical Examples Pre-amputation Post-amputation Regenerate [ Entity Linkage J
3 e

Whole body Regeneration from a == a == n
small body fragment
Structure Limb, fin, tail, head,
tentacle, siphon,

@ @ @ [ Data Fusion

Tissue Epldermls gut

lining :
Cell Axon, muscle fiber H o G" e H

TRENDS in Ecology & Evolution

S VFEETET ittt
= me " His ideas and body

Hewes The Last Supper]l
Gt b ints. Ve muenced ocountle|
o hinms - Ttalian Renaissance

i

i

i
Regeneration




Why is Data Integration Hard?

e Heterogeneity everywhere

o Different ways to express the same classes and
attributes

Data Extraction

. 4

Schema Alignment 1

Anahi Puente (0604

WikiData [

| { o SEE RANK
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| Actress = Music Department | Soundtrack < s .
Mexican singer-songwriter and actress
Mia
Anahi was born in Mexico. She's had roles in Tu y Yo, in
which she played a 17 year old girl while she was 13, and ~ In more languages Configure
Vivo Por Elena, in which she played Talita, a naive and L Label . .
innocent teenager. Anahi lives with her mother and sister ENgLoge 209 Entlty Lln kage
name Marychelo. She hopes to become a fashion designer English Anahi Puente
one day, and is currently pursuing a career in singing.
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. Contact Info: View manager imported from a a USIOn
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Why is Data Integration Hard?

e Heterogeneity everywhere Data Extraction

IMDB WikiData 1

o Different references to the same entity

¢ seenanx | Anahi Puente] s Schema Alignment

Actress Music Department | Soundtrack A s "
Mexican singer-songwriter and actress
A A ' A A Mia
Anahi was born in Mexico. She's had roles in Tu y Yo, in

which she played a 17 year old girl while she was 13, and
Vivo Por Elena, in which she played Talita, a naive and
innocent teenager. Anahi lives with her mother and sister Language Label Entlty LI n kage
name Marychelo. She hopes to become a fashion designer

one day, and is currently pursuing a career in singing.

See full bio » Chinese FIE - B defined

~ In more languages ©°™aure

English Anahi Puente

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico Spanish Anahi Puente Cantal mpositora y actriz mexicana

date of birth € 7 November 198/
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. Contact Info: View manager imported from a a USIO n
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Why is Data Integration Hard?

e Heterogeneity everywhere
o Conflicting values

Data Extraction

¥

Schema Alignment }

e N N

IMDB WikiData
P— o ss=rame Anahi Puente (i
Actress = Music Department | Soundtrack

Mexican singer-songwriter and actress
. . . A Mia
Anahi was born in Mexico. She's had roles in Tu y Yo, in

which she played a 17 year old girl while she was 13, and ~ In more languages "evre

Vivo Por Elena, in which she played Talita, a naive and

innocent teenager. Anahi lives with her mother and sister Language Label E ntlty Lln kage

name Marychelo. She hopes to become a fashion designer English Anahi Puente

one day, and is currently pursuing a career in singing.

See full bio » Chinese FIghZ - 5 B defined
Born Mexico City, Distrito Federal, Mexico Spanish Anahi Puente Cantal mpositora y actriz mexicana

date of birth 7 November 198!

i

More at IMDbPro » ~ 1 reference D t F 1
. Contact Info: View manager imported from a a us Ion

+ add value




Importance from a Practitioner’s Point of View

e Entity linkage is indispensable whenever L - J
integrating data from different sources

e Data extraction is important for integrating .'
non-relational data [ Schema Alignment 1

e Data fusion is necessary in presence of
erroneous data

e Schema alignment is helpful when integrating
relational data, but not affordable for manual
work if we integrate many sources

[ Data Fusion }




What is Machine Learning?

Machine learning: teach computers to learn with data, not by
programming

More Formal definition
A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.

-- Tom Mitchell



Two Main Types of Machine Learning

e Supervised learning: learn by examples
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Two Main Types of Machine Learning

e Unsupervised learning: find structure w/o examples

,; —> Unsupervised
Learning




Two Main Types of Machine Learning

e Supervised learning: learn by examples
e Unsupervised learning: find structure w/o examples

Supervised Learning  Unsupervised Learning

5 lassificati

0 classification or clustering

- categorization

Q

)]

3

g regression dlmensw.nahty
g reduction
3)

Q




Techniques for Supervised ML

Hyperplanes Kernel Tree-based Graphical MdlI Logic Prog Neural Netw
Linear/Logistic SVM Decision tree, Bayes net, Pr soft logic, ANN, CNN,
regression Random forest CRF Markov logic net RNN
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Key Lessons for ML [Domingos, 2012]

e Learning = Representation + Evaluation + Optimization

e It’s generalization that counts: generalize beyond training examples

e Data alone is not enough: “no free lunch” theorem--No learner can
beat random guessing over all possible functions to be learned

e [ntuition fails in high dimensions: “curse of dimensionality”

e More data beats a cleverer algorithm: Google showed that after
providing 300M images for DL image recognition, no flattening of the
learning curve was observed.



DI & ML as Synergy

e ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION
o Automating DI tasks with training data
o Better understanding of semantics by neural network

e DI for effective ML: DATA, DATA, DATA
o Create large-scale training datasets from different sources
o Cleaning of data used for training



Give me a Fulscrum, | will Move the Earth
-- Archimedes




Give me a DI funnel, | will Move ML




Many Systems Where DI & ML Leverage Each Other
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Increasing number of systems both in industry
and academia.
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Goal of This Tutorial

e NO-GOALS
o Present a comprehensive literature review for all topics we are
covering
e GOALS

o Present state-of-the-art for DI & ML synergy

o Show how ML has been transforming DI and vice versa

o Give some taste on which tool is working best for which tasks
o Discuss what remains challenging



Outline

Part |. Introduction
Part Il. ML for DI

Part lll. DI for ML
Part IV. Conclusions and research directions



Data Integration Overview

indispensable when different sources exist

e Data extraction: extracting structured data;
important when non-relational data exist

e Data fusion: resolving conflicts; necessary in
presence of erroneous data

e Schema alignment: aligning types and
attributes; helpful when different relational
schemas exist

L 2

Schema Alignment

e Entity linkage: linking records to entities; L S Bt et T J

[ Data Fusion }




Recipe

e Problem definition { i St e T J
e Brief history .'
e State-of-the-art ML solutions

[ Schema Alignment }
e Summary w. a short answer

[ Data Fusion 1




Theme |. Which ML Model Works Best?




Which ML Model Works Best?

D NAME CLASS MARK SEX

1 John Deo Four 75 female

2 |Max Ruin Three 85 male

3 |Amold Three 55 male

4  |Krish Star Four 60 female

5  |John Mike Four 60 female

6  |AlexJohn Four 55 male Synopsis Pt Cia Ths

7 |My John Rob Fifth 78 male orn on| April 15, 1452} in|Vinci, Italy, Leonardo da Vincilwas

concerned with the laws of science and nature, which greatly
8 |Asruid Five 85 male - grealy
Suln informed his work as afpainter, sculptor, inventor and draftsmen
9 |TesQry Six 78 male Name and His ideas and body of work -- which includes[Virgin of the Rocks,
7 = (party) Torm " h__ Born The Last Supper) Leda and the Swan 3nd|Mona Lisal-- have
Big John Four 55 female i Taffuenced countless artists and made da Vinci a Teading light of the SCENE FROM DANT, DRUCE.!
v (F _— This ...u-mmm don sllc drama, by 'm. w. 1

A

Italian Renaissance.

o
Suflciont nudience at the, Haymarket Th

ow been represented more thun sixty
subject and character described by us, in tho
ordinary report of theatxical novelties, nbout two months
ago. Our readers ill probably not néed to be reminded
that 1) .wry Dan'l Druce, the

Tree-based models

i
I

ard of money is stolen ;
treasurs, o helpless female infunt; is left by some my-
terious agency, and may be accepted, &

E las Marner,” for a Divine
sad-hearted nll)‘ll"')ﬂ‘ﬂ‘)(‘, far better than i
this spirit, at least, he is content to receive the pr
human charge; and o to those who would remove i
from his hnml‘ Dan'l Druce here makes answer wi I|
he solemn exclamation, “ Touch not the Lord's gift!
This clmrlnurmwell acted by Mr. Hermann Vezin.

Neural network



Theme Il. Does Supervised Learning Apply to DI?

e Supervised learning has made a big splash recently in many fields

e However, it is hard to bluntly apply supervised learning to DI tasks
o Our goal is to integrate data from many different data sources in
different domains
o The different sources present different data features and
distributions
o Collecting training labels for each source is a huge cost



Outline

e Partl. Introduction
e Partll. ML for DI

Data Extraction

¥

o ML for entity linkage
o ML for data extraction

Schema Alignment

R .

o ML for schema alignment

o ML for data fusion [

e Partlll. DI for ML
e Part V. Conclusions and research directio
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What is Entity Linkage?

e Definition: Partition a given set ® of records, such that
each partition corresponds to a distinct real-world entity.

Are they the same entity?
IMDB

Anahl’ «f SEERANK

Actress = Music Department | Soundtrack

Anahi was born in Mexico. She's had roles in Tu y Yo, in
which she played a 17 year old girl while she was 13, and
Vivo Por Elena, in which she played Talita, a naive and
innocent teenager. Anahi lives with her mother and sister
name Marychelo. She hopes to become a fashion designer
one day, and is currently pursuing a career in singing.
See full bio »

Born: May 14, 1982 in Mexico City, Distrito Federal, Mexico

More at IMDbPro »
. Contact Info: View manager

WikiData
Anahi Puente (Qiso461)

Mexican singer-songwriter and actress
Mia

~ In more languages ©°™aure

Language Label Description
English Anahi Puente Mexican singer-songwriter and actress
Chinese Rz - 5 B4 No description defined
Spanish Anahi Puente Cantante, compositora y actriz mexicana
date of birth € 7 November 1983 2 edit

~ 1 reference

imported from Italian Wikipedia

+ add reference

+ add value




Quick Tour for Entity Linkage

e Blocking: efficiently create small blocks
of similar records

¥

Clustering
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Quick Tour for Entity Linkage

e Pairwise matching: compare all record
pairs in a block

e

~

Blocking J

Clustering




Quick Tour for Entity Linkage

e Clustering: group records into entities

Blocking J

¥

Pairwise Matching




50 Years of Entity Linkage

Rule-based and stats-based

: Supervised learning
e Blocking: e.g., same name

e Random forest for matching

° Match.ing: e.g., avg similarity F-msr: >95% w. ~1M labels
of attnputg values . e Active learning for blocking & matching
e Clustering: e.g., transitive F-msr: 80%-98% w. ~1000 labels
closure, etc.
~2000 (Early ML) 2018 (Deep ML)
1969 (Pre-ML) ~2015 (ML)
Sup / Unsup learning Deep learning
e Matching: Decision tree, SVM e Deep learning
F-msr: 70%-90% w. 500 labels e Entity embedding

e Clustering: Correlation clustering,
Markov clustering



Rule-Based Solution

Rule-based and stats-based

* Blocking:eg,samename g [Fe|legi and Sunter, 1969]

e Matching: e.g., avg similarity

of attribute values o Match: sim(r r’) >0
e Clustering: e.g., transitive ’ ’ h
closure, etc. o Unmatch: sim(r, r') < O

|
‘_ o Possible match:

1969 (Pre-ML) 6 ,<sim(, ) <O,




Early ML Models

~2000 (Early ML)

P

Sup / Unsup learning

Matching: Decision tree, SVM
F-msr: 70%-90% w. 500 labels
Clustering: Correlation clustering,
Markov clustering

[Kopcke et al, VLDB™ O]
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Collective Entity Resolution: Beyond Pairs

e Collective reasoning across
entities.
e Constraints across entities:
o Aggregate constraints
o Transitivity, Exclusivity
o Functional dependencies
e Use of probabilistic graphical
models, PSL, MLN, to capture
such domain knowledge

Out of the scope of this tutorial. For
details: See tutorial by Getoor and
Machanavajjhala, KDD, 2013.

Huya

Dawkes

Lisa Tweedie

Lisa Tweedie Robert Spence

—0

Robert Spence

before after

[Example by Getoor and Machanavajjhala]




State-of-the-Art ML Models [pong, kpD18]

Supervised learning e F[eatures: attribute similarity measured in

e Random forest for matching various ways. E.g.,
F-msr: >95% w. ~1M labels . ) .
e AL for blocking & matching o string sim: Jaccard, Levenshtein
F-msr: 80%-98% w. ~1000 : : : .
,a,;r;f; " o number sim: absolute diff, relative diff
e ML models on Freebase vs. IMDb
~2015 (ML) o Logistic regression: Prec=0.99, Rec=0.6

o Random forest: Prec=0.99, Rec=0.99



State-of-the-Art ML Models [pong, kpD18]

e Expt1l IMDb vs. Freebase

Supervised learning

e Random forest for matching o Logistic regression: Prec=0.99, Rec=0.6
F-msr: >95% w. ~1M labels
e AL for blocking & matching o Random forest: Prec=0.99, Rec=0.99
F-msr: 80%-98% w. ~1000 Recall for 99% Precision vs. Training Data Size (log10)
Iabels ® randomSample  ® randomSample_logReg
1 ° e o o
~2015 (ML) >
0.7 =
0.6 e o 0 o —®
0.5 =
0.4
03
0.2
0.1
0
2 25 3 35 4 45 5 5.5 6 6.5

Training size (log 10)



State-of-the-Art ML Models [pong, kpD18]

Supervised learning e Features: attribute similarity measured in

e Random forest for matching various ways. E.g.,
F-msr: >95% w. ~1M labels . _
e AL for blocking & matching 0 name sim: Jaccard, Levenshtein
F- : 80%-98% w. ~1 . . . .
msr: 80%-98% w. ~1000 o age sim: absolute diff, relative diff
labels
e ML models on Freebase vs. IMDb
~2015 (ML) o Logistic regression: Prec=0.99, Rec=0.6

o Random forest: Prec=0.99, Rec=0.99
o XGBoost: marginally better, but sensitive
to hyper-parameters



State-of-the-Art ML Models [pong, kpD18]

Supervised learning e Expt 2. IMDb vs. Amazon movies

e Random forest for matching o 200K labels, Y150 features
F-msr: >95% w. ~1M labels _ _
e AL for blocking & matching Random forest: Prec=0.98, Rec=0.95
F-msr: 80%-98% w. ~1000 Precision-Recall
labels
~2015 (ML)

Precision

050 055 060 065 070 075 080 08 090 095
Recall



State-of-the-Art ML Models pas et al., sicmoD"17]

Magellan
Supervised learning e Falcon: apply active learning both for
 Random forest for matching blocking and for matching; “1000 labels
T e
e 209089 W . ccuracy (7% ost
:;I:T:: 80%-98% w. ~1000 Dataset P R F ( ” Questions)
Products || 90.9 | 74.5 | 81.9 $57.6 (960)
~2015 (ML) Songs || 96.0 | 99.3 | 97.6 |  $54.0 (900)
Citations || 92.0 | 98.5 | 95.2 $65.5 (1087)




State-of-the-Art ML Models [pong, kpD18]

Supervised learning e Apply active learning to minimize #labels

e Random forest for matching

" s - .
F-msr: 595% w. ~1M labels Recall for 99% Precision vs. Training Data Size (log10)

e Al for b|OCking & ma‘tching ® 1000+adaStratified500  ® randomSample
F-msr: 80%-98% w. ~1000 17 L G oseemem—
labels
~2015 (ML)

2 2.5 3 35 4 4.5 5 5.5 6 6.5
Training size (log 10)



Deep Learning Models Mudgal et al., siGMoD*18]

e Embedding on similarities

2018 (Deep ML)

—

Deep learning
e Deep learning
e Entity embedding

e Similar performa

Magellan
nce for structured data;

Significant improvement on texts and dirty data

1. Attribute Embedding

2. Attribute Similarity
Representation

3. Classification

[J Neural Network (NN)

NNs with the same

pattern share parameters

Attr 1 Attr 2 Attr 3
° 5 } Sequences of Words
‘ +
B B =]
4 4
E E E = E E } Sequences of
-— f— Word Embeddings
A + +
+
—_— i L } Attribute Similarity
—_— } Entity Similarity
+
(I
==
Code at: deepmatcher.ml



Deep Learning Models [Ebraheem et al, VLDB"8]

e Embedding on entities
e QOutperforming existing solution

tuple t Al . Ap.. Am

Embedding lookup

layer
m Composition  Similarity Dense Classification

(avg, LSTM) layer layer layer

layer

2018 (Deep ML)

— Words

Deep learning
e Deep learning
e Entity embedding
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Deep Learning Models [Trivedi et al., AcL18]

Entity
Embeddings

Attribute
Embeddings

Relation
Embeddings

Type
Embeddings

e LinkNBed: Embeddings for entities as in
knowledge embedding

Atomic Layer

Contextual Layer

(eo00) | Subject Entity =
(ITT) N.(es) [[©000) ! o] o
(X113 <€) L seee) —
eeee] 4. (2 [ w, 3 [&
e
e” -~ Obiject Entit o
o T TN B e
(XXT) =YY 2w ®)
(eeee) A(e?) —— =
v" (& 2 &
(seee) seso—wr o)
(0000} || Z
@] T.(r) ) W 8
(0000} Relation
LX)
N

Representation Layer

Score
Function

g(*)

[ Relational Loss |

[ Linkage Loss |




Deep Learning Models [Trivedi et al., AcL18]

e LinkNBed: Embeddings for entities as in
knowledge embedding
e Performance better than previous
knowledge embedding methods, but not
2018 (Deep ML) comparable to random forest

e Enable linking different types of entities

Deep learning
e Deep learning
e Entity embedding



Challenges in Applying ML on EL

e How can we obtain abundant training data for many types, many
sources, and dynamically evolving data??
e From two sources to multiple sources

Freebase IMDb Wikipedia Wikidata Netflix




Challenges in Applying ML on EL

e How can we obtain abundant training data for many types, many
sources, and dynamically evolving data??
e From one entity type to multiple types

Freebase IMDb Wikipedia Wikidata Netflix




Challenges in Applying ML on EL

e How can we obtain abundant training data for many types, many
sources, and dynamically evolving data??
e From static data to dynamic data

Freebase IMDb Wikipedia Wikidata Netflix




Recipe for Entity Linkage

e Problem definition: Link references to Data Extraction
the same entity {}
e Short answers

0 RF w. attribute- [ Schema Alignment }
2\ Ready 7

similarity features <& {}
o DL to handle texts and noises Entity Linkage
o End-to-end solution is future work {}

Data Fusion




Outline

e Partl. Introduction
e Partll. ML for DI

Data Extraction

L 2

Schema Alignment }

o ML for entity linkage
o ML for data extraction

¥

Entlty Linkage

o ML for schema alignment

o ML for data fusion [

e Partlll. DI for ML
e Partl|V. Conclusions and research direction

Data Fusion




What is Data Extraction?

e Definition: Extract structured information, e.g., (entity, attribute, value)
triples, from semi-structured data or unstructured data.

Web tables & Lists
DOM Trees

Velpi gl Free texts
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Three Types of Data Extraction

e Closed-world extraction: align to existing entities and attributes; e.g.,
(ID_Obama, place_of_birth, ID_USA)

e ClosedlE: align to existing attributes, but extract new entities; e.g.,
(“Xin Luna Dong”, place_of_birth, “China”)

e OpenlE: not limited by existing entities or attributes; e.g.,
(“Xin Luna Dong”, “was born in”, “China”),

” ¢

(“Luna”, “is originally from”, “China”)



35 Years of Data Extraction

Early Extraction Extraction from semi-structured data
e Rule-based: Hearst pattern, e WebTables: search, extraction
IBM System T e DOM tree: wrapper induction

e Tasks: IS-A, events

~2005 (Rel. Ex.)

2013 (Deep ML)

1992 (Rule-based) 2008 (Semi-stru)
Relation extraction from texts Deep learning
e NER—EL—RE e Use RNN, CNN, attention
o Feature based: LR, SVM for RE
o Kernel based: SVM e Data programming /
e Distant supervision Heterogeneous learning

e OpenlE e Revisit DOM extraction



Extraction from Texts: Quick Tour

Bill Gates founded Microsoft in 1975.

SR

Named Entity
Recognition

L 2

Entity Linking

L 2

Relation Extraction




Extraction from Texts: Quick Tour

Bill Gates)founded Microsoft)in 1975.

Named Entity
Recognition

L 2

Entity Linking

¥

[ Relation Extraction }




Extraction from Texts: Quick Tour
Named Entity }

Bill Gates)founded Microsoft)in 1975.
Recognition

= <

Microsoft

SR

Entity Linking

L 2

Entity linkage: linking two structured records Relation Extraction
Entity linking: linking a phrase in texts to an
entity in a reference list (e.g., knowledge graph)




Extraction from Texts: Quick Tour

Bill Gates)founded Microsoft)in 1975.

isFounder M
=d

Microft

We focus on Relation Extraction in

the rest of the tutorial.

)

Named Entity
Recognition

¥

Entity Linking

¥

L Relation Extraction J




Extraction from Texts: Feature Based [zhou et al, ACL'05]

e Models
o Logistic regression
~2005 (Rel. Ex.) o SVM (Support Vector Machine)

P e Features
o Lexical: entity, part-of-speech, neighbor

Relation extraction from texts o Syntactic: chunking, parse tree

e NER—EL—RE o Semantic: concept hierarchy, entity class
o Feature based: LR, SVM o Results
o Kernel based: SVM P —v60%. Rec="50%

e Distant supervision © rec= 0, R€C= ©

e OpenlE



Extraction from Texts: Feature Based [zhou et al, ACL'05]

~2005 (Rel. Ex.)

P

Relation extraction from texts

NER—EL—RE

o Feature based: LR, SVM
o Kernel based: SVM
Distant supervision

OpenlE

Features P R F

Words 69.2 23.7 39:3

+Entity Type 67.1 32.1 43.4

+Mention Level 67.1 33.0 44.2

+Overlap 57.4 40.9 47.8 Major
+Chunking 61.5  46.5 53.0
+Dependency Tree 62.1 47.2 53.6

+Parse Tree 62.3 47.6 54.0

+Semantic Resources 63.1 49.5 s P

Table 2: Contribution of different features over 43

relation subtypes in the test data



Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP08]

e Models
o SVM (Support Vector Machine
~2005 (Rel. Ex.) o Kermole (Supp )

P o Su bsequence
o Dependency tree
Relation extraction from texts o Shortest dependency path
e NER—EL—RE o Convolution dependency
o Feature based: LR, SVM
o Kernel based: SVM

e Distant supervision
e OpenlE



Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP08]

~2005 (Rel. Ex.)

P

Relation extraction from texts

NER—EL—RE

o Feature based: LR, SVM
o Kernel based: SVM
Distant supervision

OpenlE

nsubj :
/ prep-with
.—det rcmoc\v-'-xcompv——dobj\. dOb,“‘ ‘\

S;: A thief who tried to steal the truck broke the ignition with screwdriver.
™ nsubj~’ »aux~ ™ det—’ get—"

Dependency tree

thilef «“—nsubj— brtlake —prep-with— screwdriver

e il
A ignition
1
det
i
the

Shortest dependency path



Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP08]

e Models
o  SVM (Support Vector Machine)
~2005 (Rel. Ex.) o Kernels

P o Subsequence
o Dependency tree
Relation extraction from texts o Shortest dependency path

e NER—EL—RE o Convolution dependency
o Featurebased:LR,SVM o Results
o Kernel based: SVM A0 _NAAO

e Distant supervision o Prec="70%, Rec="40%

e OpenlE



Extraction from Texts: Kernel Based [Mengqiu Wang, IJCNLP08]

~2005 (Rel. Ex.) 5-fold CV on ACE 2003
P kernel method Precision | Recall | F1
subsequence 0.703 0.389 | 0.546
Relation extraction from texts dependency tree 0.681 0.290 | 0.485
* NER—EL—RE shortest path 0.747 | 0.376 | 0.562
o Feature based: LR, SVM

o K | based: SVM
N DistantirSServ?;in Table 1: Results of different kernels on ACE 2003

e OpenlE training set using 5-fold cross-validation.



Extraction from Texts: Deep Learning

e Same intuitions, different models

O
2013 (Deep ML) -
O

Deep learning
e Use RNN, CNN, attention
for RE
e Data programming /
Heterogeneous learning
e Revisit DOM extraction

(2012-13) Recursive NN: dependency tree
[Socher et al., EMNLP’12] [Hashimoto et al., EMNLP13]

(2014-15) CNN: shortest dependency path
[Zeng et al.,, COLING’14][Liu et al., ACL15]

(2015+) LSTM: shortest dependency path,

lexical/syntactic/semantic features
[Xu et al., EMNLP’15][Shwartz et al., ACL'16]
[Nguyen, NAACL16]



Example System: HyperNET [shwartz et al, ACL16]

Embeddings:
lemma
@® POS
® dependency label
@ direction =
[ | |
C o000 ( 000)( 000 Qlll
X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<
| [ | [
C 000)( 000)( 000 000
X/NOUN/dobj/> define/VERB/ROOT/- as/ADP/prep/< Y/NOUN/pobj/<
Path LSTM Term-pair Classifier

Quality in identifying hypernyms: Prec = 0.9, Rec = 0.9




Label Generation for Extraction Training

Where are training labels from?

e Semi-supervised learning
~2005 (Rel. Ex.) o lterative extraction [Carlson et al., AAAIO]

P Use new extractions to retrain models
E.g., NELL

Relation extraction from texts

e NER—EL—RE Iterations  Estimated Precision (%) # Promotions
o Feature based: LR, SVM
o Kernel based: SVM 1-22 90 88,502

e Distant supervision 23-44 71 77.835

e OpenlE 2

45-66 57 76,116




Label Generation for Extraction Training

e Semi-supervised learning
~2005 (Rel. Ex.) o Iterative extraction [Carlson et al., AAAI"O]

P Use new extractions to retrain models
E.g., NELL

Relation extraction from texts o Wea k. learning o
e NER—EL—RE o Distant supervision [Mintz et al., ACL09]

o Feature based: LR, SVM Rule-based annotation with seed data

o Kernel based: SVM .
e Distant supervision E.g., DeepDive, Knowledge Vault

e OpenlE

Will cover in “DI for ML”




Distant Supervision [Mintz et al., ACL09]

Corpus Text Training Data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL09]

Corpus Text Training Data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL09]

Corpus Text Training Data
Bill Gates founded Microsoft in 1975. (Bill Gates, Microsoft)
Bill Gates, founder of Microsoft, ... Label: Founder
Bill Gates attended Harvard from ... Feature: X founded Y
Google was founded by Larry Page ... Feature: X, founder of Y
Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL09]

Corpus Text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Training Data

((Bill Gates, Microsoft) A
Label: Founder
Feature: X founded Y
kFeature: X, founder of Y )
4 A
(Bill Gates, Harvard)
Label: CollegeAttended
\Feature: X attended Y )

For negative examples, sample
unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]



Label Generation for Extraction Training

e Distant supervision: HyperNet++
~2005 (Rel. Ex.) [Christodoulopoulos & Mittal, 18]

P 95
Relation extraction from texts
e NER—EL—RE

o
o Feature based: LR, SVM 8
o Kernel based: SVM ¢
e Distant supervision 85
e Openie || |l b e -
- 2 X Schen Classifier
7‘ @ HypeNET++
i @ fastText classifier
a0 @ MaxEnt classifier
0 10000 20000 30000 40000 50000

Train Data Size




Label Generation for Extraction Training

e Semi-supervised learning
o lterative extraction [Carlson et al., AAAI'O]

2013 (Deep ML) Use new extractions to retrain models
P E.g., NELL
e Weak learning
Deep learning _ o Distant supervision [Mintz et al., ACL09]
* ;JOS;GRFENN' CNN, attention Rule-based annotation with seed data
e Data programming / E.g., DeepDive, Knowledge Vault
Heterogeneous learning o Data programming [Ratner et al., NIPS"16]

e Revisit DOM extraction

Manually write labelling functions

. L " E.g., Snorkle, Fouduer
Will cover in “DI for ML J Hed




Snorkel: Code as Supervision [ratner et al., NIPS16, VLDB"18]

-------------------------

Input: Labeling Functions, Generative Noise-Aware i Ex. Application:
: Knowledge Base :

Creation (KBC)

Unlabeled data Model Discriminative Model

Output: Probabilistic
Training Labels L

We use the resulting
prob. labels to train

Users write labeling We model the labeling

functions to generate functions' behavior to

noisy labels de-noise them a model

[Slide by Alex Ratner]



Example System: Fonduer (wu et al., sicMoD"18]

Transistor Datasheet

ISMBT3904]..MMBT3904!

Maximum Ratings

NPN Silicon Switching Transistors
+ High DC current gain: 0.1 mA to 100 mA
* Low collector-emitter saturation voltage

Parameter Symbol Value Unit
Collector-emitter voltage Veeo 40 A\
Collector-base voltage Veso 60
Emitter-base voltage Veso 6
Collector current I 200 mA
atolocmordiocaats P mv
HasCollectorCumrent 330
(Transistor Part , Current) 250
5 T; 150 °C
ag SMBT3094 | 200mA M 65 ... 150
MMBT3094 200mA ¥ Esnl
- THINGS =

Richly formatted data: information
are expressed via textual, structural,
tabular, and visual cues.

snorkel

Fonduer combines a new
biLSTM with multimodal

features and data

Ve 55
[[1 SMBT3904 1ill .. MMBT3904 [[2 200 2 . Meaders Vel ns
~ sentence s, & : 1

Sentence s,

ce s,
Bi-LSTM with Attention

programming.

System ELEC. GEN.

g GWAS | GWAS
Knowledge Base Digi-Key Central | Catalog
# Entries in KB 376 3,008 4,023
# Entries in Fonduer 447 6,420 6,420
Coverage 0.99 0.82 0.80
Accuracy 0.87 0.87 0.89
# New Correct Entries 17 3,154 2,486
Increase in Correct Entries 1.05x 1.87x 1.42%

Code: https://github.com/HazyResearch/fonduer



OpenlE from Texts

e ClosedIE
o Only extracting facts corresponding to
~2005 (Rel. Ex.) ontology

o Normalize predicates by ontology

F o E.g., (Bill Gates, /person/isFounder,

Microsoft)
Relation extraction from texts
e NER—EL—RE

o Feature based: LR, SVYM Bill Gates founded Microsoft in 1975.
o Kernel based: SVM ;

e Distant supervision e OpenlE [Banko et aI:, IJCAI'0O7] .

e OpenlE o Extract all relations expressed in texts

o Predicates are unnormalized strings
o E.g., (“Bill Gates”, “founded”, “Microsoft”)




OpenlE from Texts [Etzioni et al., IJCAI]

SR

Bill Gates founded
Microsoft in 1975.

ClosedIE OpenlE
Named Entity Predicate
Recognition |dentification
e Subject/Object
Entity Linking |dentification

L 2

L 2

Relation Extraction

Scoring




OpenlE from Texts [Etzioni et al., IJCAI]

SR

ClosedIE OpenlE Bill Gateslfoundedl
Named Entity Predicate Microsoft in 197/5.
Recognition Identification
@ @ e Predicate: longest
Entity Linking Subject/Object sequence of words as light
|dentification

{} {} verb construction

Relation Extraction Scoring




OpenlE from Texts [Etzioni et al., IJCAI]

SR

Bill Gateslfounded
Microsoftin 19/5.

ClosedIE OpenlE
Named Entity Predicate
Recognition |dentification
Subject/Object

Entity Linking

Identification

L 2

L 2

Relation Extraction

Scoring

Predicate: longest
sequence of words as light
verb construction

Subject: learn left and right
boundary

Object: learn right boundary



OpenlE from Texts [Etzioni et al., IJCAI]

SR

Bill Gateslfounded
Microsoftin 19/5.

ClosedIE OpenlE
Named Entity Predicate
Recognition |dentification
e Subject/Object
Entity Linking |dentification
Relation Extraction Scoring

Predicate: longest
sequence of words as light
verb construction

Subject: learn left and right
boundary

Object: learn right boundary
LR for triple confidence



OpenlE from Texts (Mausam et al., EMNLP12]

~2005 (Rel. Ex.) 15 N———

P

Relation extraction from texts

e NER—EL—RE
o Feature based: LR, SVM
o Kernel based: SVM

e Distant supervision

e OpenlE

Precision




Extraction from Semi-Structured Data

Extraction from semi-structured data
e WebTables: search, extraction
e DOM tree: wrapper induction

[SE—

2008 (Semi-stru)



Why Semi-Structured Data?

e Knowledge Vault @ Google showed big potential from DOM-tree

extraction [Dong et al., KDD"14][Dong et al., VLDB"14]

Accu

Accu (conf > .7)

0.36

0.52

Accu
0.43
0.09

Accu (conf > .7)
0.63
0.62




Wrapper Induction--Vertex [Guihane et al., ICDE1]

Title Genre Release Date

CREW TRIVIA USER REVIEWS

FULL CAST AND

+ Top Gun (1986)

Watch Now @

From $2.99 (SD) on Amazon Video ON DISC

As students at the United States Navy's elite fighter weapons school compete to be best in the
class, one daring young pilot learns a few things from a civilian instructor that are not taught
in the classroom.

Director: Tony Scott € DlreCtor
Writers: Jim Cash, Jack Epps Jr 1 more creV Acto rs
ast & crew »

Stars: Tom Cruise, Tim Robbins, Kelly McGillis™ See full ca

Metascore Reviews W, Popularity
From metacritic.com | 401 user = 173 critic 404 (% 71)

Extracted relationships
* (Top Gun, type.object.name, “Top Gun”)

(Top Gun, film.film.genre, Action)

(Top Gun, film.film.directed by, Tony Scott)

(Top Gun, film.film.starring, Tom Cruise)

(Top Gun, film.film.runtime, “1h 50min”)

(Top Gun, film.film.release_Date_s, “16 May
1986")



Wrapper Induction--Vertex [Gulhane et al., ICDE1]
e Solution: find XPaths from DOM Trees

Edt id="filmography
P <div id="filmo-head-actor" class="head" data-category="actor" onclick=
“toggleFilmoCategory(this);">.</div>
¥ <div class="filmo-category-section">
v<div class="filmo-row odd" id="actor-tt1745960">

Filmography Sshowsal | (showby. |

Jump to: Actor | Producer | Soundtrack | Director = Writer | Thanks | Self | Archive footage

i Hide A
Actor (46 credits) s <span class="year_column">
Top Gun: Maverick (pre-production) 2019 &nbsp;2019
Maverick </span>
& ¥ <b>
:It:hla: ;:Litsslon Impossible (fiming) 2018 <a href="/title/tt1745960/?ref =nm flmg act 1">Top Gun: Maverick</a>
</b>
American Made (completed) 2017 L4
Barry Seal (Cl
Luna Park (announced) <a href="/r/legacy-inprod-name/title/tt174596@" class="in_production">pre-
production</a>
The Mummy 2017 )
Nick Morton »
Jack Reacher: Never Go Back 2016 <br=
J8ck Reachar’ <a href="/character/ch@@05702/?ref =nm flmg act 1"-Maverick</a>
</div>
glhsas’:o:‘inltmposslble ~Rogue atlon 2015 P <div class="filmo-row even" id="actor-tt491291@">.</div>
P <div class="filmo-row odd" id="actor-tt3532216">..</div>
Edge of Tomorrow 2014 P <div class="filmo-row even" id="actor-tt1123441">.</div>
Cage v<div class="filmo-row odd" id="actor-tt2345759">
Oblivion 2013/1 <span class="year_column">
Jack &nbsp; 2017
</span=>
Jack Reacher 2012 ¥ <b>
Reacher <a href="/title/tt2345759/?ref =nm flmg act 5">The Mummy</a>
Rock of Ages 2012 </b>
Stacee Jaxx <br>
Mission: Impossible - Ghost Protocol 2011 <a href="/character/ch@573416/?ref =nm flmg act 5">Nick Morton</a>
Ethan Hunt </div>
T TS P <div class="filmo-row even" id="actor-tt3393786">..</div>
R:YgMi":r" 2 P <div class="filmo-row odd" id="actor-tt2381249">.</div>
P <div class="filmo-row even" id="actor-tt1631867">..</div>
Valkyrie 2008 b <div filmo-row odd" id="actor-tt1483013">.</div>
Solonsl Glaus vor Staufienberg » <div filmo-row even” id="actor-tt@790724">.</div>
Tropic Thunder 2008 > <div filmo-row odd" id="actor-tt1336608">..</div>




Wrapper Induction--Vertex [culhane et al., ICDE11]

e Challenge: slight variations from page to page

FULL CAST AN REW TRIVIA

+ Star Wars: The Last
Jedi (2017)

Star s: Episode I - The Last Jedi ( al title)
PG-13 2h 32min

FULL CAST AND CREW TRIVIA USER REVIEWS IMDbPro MORE

+ Central Station (199s)

Central do Brasil (original title)
R | 1h53min | Drama | 20 November 1998 (USA)

L

’

Rey develops her newly discovered abilities with the guidance of
Luke Skywalker, who is unsettled by the strength of her powers.
Meanwhile, the Resistance prepares for battle with the First Order.

Rian Jo U based on characters

created by)
1 VIDEO

- L K Hami
a On Disc — See full c

at Amazon

An emotive journey of a former school teacher, who writes letters for illiterate people, and a
young boy, whose mother has just died, as they search for the father he never knew.

Popularity
84 (

Director
Writers:

Stars: Fernanda Montenegro, Vinicius de Oliveira, Marilia Péra | See full cast & crew »

arcos Bernstein, Jodo Emanuel Carneiro 1 more credit »

h Now

Metascore L. e W o Ve WA~ A

From metac




Wrapper Induction--Vertex [Gulhane et al., ICDE1]

e Challenge: slight variations from page to page

FU ST AND CR \ USER REVI SHARE USER RE IMDbPro MORE
+ Central Station (1998) 4 The Fog of War: Eleven Lessons from ¢ 8.2
Central do Brasil (original title) v the Life of Robert S. piE

th 53min | Drama | 20 November 1998 (USA McNamara (2003)

1 1

gENT%A[\%

THE FOG
OF WAR

a On Disc
at Amazon prime Watch Now @
%] From $2.99 (SD) on Prime Video sc
ON DISC
An emotive journey of a former school teacher, who writes letters for illiterate people, and a

yollngibovanhoes metiethas it stdiediias the vissarch loutie atieRhE N ik e The story of America as seen through the eyes of the former Secretary of Defense under

Director: _Walter Salle President John F. Kennedy and President Lyndon Johnson, Robert McNamara.
Writers: Jodo Emanuel Carneiro | 1 more credit »

Director: Errol Morris
Stars: Fernanda Montenegro, Vinicius de Oliveira, Marilia Péra = See full cast & crew »

Stars: [Robert McNamara,JJohn F. Kennedy, Fidel Castro See full cast & crew »
;

ame DOM tree node may correspond to diff preds



Wrapper Induction--Vertex [Gulhane et al., ICDE1]

|dentify representative %
webpages for annotation *

Learn Sample pageST l Annotations

Web site Clust Annotate

samplm’@—'{ Pages ]_’L Learn XSLT RulesJ

A
One website may use N e Combine attr features
multiple templates Monitor | and textual features to
. . Changed sites Rul i .
(Unsupervised-clustering) o Ruk find a general XPath
. (LR)
l Rules
Extract ‘

Web site
pages > Extract *| Records




Wrapper Induction--Vertex [Gulhane et al., ICDE1]

e Sample learned XPaths on IMDb
o /[*[@itemprop="name"]

o /[*[@class="bp_item bp_text_only"}/*/*/"[@class="bp_heading"]

o /[*[following-sibling::*[position()=3][@class="subheading"]]/*[followin
g-sibling::*[position()=1][@class="attribute"]]

o /[*[preceding-sibling::node()[normalize-space(.)!=""][text()="Languag

e

e:"]




Distantly Supervised Extraction

2013 (Deep ML)

S

Deep learning
e Use RNN, CNN, attention
for RE
e Data programming /
Heterogeneous learning
e Revisit DOM extraction

e Annotation-based extraction
o Pros: high precision and recall
o Cons: does not scale--annotation per

cluster per website

e Distantly-supervised extraction

O

Step 1. Use seed data to automatically
annotate

Step 2. Use the (noisy) annotations for
training

E.g., DeepDive, Knowledge Vault



Distantly Supervised Extraction--Ceres [Lockard et al., VLDB"18]

Entity

Identification

Relation
Annotation

Automatic Label Generation

» Watch Now @

From $2.99 (SD) on Amazon Video

As students at the United States Navy's elite fighter weapons school compete to be best in the
class, one daring young pilot learns a few things from a civilian instructor that are not taught
in the classroom.

Director: Tony Scott

Writers: Jim Cash, Jack Epps Jr. 1 more credit »

Stars: Tom Cruise, Tim Robbins, Kelly McGillis | See full cast & crew »
Metascore

Reviews A Popularity

ON DISC

Genre Release Date

+ Top Gun (1986)

Watch Now

in the classroom.

Metascore

From $2.99 (SD) on Amazon Video

Reviews

ON DISC

As students at the United States Navy's elite fighter weapons school compete to be best in the
class, one daring young pilot learns a few things from a civilian instructor that are not taught

.
Director: Tony Scott 4 Dl rg Cto r
Writers: Jim Cash, Jack Epps Jr. ' 1 more crcV Agto rs
Stars: Tom Cruise, Tim Robbins, Kelly McGillis™ See full cast’

\A _Popularity

Extracted triples

¢ (Top Gun, type.object.name, “Top Gun”)

e (Top Gun, film.film.genre, Action)

* (Top Gun, film.film.directed_by, Tony Scott)
* (Top Gun, film.film.starring, Tom Cruise)

* (Top Gun, film.film.runtime, “1h 50min”)

. (Tosp Gun, film.film.release_Date_s, “16 May
1986”)




Distantly Supervised Extraction--Ceres [Lockard et al., VLDB"18]

e Annotation-based extraction

e Distantly-supervised extraction

2013 (Deep ML)
e T T
Prec #Pred Prec #Pred
Deep learning Movie 097 097 097 4 097 099 098 4
e UseRNN,CNN, attention  ngapiager 1.00 1.00 1.00 4 098 098 098 4
. E°;t§irogrammmg / Universty 0.99 098 099 4 087 0.94
Heterogeneous Iearning Book 093 093 0.93 5 094 0.63

e Revisit DOM extraction : : : '
Verv high N Competent w. rule-based
SLYCLBN PEEC >0 wrapper induction




Distantly Supervised Extraction--Ceres [Lockard et al., VLDB"18]

e Extraction on long-tail movie websites

#Websites / #Webpages 33 / 434K

Language English and 6 other languages

Animated films, Documentary films, Financial
performance, etc.
70K (16%)

1:2.6
1:3.0
1.25M
90%

# Annotated pages
Annotated : Extracted #entities
Annotated : Extracted #triples

# Extractions




Distantly Supervised Extraction--Ceres [Lockard et al., VLDB"18]

e Extraction on long-tail movie websites

0.95 r

o
o
o
-
v
o
il

Precision
o
[« +]
W
=
o
ons

o
-]
o

00 02 04 06 08
Confidence Threshold



Distantly Supervised Extraction

e Annotation-based extraction
o Pros: high precision and recall
o Cons: does not scale--annotation per
2013 (Deep ML) cluster per website

e Distantly-supervised extraction

Deep learning o Step 1. Use seed data to automatically

e Use RNN, CNN, attention annotate

for RE o Step 2. Use the (noisy) annotations for
e Data programming / training

Heterogeneous learning .
e Revisit DOM extraction o E.g., DeepDive, Knowledge Vault

e OpenlE extraction



OpenlE on Semi-Structured Data--OpenCeres

Auto (Pred, Obi) Label
Annotation Propagation

+ Top Gun ¢ + Top Gun

Obj

[Lockard et al.,
NAACIQ]

Extracted triples

* ("Top Gun”, “Director”, “Tony Scott”)
* (“Top Gun”, “Writers”, “Jim Cash”)
(“Top Gun”, “Writers”, “Jack Epps Jr.")
(“Top Gun”, “Stars”, “Tom Cruise”)
(“Top Gun”®, “Stars”, “Tim Robbins”)




OpenlE on Semi-Structured Data--OpenCeres
[Lockard et al.,

e Annotation-based extrd¢fiohl19]
e Distantly-supervised extraction
e OpenlE extraction

e e o

Prec Rec F1 #Pred Prec Rec F1 #Pred Prec Rec #Pred
Movie 097 097 097 4 097 099 098 4 0.77 068 0.72 18
NBAPlayer 1.00 1.00 100 4 098 098 098 4 074 048 058 17
University 099 098 099 4 087 094 090 4 065 029 040 92
Book 093 093 093 5 094 0.63

Precision much lower Much more predicates



OpenlE on Semi-Structured Data--OpenCeres

[Lockard et al.,

NAACI’ O]
Movie

> Seed: Director, Writer, Producer, Actor, Release Date, Genre, Alternate Title

> New: Country, Filmed In, Language, MPAA Rating, Set In, Reviewed by,
Studio, Metascore, Box Office, Distributor, Tagline, Budget, Sound Mix

NBA Player
> Seed: Height, Weight, Team

> New: Birth Date, Birth Place, Salary, Age, Experience, Position, College, Year
Drafted

University
- Seed: Phone Number, Web address, Type (public/private)

> New: Calendar System, Enroliment, Highest Degree, Local Area, Student

Services, President
D




OpenlE on Semi-Structured Data--OpenCeres

[Lockard et al.,
NAACL19]

Still need prec

improvement on new
relations

Precision

0.2}

0.8‘

\\—

ClosedIE
OpenlE-All

OpenlE-New |

0.5

1.0 1.5 2.0
Yield (in millions)

25

3.0

OpenlE added
significant amount of
knowledge



Extraction from Semi-structured Websites

2013 (Deep ML)

.

Deep learning

Use RNN, CNN, attention
for RE

Data programming /
Heterogeneous learning
Revisit DOM extraction

e Which model is the best?
o Logistic regression: best results (20K
features on one website)
o Random forest: lower precision and recall
o Deep learning??



Challenges in Applying Deep Learning on
Extracting Semi-structured Data
e Web layout is neither 1D sequence nor regular 2D grid, so CNN or

RNN does not directly apply
Company Credits

Production Co:||Lucasfilm|, Walt Disney Pictures, Allison Shearmur Productions|See more B
Show more on [MDbPro F

Technical Specs

Runtime: | 135 min

Sound Mix: |Dolby Atmos| | PTS|(DTS: X)| [t2-Track Digital Sound|| Auro 11.1
| [Dolby Surround 7.1

olor: [ Color
Aspect Ratio: | 2.39 :
See|full technical specs

1
=l

Dolby Digital

1
[ »|




WebTable Extraction [Limaye et al,, VLDB"10]

e Model table annotation using interrelated random
variables, represented by a probabilistic graphical model

Extraction from o Cell text (in Web table) and entity label (in catalog)
i-structured dat , :
se.m' ;/:ljacT:l;Iees: :lech o Column header (in Web table) and type label (in catalog)
extraction o Column type and cell entity (in Web table)

e DOM tree: wrapper

I induction

2008 (Semi-stru)

®a(bzs, t2, t3)

\"\ 1
“‘I‘,\ ®s(ba2s, €32, €33)

Check-out 10-Year Best
Paper Award for WebTable
Search on Thursday!

O3(ts3, e33)



WebTable Extraction [Limaye et al,, VLDB"10]

e Model table annotation using interrelated random

variables, represented by a probabilistic graphical model

Extraction from o Pair of column types (in Web table) and relation (in catalog)
semi-structured data

e WebTables: search,
extraction
e DOM tree: wrapper

I induction

2008 (Semi-stru) S
Ly
oi(1,1.en) ,f"\\

o  Entity pairs (in Web table) and relation (in catalog)

®a(bzs, t2, t3)

Check-out 10-Year Best 3 :
Paper Award for WebTable A
Search on Thursday! CRNC) ©) \ma,em



Challenges in Applying ML on DX

e Automatic data extraction cannot reach production quality requirement.
How to improve precision?

e FEvery web designer has her own whim, but there are underlying
patterns across websites. How to learn extraction patterns on different
websites, especially for semi-structured sources?

e ClosedIE throws away too much data. How to apply OpenlE on all kinds
of data?



Recipe for Data Extraction

e Problem definition: Extract structure
from semi- or un-structured data
e Short answers

O

Data Extraction

| |
¥

[ Schema Alignment }
| |
| |

Wrapper induction
2\ Ready /&

has high prec/rec )

Distant supervision is critical for

collecting training data

DL effective for texts and LR is

often effective for semi-stru data

L 2

Entity Linkage

L 2

Data Fusion




Outline

e Partl. Introduction
e Partll. ML for DI

Data Extraction

¥

Schema Alignment J

o ML for entity linkage
o ML for data extraction
o ML for schema alignment

o ML for data fusion [

L 2

Entlty Linkage

e Partlll. DI for ML
e Part V. Conclusions and research directio

Data Fusion




What is Schema Alignment?

e Definition: Align schemas and understand which attributes have the
same semantics.

IMDB WikiData
Anahi «f SEERANK Anahi Puente (Q169461)

Actress = Music Department | Soundtrack A s "
Mexican singer-songwriter and actress

Anahi was born in Mexico. She's had roles in Tu y Yo, in .
which she played a 17 year old girl while she was 13, and
Vivo Por Elena, in which she played Talita, a naive and R
innocent teenager. Anahi lives with her mother and sister Language Label Description
name Marychelo. She hopes to become a fashion designer

~ In more languages ©°™aure

English Anahi Puente Mexican singer-songwriter and actress

one day, and is currently pursuing a career in singing.

See full bio » Chinese Rz - 5 B4 No description defined
[ e |

Bornjy May 14, 1982 in Mexico City, Distrito Federal, Mexico Spanish Anahi Puente Cantante, compositora y actriz mexicana
——

€ 7 November 1983 2 edit
More at IMDbPro » ~ 1 reference
. Contact Info: View manager imported from Italian Wikipedia

+ add reference

+ add value




Quick Tour for Schema Alignment

S1 (name, hPhone, hAddr, oPhone, oAddr) Mediated Schema
S2 (name, phone, addr, email)

S3 a: (id, name); b: (id, resPh, workPh) @

S4 (name, pPh, pAddr) Attribute Matching
Sb (name, wPh, wAddr) @

Schema Mapping




Quick Tour for Schema Alignment

e Mediated schema: a unified and virtual view of

the salient aspects of the domain

51
S2
S3
S4
S5
MS

(name, hPhone, hAddr, oPhone, oAddr)
(name, phone, add

a: (id, name); b: (id, resPh, workPh)
(name, pPh, pAddr)

(name, wPh, wAddr)

(n, pP, pA, WP, WA)

Mediated Schema

L 2

Attribute Matching

L 2

Schema Mapping




Quick Tour for Schema Alignment

e Attribute matching: correspondences between
schema attributes

51

S2

S3

S4

S5

MS
MSAM

(name, hPhone, hAddr, oPhone, oAddr)
(name, phone, addr, email)

a: (id, name); b: (id, resPh, workPh)
(name, pPh, pAddr)

(name, wPh, wAddr)

(n, pP, pA, wP, WA)

MS.n: S1.name, S2.name, S3a.name, ...
MS.pP: S1.hPhone, S3b.resPh, S4.pPh
MS.pA: S1.hAddr, S4.pAddr

MS.wP: S1.0Phone, S2.phone, ...
MS.wA: S1.0Addr, S2.addr, S5.wAddr

Mediated Schema

. 4

Attribute Matching

L 2

Schema Mapping




Quick Tour for Schema Alignment

e Schema mapping: transformation between
records in different schemas

S1 (name, hPhone, hAddr, oPhone, oAddr) Mediated Schema
S2 (name, phone, addr, email)

S3 a: (id, name); b: (id, resPh, workPh) @

S4 (name, pPh, pAddr) [ Attribute Matching
S5 (name, wPh, wAddr)

MS (n, pP, pA, WP, WA) @

MSSM  MS(n, pP, pA, wP, wA) :- S1(n, pP, pA, wP, wA) Schema Mapping

(GAV)  MS(n, _, _, wP, wA) :- S2(n, wP, WA, e)

MS(n, pP, _, wP, ) :- S3a(i, n), S3b(i, pP, wP)
MS(n, pP, pA, _, _) :- S4(n, pP, pA)
MS(n, _, _, wP, wA) :- S5(n, wP, wA)



30 Years of Schema Alignment

Description Logics

e Gavyvs. Lav.vs. Glav Pay-as-you-go dataspaces
e Answering queries e Probabilistic schema
using views alignment

e Warehouse vs. Ell

~1990 (Desc Logics) 2005 (Dataspaces)
Semi-Auto mapping Logic & Deep learning
e Learning to match e Collective disc. by PSL
e Schema mapping: Clio e Universal schema

e Data exchange



Early ML Models [Rahm and Bernstein, VLDBJ'2001]

Schema Matching Approaches

/ \

Individual matcher approaches Combining matchers

2 T AN

Schema-only based Instance/contents-based Hybrid matchers ~ Composite matchers
~2000 (Early ML) NN \ / \
Element-level Structure-level Element-level Automatic
/ \ I / \ composmon composition
Constraint- Coustmmt Linguistic Constrmm

Linguisti
Semi-Auto mapping PEEE T based

e Learning to match /|\ /|\ /|\ /l\ /l\ ‘”“;,‘,f';;‘;’,,",f}',,‘:,,,,, )

* Schema mapping: Clio Auwxiliary information used
e Dataexchan ge g:’s"" m;‘;‘;:""‘y * Typesimilarity  + Graph * IR technigues e and
similarity * Key properties matching (word frequencies, LIS -
« Global key terms) Sample approaches

namespaces

Signals: name, description, type, key, graph structure, values



Early ML Models [Doan etal., Sigmod'01]
g ﬁ Mediated schema
Source schemas

Extracted Data

~2000 (Early ML) .

P

Semi-Auto mapping L, L, L, . ML
e Learning to match v v v v

e Schema mapping: Clio if ... then ... %
e Data exchange

(a) Training

Training data
for base learners

Domain
Constraints

Feedh‘

2

‘8 «—
Mappings

&
2 E

Constraint_lﬁu_ll_gd

(b) Matching




Early ML Models [Doan etal., Sigmod'01]

~O—Base Learmer ~O-Basa Learner

100 4| -O-Base Learners + MetaLearmner 100 - | O Base Leamer + MetaLeamer
90 A A Base Learners + MetaLearner + Constraint Handler -f~Basa Learner + MetaLeamer + Constraint H
g ¥ Base Learners + MelaLearner + Constraint Hangler + XML Lea £ 90 | [ >¢sase Leamer + MetaLearner + Constraint Ha ML Learner
80 1 % 3 80
~2000 (Early ML) 535::,:;’=’ : In I ]
8 60 4 = 60 3 O— a
%_' 50 - —o 2 50
40 4 W/o’/‘o—_—_‘;— 5 401 o —o > %S
= '
E w i E 30 -r/'w-
g 20 A g 20 -
. . z 10 A z 10
Semi-Auto mapping g ' 0 : : . :

e Learning to match 0 100 200 300 400 500 0 100 200 300 400 500

® Schema mapping: CI|O M:un;;;rofdata listln:s p;;::lu;o I :Auamb;;:fdm llstlng;pe;‘s.ourc; -
e Data exchange ) Matehing ncumoy foc Real Eatate (c) Matching accuracy for Time Schedule




Collective Mapping Discovery by PSL [Kimmig et al, ICDE'17]

Step 1. Generate candidate mappings
E.g., By : proj(t, m, [)Aemp(m, n, c) — 2 o.task(t, n,o)
0, : proj(t, m, l)Aemp(l,n,c) — 2 o.task(t,n,o)
s : proj(t, m, [)Aemp{m, n, ¢) — 3 o.task(t, n,0) A org{o, c)
2013 (Deep ML) 05 : proj(t, m, [)Aemp(l,n,c) — 2 o.task(t, n,o) Aorg(o,c)

F Step 2. Solve PSL —
sizen(F): in(F)—> L

Logic & Deep learning 1: J(T) — 3F. covers(F,T) Ain(F)

e Collective disc. by PSL 1: in(F) Acreates(F,T) — J(T)
e Universal schema




Universal Schema [Riedel et al., NAACL'13][Yao et al., AKBC'13]

e Attribute matching » Instance inference

A
5 §
2013 (Deep ML) &£ £
& .
Barack Obama 1
Ruth B. Ginsburg 1
New York
Logic & Deep learning Argentina .89
e Collective disc. by PSL Brad Pitt | 1
e Universal schema IBM 1
I—Surface Patterns — ——KB Relations— -

‘1 Chigh > Type prediction
L o

Reasoning with Universal Schema




Universal Schema [Riedel et al., NAACL'13]

e Attribute matching » Instance inference
o fle,r e)iscomputed
using embeddings; Feature
: Model (F):
2013 (Deep ML) the higher, the more

O
@
L
likely to be true ,% To
I e DistMult is a relation Emt @ i B
Q/ )
O
@
L

Model (E):
( ° E)

Figure 3: The continuous representations for
model F, E and DISTMULT. [Toutanova et al., EMNLP’15]
s

Logic & Deep learning embedding model
e Collective disc. by PSL
e Universal schema

DisTMuULT:




Columnless Univ. Schema w. CNN [Toutanova et al., EMNLP’15]

e Relation: organizationFoundedBy

Textual Pattern Count
SUBJECT-22o% founder-—2sof = OBJECT 12
esuby dobj
SUBJECT'——-cO-founded--fOBJE:CT
SUBJECT 2r—co-founder ~—s»of -"-’OBJECT

201 3 (Deep ML) SUBJEC'I‘—-—-.Oco-founder—-—-,of-..-.o.BJEc-l-

. dobj
SUBJECT 2 with«"F.co-founded ——»OBJECT

by . e cobj
F SUBJECT =" signed i‘i-a.estabhshmg b BIECT
susjacrﬂwuh'-—-—founders R of B, oByECT
zypos

SUBJECT“—-’founders——"of-—-vOBJbC'l
SUBJECTv—— one -of—-—ofoundexs--—’of—--’oalﬁcr

Logic & Deep learning
e Collective disc. by PSL

. SUBJECTZ =2 founded—-—’pmducuon—-—aOBJECT
e Universal schema

SUBJECTe oo pannero P2 with=2 founded—o-’producuonmom ECT
SUBJECT™ by«™% co-founded "™ OBIECT

SUBJECT«=co-founder == or—-—’osjhcr

SUBJECT ﬂoco-fou.m:der --—oof --'OBJ ECT

hUBJhClo—-—he]ped X, etablish-—=s OBJECT

SUBJECT« =2 -signed mp-cremmg——-—~OBJEC1‘

— e = = o= DN)ON)NNN




Columnless Univ. Schema w. CNN [Toutanova et al., EMNLP’15]

r = max{h }

2013 (Deep ML)

F h =tanh(W-lv _, + W% + Wlv _, +b)

Logic & Deep learning
e Collective disc. by PSL v = Ve

e Universal schema ape

SUBJECT 2%, co-founder PR,

of P,  OBJECT

Figure 4: The convolutional neural network architecture for representing textual relations.



Columnless Univ. Schema w. RNN [Verga et al., ACL'16]

e Similar sequences of context tokens should be
embedded similarly

Input :
[per:spouse]
[Maria Munera esta casado con Juan M Santos]

2013 (Deep ML) 93
F TR
similarity
Logic & Deep learning 000
e Collective disc. by PSL [ max pool ]
e Universal schema ~
[000](000] (000])(000](000]
[ bidirectional LSTM
Z L 1 NS
(eYeYo) I (eYoYe) | (eYoYe) B (eYo o) Bl (eYeYo) f (eYoYe))

per:spouse argl  esta casado/married con arg2



Rowless Univ. Schema [Vergaetal., ACL16]

e Infer relation from a set of observed relations
e Similar to schema mapping w. signals from values

v
(Y
P& i
& $Fs &
< & o= L
2013 (Deep ML) $ & g £ 8
-~ - > ~ O N
- F S 3
K S v é\(z g \5
‘g.‘ ,'k' ~ 3
O 8 NS # o
Bill Gates /
Melinda Gates 1 1 1

Logic & Deep learning
e Collective disc. by PSL
e Universal schema

argl ‘s wife arg2

argl married arg 2 Aggregfmon —EI
Function

argl co-founded the (Bill Gates /
foundation with arg2 Melinda Gates)




Rowless Univ. Schema [Vergaetal., ACL16]

Model MRR Hits@10
Entity-pair Embeddings 31.85 51.72
Entity-pair Embeddings-LSTM | 33.37  54.39
Attention 31.92 51.67
Attention-LSTM 30.00 53.35
2013 (Deep ML) Max Relation 3171 51.94
F Max Relation-LSTM 30,77  54.80
(a)
Logic & Deep learning Model MRR Hits@10
e Collective disc. by PSL Entity-pair Embeddings | 5.23 11.94
e Universal schema Attention 2975 49.69
Attention-LSTM 27.95 51.05
Max Relation 28.46 48.15
Max Relation-LSTM 29.61 54.19

(b)




OpenKiI: Relation Inference for OpenlE [zZhang et al., NAACL'19]




Score("life of Pi"

@film.directed_by,"Ang Lee")

("Life of Pi"

OpenKiIi: Relation Inference for OpenlE [zhang et al., NAACL'19]

-u:om' @ﬁlm.dim:lcd by "Ang Lee” @film.directed_by
-am“ ) + @ - o) + «/(@23) « @)
2]
G 4 B
Sub-graph 06‘?‘\0 : Wesghted W'
&
/MO Q\O\\Vc’{
i 3 .« (.‘ C;é,
S p
= »lHDBjFuIl Cast & Crfzwf | IMDB:"Full IMDB:
..ufoo'mo.- ------- ? ........... @»'AW Lee" c&ﬂ&ﬁﬂ 'l»:wacun]fe
%/ \ IMDB F:cecutrve3 8 D"ecrd
'5,)/ \ Director" % \
'% A % Alignment between Consistency between
h o - - »
%\ ' existing relations and object’s neighbors and
predicted relation predicted relation




OpenKiI: Relation Inference for OpenlE [zZhang et al., NAACL'19]

Models All data

At least one seen

Rowless Model 0.278
OpenKI with Dual Att. 0.365

0.282
0.419

Table 5: Mean average precision (MAP) of Rowless
and OpenKI on ReVerb + Freebase (/film) dataset.




OpenKI: Relation Inference for OpenlE

[Zhang et al., NAACL'19]
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Schema Mapping vs. Universal Schema

Schema matching
Granularity Column-level decision
Expressiveness Mainly 1:1 mapping

Name, description, type, key,

Signals graph structure, values

Results Accu: 70-90%

Community Database

Universal schema

Cell-level decision

Allow overlap,
subset/superset, etc.

Values

MRR=~0.3, Hits@10=~0.5

NLP



Challenges in Applying Deep Learning on SM

e How can we combine techs from schema matching and universal
schema??

Leverage knowledge by inference

Leverage knowledge on types

Rowless




Recipe for Schema Alignment

e Problem definition: Align attributes
with the same semantics
e Short answers

o Interactive semi- |
=)\ Ready

automatic mapping @
o DL-based universal schema
revived the field
o Combine schema matching and
universal schema for future

|
|
L
|

Data Extraction

. 4

Schema Alignment

L 2

Entity Linkage

L 2

Data Fusion

|
|
|
|




Outline

e Partl. Introduction
e Partll. ML for DI

Data Extraction

¥

o ML for entity linkage

Schema Alignment

¥

o ML for data extraction

o ML for schema alignment
o ML for data fusion [

e Partlll. DI for ML
e Part V. Conclusions and research directio

Data Fusion

|
|
J




What is Data Fusion?

e Definition: Resolving conflicting data and verifying facts.
e Example: “OK Google,How long is the Mississippi River?”

Mississippi River Mississippi River Facts - Mississippi National River and Recreation ...

https://www.nps.gov/miss/riverfacts.htm v
Nov 14, 2017 - The staff of Itasca State Park at the Mississippi's headwaters suggest the main stem of the

River in the United States of America

Mississippi River / Length 4.2 % % %% 400 Google reviews
river is 2,552 miles long. The US Geologic Survey has published a number of 2,300 miles, the EPA says
The Mississippi River is the chief river of itis 2,320 miles long, and the Mississippi National River and Recreation Area suggests the river's length
the second-largest drainage system on the is 2,350 miles.
2 3 20 ml North American continent, second only to
’ the Hudson Bay drainage system.
Wikipedia
iyt iAo 11vrs U1 s Uiy S
Discharge: 593,000 cubic feet per second e Neme o| Mouth®l o Length o mm::m " eoor':::::s( 0 W::;';}ﬂ’ o| Dischargel? States, provinces, and imagelSI!]
Basin area: 1.151 million mi? . o 2aetmi - sgasan 509,353 mi2 69,100 ft¥s Montana, .Nonh.:ako'a. South Dakota, Nebraska, lowa,
People also search for Source: Lake Itasca 1| Missourifiver | MississippiRiver |20 | 1371017 km?15] | 1,956 s Kansas, Missourl
4 N x[r\ 2] n3]
- Missouri River g Nile _ Mouth i o Wimsies Minnesota®, Wisconsin, lowa, llinois, Missouri,
- 2341Kmi 4.258K mi Country: United States of America Kentucky, Akansas, Mississippi, Louisiana™
s 2,202 mi 1,260,000 mi? P
Did you know: The Mississippi River is the 2 |Mosssonver |Guotmerco  [asasknitn | @THRN |QEOSUN | ooy | e000010 :
second-longest river in the US (2,202 mi). ") 95°12:20" WISl |89°15"12"W s8] 18,400 m¥s 4

wikipedia.org




The Basic Setup of Data Fusion

Source Observations

True Facts

River Attribute Value

Mississippi Length - >

River /

Missouri River

Length / ?

Source River Attribute Value
KG Mississippi River Length 2,320 mi
KG Missouri River Length 2,341 mi
Wikipedia yd Mississippi River Length 2,202 mi
Wikipedia/ Missouri River Length 2,341 mi
USGS Mississippi River Len%—» 2,340 mi
USGS Missouri River /ngth 2,540 mi

Fact

Source reports
a value for a fact

Conflicting value

l

Fact’s true value

Goal: Find the latent
true value of facts.




The Basic Setup of Data Fusion

Source Observations

True Facts
River Attribute Value
Mississippi
Length ?
River 9

/

Missouri River

Length /

Source River Attribute Value
KG Mississippi River Length 2,320 mi
KG Missouri River Length 2,341 mi
Wikipedia yd Mississippi River Length 2,202 mi
Wikipedia/ Missouri River Length 2,341 mi
USGS Mississippi River Len%—» 2,340 mi
USGS Missouri River /ngth 2,540 mi

Fact

Source reports
a value for a fact

Conflicting value

l

Fact’s true value

Idea: Use redundancy to infer
the true value of each fact.




Majority Voting for Data Fusion

Source Observations

True Facts
River Attribute Value
Mississippi
Length ?
River 9
Missouri River Length 2,341

Source River Attribute Value
KG Mississippi River Length 2,320 mi
KG Missouri River Length 2,341 mi
Wikipedia Mississippi River Length 2,202 mi
Wikipedia Missouri River Length 2,341 mi
USGS Mississippi River Length 2,340 mi
USGS Missouri River Length 2,540 mi

Majority voting can be limited. What if sources
are correlated (e.g., copying)?
Idea: Model source quality for accurate results.




40 Years of Data Fusion (beyond Majority Voting)

Dawid-Skene model Probabilistic Graphical Models
e Model the error-rate of sources e Use of generative models
e Expectation-maximization e Focus on unsupervised learning
~1996 (Rule-based) 2016 (Deep ML)
1979 2007 (Probabilistic) ® o learni
< ae . ; : : eep learnin
(Stat|3tlca| Ieammg) Domain-specific Strategies ° P Use Regtricted Boltzmann

e Keep all values

e Pick arandom value

e Take the average value
([ J
([ J

Machine; one layer
version is equivalent with
Dawid-Skene model

e Knowledge graph
embeddings

Take the most recent value



A Probabilistic Model for Data Fusion

e Random variables: Introduce a latent random variable to represent the true
value of each fact.

e Features: Source observations become features associated with different
random variables.

e Model parameters: Weights related to the error-rates of each data source.
error-rate scores
1 (model parameters)

P(Fact = U%Z exp Z Z ag’”, - 1[S reports Fact = 0]

s € Sources v/ € Values
Normalizing constant

SR Error-rate of Source S Error-rate = probability that a source
s T 1 — Error-rate of Source S provides value V' instead of value v




The Challenge of Training Data

e How much data do we need to train the data fusion model?

e Theorem: We need a number of labeled examples proportional to the number
of sources [Ng and Jordan, NIPS’O1]

e Model parameters: Weights related to the error-rates of each data source.

But the number of sources can be in the thousands or
millions and training data is limited!

Idea: Leverage redundancy and use unsupervised learning.



The Dawid-Skene Algorithm [pawid and Skene, 1979]

lterative process to estimate data source error rates

1. Initialize “inferred” true value for each fact (e.g., use majority
vote)

2. Estimate error rates for workers (using “inferred” true values)

3. Estimate “inferred” true values (using error rates, weight
source votes according to quality)

4. Go to Step 2 and iterate until convergence @

Assumptions: (1) average source error rate < 0.5, (2) dense source observations, (3) conditional independence
of sources, (4) errors are uniformly distributed across all instances.




An Intro in Probabilistic Graphical Models

Bayesian Networks (BNs)
Local Markov Assumption: A variable X is independent of its
non-descendants given its parents (and only its parents).



An Intro in Probabilistic Graphical Models

Bayesian Networks (BNs)
Local Markov Assumption: A variable X is independent of its
non-descendants given its parents (and only its parents).

Recipe for BNs

Set of random variables X
Directed acyclic graph (each X[i] is a vertex) 1,1 . Yo

Conditional probability tables P(X | Parents(X)) @

Joint distribution: Factorizes over conditional probability tables




An Intro in Probabilistic Graphical Models

Where do independence assumptions come from?
Causal structure captures domain knowledge

TN
/

e The flu causes sinus (e ) -
inflammation \/\ \‘/\J
* Allergies also cause \i'/
sinus inflammation - ‘/ \(/H \
e Sinus inflammation —/ N

causes a runny nose

e Sinus inflammation
causes headaches

[Example by Andrew McCallum]



An Intro in Probabilistic Graphical Models

Factored joint distribution

P(F) A) S; R, H) P(F) {\/’/ Flu;: P(A) ;/AII.\/\;/

= P(F) N v
P(A) P(S | F, A) S.l. 13
P(S|F A) / \
P(R| S) PR S) RA. ; P(H | S) :f H
P ( H | S ) \___/ —

[Example by Andrew McCallum]



Probabilistic Graphical Models for Data Fusion

Example:

Source
Quality

Setup: Identify true
source claims

| Entity (Movie) | Attribute (Cast) | Source
Harry Potter | Daniel Radcliffe IMDB
Harry Potter Emma Waston IMDB
@ . Harry Potter Rupert Grint IMDB
C Harry Potter | Daniel Radcliffe Netflix
Harry Potter | Daniel Radcliffe | BadSource.com
—— Harry Potter Emma Waston | BadSource.com
. Harry Potter Johnny Depp BadSource.com
Prior truth [Zhac etal., VLDB 2012] Pirates 4 Johnny Depp Hulu.com

probabi

lity

Extensive work on modeling source observations and source

interactions to address limitations of basic Dawid-Skene.




Probabilistic Graphical Models for Data Fusion

Modeling both source quality
and extractor accuracy

DEOSOIR = She

F i AV d
@ @
[Zhao et al., VLDB 2012] .

[Dong et al., VLDB 2015]
Extensive work on modeling source observations and source
interactions to address limitations of basic Dawid-Skene.




Probabilistic Graphical Models for Data Fusion

CRP(a)

A4
@@ J
ap/‘ J

Sd

Modeling source

dependencies

ﬁp\‘
Ol

-

[Platanios et al., ICML 2016]

Extensive work on modeling source observations and source

interactions to address limitations of basic Dawid-Skene.




PGMs in Data Fusion [Liet al, vLDB14]

Table 6: Summary of data-fusion methods. X indicates that the method considers the particular evidence.

. Source Item Value Value Value ’
Carogory Ao foviien trustworthiness | trustworthiness | Popularity | similarity | formatting Copying
Baseline Vote X
HUB X ¢
Web-link AVGLOG X X
based INVEST X X
POOLEDINVEST X X
2-ESTIMATES X X
IR based 3-ESTIMATES X X X
COSINE X X
TRUTHFINDER X X X
. ACCUPR X ¢
Bayesian based POPACCU X X X
AcCcuSIMm X X X
ACCUFORMAT X X X X
Copying affected AccuCory X X X X X

Bayesian models capture source observations and source interactions.




PGMs in Data Fusion [Liet al, vLDB14]

Stock Flight
Category Method prec w. | prec w/o. | Trust | Trust || precw. | prec w/o. | Trust | Trust
trust trust dev diff trust trust dev diff
Baseline Vote - 908 - - - 864 - -

HUB 913 907 B .08 939 .857 2 .14

Web-link AVGLOG 910 .899 AT -.13 919 .839 .24 .001
based INVEST .924 764 .39 -.31 945 754 .29 -12
POOLEDINVEST .924 .856 1.29 | 0.29 945 921 17.26 | 7.45

2-ESTIMATES 910 903 15 -.14 87 754 46 -35

IR based 3-ESTIMATES 910 905 .16 -.15 .87 .708 .95 -.94
COSINE 910 900 21 -17 .87 791 A48 -41

TRUTHFINDER .923 911 15 12 .957 793 25 .16

ACCUPR 910 .899 .14 -.11 91 .868 .16 -.06

PoPACCU .909 .892 .14 -.11 .958 925 17 -.11

Bayesian AccuSim 918 913 37 -.16 903 844 k) -.09
based ACCUFORMAT 918 911 17 -.16 903 844 2 -.09
ACCUSIMATTR 950 .929 A7 -.16 952 .833 .19 -.08
ACCUFORMATATTR 948 930 I7 -.16 952 .833 .19 -.08

Copying affected AccuCory 958 .892 .28 -.11 960 943 .16 -.14

Modeling the quality of data sources leads to improved accuracy.



Discriminative Data Fusion [SLiMFast Rekatsinas et al., SIGMOD"17]

Limit the informative parameters of the model by using domain knowledge and
use semi-supervised learning

Key Idea: Sources have (domain specific) features that are indicative of error rates
Example:

R e newly registered similar to existing domain
e e traffic statistics
e text quality (e.g., misspelled words, grammatical errors)
e sentiment analysis
PEIIIIIIIIIIN o  avg. time per task
11 T"CROWDSOURCING

................. ® number of tasks

ooooooooooooooooo

Ty e market used
s



Discriminative Data Fusion [SLiMFast Rekatsinas et al., SIGMOD"17]

Fact value reported

[ |

&

Features describing a
data source
=

O

Q..

by a Source

\

Model
parameters

’ Unknown
true value
of a fact

0.8 . :
SLiMFast is
- 25% more | —>
o 07 accurate
5
(&)
g 06 |
0.5
1% 5% 10% 20%
Percentage of data used for training
¢ SLiMFast & | R o ACCU * MV

Genomics data: 2.7k sources (articles), 571 objects (gene-
disease), 4 domain features (year, citation, author, journal)



Data Fusion and Deep Learning [shaham et al., ICML16]

Theorem: The Dawid and Skene model is equivalent to a Restricted Boltzmann
Machine (RBM) with a single hidden node.

Y Na

@ @ @

Dawid and Skene model. A RBM with d visible and m Sketch of a two-hidden-layer
hidden units. RBM-based DNN.

When the conditional independence assumption of Dawid-Skene does not hold, a
better approximation may be obtained from a deeper network.




Data Fusion For Complex Data

Spock Science Fiction Obi-Wan Kenobi J-th entity
R R /P i

entity o] !
played characterln genre genre characterln played relatlon
67 starredln\~>d &aﬂedln 4&)

Leonard Nimoy Star Trek ~ Star Wars Alec Guinness

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

A knowledge graph can be encoded as a tensor.




Data Fusion For Complex Data

i-th
entity o |

k-th
relation

sulﬁect object pre(ﬁcate

Knowledge Graph Embeddings [Survey: Nicket et al., 2015]

Neural networks can be used to obtain richer
representations.




Data Fusion For Complex Data

4 Head entity

h

Relationship

Example: Learn embeddings from IMDb data
r and identify various types of errors in WikiData
[Dong et al., KDD18]

Tail entity

Subject Relation Target Reason
Ths Mgis::yPadilla writtenBy Céf;ué;::go Linkage error
] . - Bajrangi Bhaijaan writtenBy e SS(?nlglcl)ney Wrong relationship
Ennty m Rclauon Spm Piste noire writtenBy Jalil Naciri Wrong relationship
Enter the Ninja musicComposedBy Michael Lewis Linkage error
Tra ns E . Score ( h ’ r’t) = | | h t r_tl |1 /2 The S;(;:)e;ti?ife of musicComposedBy Hal Hartley Cannot confirm

Hot field with increasing interest

[Survey by Wang et al., TKDE 2017]




Challenges in Data Fusion

e There are few solutions for unstructured data. Mostly work on fact
verification [Tutorial by Dong et al., KDD 2018]. Most data Fusion
solutions assume data extraction. Can state-of-the art DL help?

e Using training data is key and semi-supervised learning can significantly
improve the quality of Data Fusion results. How can one collect training
data effectively without manual annotation?

e We have only scratched the surface of what representation learning
and deep learning methods can offer. Can deep learning streamline
data fusion? What are its limitations?



Recipe for Data Fusion

e Problem definition: Resolve conflicts _
. Data Extraction
and obtain correct values @
e Short answers
o Reasoning about source iy Schema Alignment }
quality is key and works for easy cases @
o Semi-supervised learning has shown Entity Linkage }
BIG potential @
o Representation learning provides
positive evidence for streamlining data [ Data Fusion }

fusion.



Takeaways



Revisit Theme I. Which ML Model Works Best?

DI tasks Hyperplanes Kernal Tree-based (e.g., Graphical models Logic programs Neural networks
(e.g.,Log Reg) (e.g.,SVM) Random forest) (e.g., CRF) (e.g, soft logic) (e.g., RNN)
Entity resolution X X X X X
Data fusion X X
DOM extraction X
Text extraction X X X X
Schema alignment X X X X X

For structured data, RF works well, and LR is often effective
For texts and semantics, deep learning shows big promise



Revisit Theme Il. Does Supervised Learning Apply
to DI?

Recall for 99% Precision vs. Training Data Size (log10)
® 1000+adaStratified500  ® randomSample

1 o ....” . ° ) ® ®
09

0.8
0.7

e 0.6

"

5 0.5

e

& 04
0.3
0.2
0.1

0
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Training size (log 10)

Active learning, semi-supervised learning, and weak
supervision lead to dramatically more efficient solutions.



Outline

e Partl. Introduction
e Partll. ML for DI
o Part lll. DI for ML

o Data Cleaning
o Training Data Creation

e PartlV. Conclusions and research directions



50 Years of Artificial Intelligence

Expert systems Graphical models and
e Manually curated knowledge bases of logic
facts and rules e Relational
e Use of inference engines statistical
e No support for high-dimensional data learning 2010s
1990s (Features) $° Maovlogic (papresentation Learning)
1970s (Rules) 2009 (PGMs) I ,
Classical ML Deep learning ,
e Low complexity models e Automatically learn
e Strong priors that capture domain representations
knowledge (feature engineering) e Impressive with
e Small amounts of training data high-dimensional data

e Data hungry!



Modern ML is data-hungry
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The ML Pipeline in the Deep Learning Era

Data Collection Data Labeling Representation Learning

and Training
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The ML Pipeline in the Deep Learning Era

Data Collection Data Labeling

&

Representation Learning
and Training

/A‘/’"
Lol ,II:.,“\‘”“\'A
»'«: n"““‘-i'*'
S

)t

Large collections of curated training data are
necessary for progress in ML. We need:

1. Ensure correctness of the available data

2. Generate large volumes of training data




Outline

e Partl. Introduction
e Partll. ML for DI

e Partlll. DI for ML

o Data cleaning
o Training data creation

e Part|V. Conclusions and research directions



Data errors are everywhere
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Data errors are everywhere
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Data errors are everywhere
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Data errors are everywhere

= * Human errors
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The Achilles’ Heel of Modern Analytics

Is low quality, erroneous data

3% 5% What data scientists spend the most time doing
4%

® Building training sets: 3%
® (Cleaning and organizing data: 60%
® C(Collecting data sets; 19%
Mining data for patterns: 9%
® Refining algorithms: 4%
® Other:5%

Cleaning and organizing the data comprises 60% of
the time spent on an analytics or Al project.




A simple example of noisy data

DBAName AKAName Address City |[State Zip
1| John Veliotis Sr. | Johnnyo's MngGSnSST Chicago ) IL. | 60608
t2 | John Veliotis Sr. Johnnyo’s Mgfg6a5nS.ST Chicago || IL 60609
t3 | John Veliotis Sr. Johnnyo’s Mgfg6a5nSéT Chicago | | IL 60609
t4 Johnnyo’s Johnnyo’s MgfgsfnséT Cicago | |IL 60608
Does not obey Conflict

N

data distribution

Conflicts

cl: DBAName — Zip
c2: Zip — City, State
c3: City, State, Address — Zip

Computational problems: Detect errors, repair
errors, compute “consistent” query answers.



50 Years of Data Cleaning

Data transforms
e Partof ETL

E.F. Codd . . . e Errors within a source and
e Understanding relations (installment ACTOSS SOUICeSs
#7). FDT - Bulletin of ACM SIGMQOD, e Transformation workflows
7(3):23-28, 1975. and mapping rules;
e Null-related features of DBs 1980s domain-knowledge is

crucial

2000s (Data Repairs)

(Normalization)

1970s (Nulls) 1990s

Integrity Constraints

Constraints and Probabilities
e Normal forms to (Warehouses) e Dichotomies for consistent

query answering
e Minimality-based repairs to
obtain consistent instances
e Statistical repairs
e Anomaly detection

reduce redundancy
and integrity
e FDs, MVDs etc.



The case for inconsistent data

DBAName AKAName Address City [State Zip

_ , 3465 S .

t1 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60608
_ , 3465 S .

t2 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60609
_ ; 3465 S .

t3 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60609
) ; 3465 S ;

t4 Johnnyo’s Johnnyo’s Morgan ST Cicago IL 60608

An example unclean database J

cl: DBAName — Zip
c2: Zip — City, State
c3: City, State, Address — Zip

Errors correspond to tuples/cells that introduce inconsistencies (violations of integrity constraints).

Inconsistencies are typical in data integration, extract-load-transform workloads, etc.

Data repairs: A theoretical framework for coping with inconsistent databases [Arenas et al. 1999]



Minimal data repairs

Database Repairs

Definition (Arenas, Bertossi, Chomicki — 1999)

¥ a set of integrity constraints and / an inconsistent database.
A database J is a repair of | w.r.t. X if

» J is a consistent database (i.e., J = X); Plethora of fundamental results

on tractability of repair-checking

» J differs from /in a minimal way. _ _
and consistent query answering.

Fact
Several different types of repairs have been considered:

» Set-based repairs (subset, superset, &-repairs). Limited adoption in practice
» Cardinality-based repairs

» Attribute-based repairs

» Preferred repairs Slide by Phokion Kolaitis
[SAT 2016]



Minimal data repairs

DBAName AKAName Address City |[State Zip
44 1 L, A W o 1 | . }) 3465 S oL - Ll o
(&) JOMTVenotis of! JoMMMy oS Morgan ST Cricago T 60606
I , 3465 S .
t2 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60609
I , 3465 S .
t3 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60609
p g 3465 S ;
t4 Johnnyo’s Johnnyo’s Morgan ST Cicago | IL 60608

Errors remain:

(1) Cicago should clearly be Chicago

(2) Non-obvious errors: 60609 is the wrong Zip

cl: DBAName — Zip
c2: Zip — City, State
c3: City, State, Address — Zip

Minimal subset repair:
We remove t1

Several variations of

Minimal repairs. E.qg.,

update the minimum
number of cells.

Minimality can be used as an operational principle to prioritize repairs but
these repairs are not necessarily correct with respect to the ground truth.



The case for most probable data [Gribkoff et al., 14]

DBAName AKAName Address City |[State Zip p

. , 3465 S ;

t1 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60608 0.9
. , 3465 S .

t2 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60609 04
. , 3465 S .

t3 | John Veliotis Sr. Johnnyo’s Morgan ST Chicago | IL 60609 04
p , 3465 S .

t4 Johnnyo’s Johnnyo’s MotganiST Cicago | IL 60608 0.8

cl: DBAName — Zip
c2: Zip — City, State
c3: City, State, Address — Zip

Most probable world,
conditioned on integrity
constraint satisfaction




The case for most probable data [Gribkoff et al., 14]

DBAName AKAName Address City |State| Zip P Factor (f)

A4 1 | PR W H H 1 | ) 3465 S Y o) MN-Puprapnpy 1l (o]
ul JUIIT vG’h’O‘h’S"Sf. JUTI IyU b} Morgan ST vrnu&yv | | 6%00 0.9 1 = 0.9
t2 | John Veliotis Sr. Johnnyo'’s 24695 Chicago | IL 60609 0.4 0.4

: Morgan ST ' :
t3 | John Veliotis Sr. Johnnyo'’s 246895 Chicago | IL 60609 0.4 0.4

: Morgan ST ' :

; , 3465 S ;

t4 Johnnyo’s Johnnyo'’s Morgan ST Cicago | IL 60608 0.8 0.8

cl: DBAName — Zip
c2: Zip — City, State
c3: City, State, Address — Zip

Optimization Objective

max

(

)

ax | [Tro] ] = po»

\ tel t&l )




Most probable repairs

DBAName AKAName Address City |[State| Zip p Factor (f)
o890 t—|—66608 0.9 1-0.9

JohrVetiotis-Si Jotin |yu’o C:?;C&gﬁ
' Morgan ST

3465 S

John Veliotis Sr. Johnnyo's Morgan ST Chicago | IL 60609 04 0.4
_ , 3465 S .

John Veliotis Sr. Johnnyo'’s Morgan ST Chicago | IL 60609 04 0.4
P , 3465 S 2

Johnnyo’s Johnnyo'’s Morgan ST Cicago | IL 60608 0.8 0.8

Optimization Objective max Hp(t)H(l—p(t))

tel t&l

Probabilities offer clear semantics than minimality.
Fundamental question: How do we know p?




Where are we today?
Machine learning and statistical analysis are becoming more prevalent.

Error detection (Diagnosis)

Anomaly detection [Chandola et al., ACM CSUR, 2009]

Bayesian analysis (Data X-Ray) (wang et al., SIGMOD"15]

Outlier detection over streams (Macrobase) [Bailis et al., SIMGOD'17]
HoloDetect: Few-shot Learning for Error Detection [Heidari et al., SIGMOD"19]

"%,

s|_J.5o¥
infler + outlier streams
outfer summary




Where are we today?

Machine learning and statistical analysis are becoming more prevalent.

Data Repairing (Treatment)

e Classical ML (SCARE, ERACER) [vakout et al., VLDB"1, SIGMOD"13, Mayfield et al., SIGMOD*10]
o BOOSting [Krishan et al., 2017]

e Weakly-supervised ML (HoloClean) [rekatsinas et al., VLDB17]

Tt
Reliable ~ Flexible s 10loClean Boost & Clean
_ | e e | o el 2 Each cell is a random variable

Constraints introduce

Morgan ST -
3465 S : correlations l 1

Chicago | IL | 60609

Morgan ST c3: City, State, Address — Zip

3465 S
Morgan ST
3465 S
Morgan ST

Chicago | IL | 60609

[~
External data introduce evidence Test Accurac Yy
Ext_Address | Ext City |Ext State| Ext Zip Evaluator

3465 S Morgan
ST

Cicago | IL | 60608

Chicago L 60608




Question:

What is an appropriate (formal) framework
for managing noisy data?

Things to consider:
Simplicity and generality



B |
The case of a noisy channel for data '

Observed Data
with Errors

Clean Source Data

Noisy Channel Model

1. We see an observation x in the noisy world R
w = arg max P(w | x)
2. Find the correct world w weWw

Applications: Speech, OCR, Spelling correction, Part of speech tagging, machine
translations, etc...



Y
The Probabilistic Unclean Database Model & !

Problem 3: Can we learn the Intension and the Realizer? Output: An estimate for the
Can we do that from J (i.e., without any training data)? Intension and the Realizer

Clean Intended Observed Unclean
Database / Database J

[P
//“

"7 Intension

Probabilistic » Input: We only
Data Generator observe this
« Realizer ) .
Problem 1: If we Probabilistic Problem 2: Given J
knew the Intension Noise Generator can we answer a query
and the Realizer Noksy Channel) on | correctly?
can we recover |?
Output: Pr(a € Q(I)|J)

Output: An estimate of the
most probable |



)

A Series of Theoretical Results

Complexity Results: When is data cleaning efficient? [De Sa et al., ICDT 2019]

Statistical Recovery Results: New theoretical results on the hardness of structured
prediction under noisy data and new structured prediction methods for automated
data cleaning with low-error guarantees [Heidari, llyas, Rekatsinas UAI, 2019]

Learnability Results: Learning the intended data distribution without any training data
[De Sa et al., ICDT 2019]



1!
i1

From Theory to Systems

Is the PUDs framework useful in practice?



HoloClean: Probabilistic Data Repairs

Each cell is a random

HoloClean is the first practical

=an T . ﬂsil/ variable
probabilistic data repairing engine and a . @]\ S
state-of-the-art data repairing system N ;" e Constraints Intoduee o Gy

T e T e t1.City t1.Zip
HoloClean’s factor-graph model is an rvire

Morgan St”

instantiation of the PUDs Intention model.
O: Unknown (to be inferred) RV

B : Factor (encodes correlations)

HoloClean uses clean cells as training
data to learn its PUD Intention model and
uses the learned model to approximate
MLI repairs.
Reference: “HoloClean: Holistic Data Repairs with Probabilistic Inference”
Rekatsinas, Chu, llyas, Ré, VLDB 2017



B |

)l
HoloClean: Probabilistic Data Repairs ’

Challenge: Inference under constraints is #P-complete

Applying probabilistic inference naively does not scale to data cleaning
instances with millions of tuples

Idea 1: Prune domain of random variables.

Idea 2: Relax constraints over sets of random variables to features over
independent random variables.



e

Relaxing constraints il

U of Chicago IL Functional dependency: _ Th_e Same
T University must be
of Chicago IL

U oA University — State in the same State”

Relax constraints to features over independent RVs
(corresponds to a voting model)

Example:
t1.University = U of Chicago = IL = CA
U of Chicago = t3.University = IL = CA Only 4D possible
U of Chicago = U of Chicago = t1.State = CA worlds considered

U of Chicago = U of Chicago — IL = t3.State

HoloCleans’ locally consistent model introduces
features over independent random variables.



Relaxing constraints

t1.City t1.Zip

Address City |State Zip
3465 S E

1 Morgan ST Chicago| IL 60608
3465 S ;

t2 Morgan ST Chicago | IL 60609
3465 S ;

3 Morgan ST Chicago | IL 60609
3465 S ;

t4 Morgan ST Cicago IL 60608

19
il

“Address= “Address=
3465 S “Zip -> City” 3465 S
Morgan St” Morgan St”



B |

Relaxing constraints i

Address

City

State

Zip

t1

3465 S
Morgan ST

Chicago

60608

t2

3465 S
Morgan ST

Chicago

60609

3

3465 S
Morgan ST

Chicago

60609

t4

3465 S
Morgan ST

Cicago

60608

“Assignment Chicago
violates Zip -> City

wi l—O—Mw
t4.City
wi l—O—Mwe
“Address= “Assignment Cicago
3465 S violates Zip -> City
Morgan St” due to t1”

We have one relaxed factor for
each value in the domain of the RV



B |

Relaxing constraints i

Address

City

State

Zip

t1

3465 S
Morgan ST

Chicago

60608

t2

3465 S
Morgan ST

Chicago

60609

3

3465 S
Morgan ST

Chicago

60609

t4

3465 S
Morgan ST

Cicago

60608

“Assignment 60608
violates Zip -> City

t1.Zip due to t4”
w2 l—O—Mws
t4.Zip
w2 l—O—Mws
“Address= “Assignment 60609
3465 S violates Zip -> City
Morgan St” due to t1”

We have one relaxed factor for
each value in the domain of the RV



Accuracy of repairs

HoloClean in practice ‘'

HoloClean vs State-of-the-Art

1.0
0. ; Competing
- methods do not
! scale or perform
G . correct repairs.
Hospital Fllghts Food Physician
(1Ktuples) (2.7Ktuples) (330K tuples) (2.1M tuples)
Dataset
@) HoloClean External Only
@ Constraints Only @ Quantitative Stats Only

HoloClean: our approach combining all signals and using inference

Hollstlc[Chu 2013] state-of-the-art for constraints & minimality
hu,2015]: state-of-the-art for external data

SCARE[Yakout 2013]: state-of-the-art ML & qualitative statistics



A
$ 10l0Clean

Code available at:
http://www.holoclean.io



The Probabilistic Unclean Database Model R

Clean Intended
Database /

o‘;/:-"-
"1 Intension

Probabilistic »
Data Generator

- HoloClean [VLDB’17]
- AutoFD [ICLR’19]

Realizer
Probabilistic
Noise Generator
(Noisy Channel)

Observed Unclean

Database J

- HoloDetect [SIGMOD’19]

A formal noisy channel model that leads to new
insights for managing noisy data and has immediate
practical applications to data cleaning systems.



On the Interplay of Cleaning and ML

Test Error

Test Error
(Gaussian Noise) (Adversarial Noise)

IR 0 G S et b o oot e A
00 0

i1

¥ Clean Data
O No Sanitization
‘0 Loss-based
Filtering
V- SEVER
(Robust Estimation)
<> Model Learned
on Cleaned Data

S [P SR PR R Y [ PO P
0.1 0.2 0.3 04 05 06 0.7 08 09 1.0
Ratio of Corrupted Data Points (Tuples)

Preliminary evidence on the the
effectiveness of data cleaning for
predictive analytics.



Challenges in Data Cleaning

e More research is needed on understanding when automated solutions
are possible and what is the most effective way to bring humans in the
loop.

e We need to study the interplay between data cleaning and machine
learning closer. Especially in the presence of robust optimization
methods.

e We need interpretable data cleaning solutions. Why should | trust the
repairs?

e Few end-to-end solutions. Data cleaning workloads (mixed relational
and statistical workloads) pose unique scalability challenges.



Recipe for Data Cleaning

e Problem definition: Detect and repair

Each cell is a random variable
erroneous data
) [ vgmsr [Oteapo 1 [wos | Constraints introduce
Mgg:nSST Chicago| 1L | 60609 c3: City, Sct(;:reelité?l?:ss — Zip
e Short answers T & O S

M:‘:: sl e | eoos External data introduce evidence

M Ext Add Ext_City |Ext State| Ext_Zi

o ML can help partly-automate cleaning. e

Domain-expertise is still required.

o Scalability of ML-based data cleaning methods is a
pressing challenge. Exciting systems research!

o  We need more end-to-end systems (interpretable,
human-in-the-loop, optimized for analytical tasks)!




Outline

e Partl. Introduction
e Partll. ML for DI

e Partlll. DI for ML

o Data cleaning
o Training data creation

e Part|V. Conclusions and research directions



The ML Pipeline in the Deep Learning Era

Data Collection
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Data Labeling

Representation Learning
and Training

YN

)
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A core pain point today, lots of time spent in labeling data.




Training Data: Challenges and Opportunities

e Collecting training data is expensive and slow.
e We are overfitting to our training data. [Recht et al., 2018]
o Hand-labeled training data does not change
e Training data is the point to inject domain knowledge
o Modern ML is too complex to hand-tune features and priors



Training Data: Challenges and Opportunities

e Collecting training data is expensive and slow.
e We are overfitting to our training data. [Recht et al., 2018]
o Hand-labeled training data does not change
e Training data is the point to inject domain knowledge
o Modern ML is too complex to hand-tune features and priors

How do we get training data more effectively?




The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to
collect) labels; prediction on a larger set, and then
training of a model.

Semi-supervised learning and ensemble learning
Examples:

e use of non-expert labelers (crowdsourcing),
e use of curated catalogs (distant supervision)
e use of heuristic rules (labeling functions)



The Rise of Weak Supervision

Alexa — Customer embrace of Alexa continues, with Alexa-enabled devices among the best-
selling items across all of Amazon. We’re seeing extremely strong adoption by other companies
and developers that want to create their own experiences with Alexa. There are now more than
30,000 skills for Alexa from outside developers, and customers can control more than 4,000
smart home devices from 1,200 unique brands with Alexa. The foundations of Alexa continue
to get smarter every day too. We’ve developed and implemented an on-device fingerprinting
technique, which keeps your device from waking up when it hears an Alexa commercial on TV.
(This technology ensured that our Alexa Super Bowl commercial didn’t wake up millions of
devices.) Far-field speech recognition (already very good) has improved by 15% over the last
year; and in the U.S., U.K., and Germany, we’ve improved Alexa’s spoken language
understanding by more than 3§96 over the last 12 months through enhancements in Alexa’s
machine learning components jand the use of semi-supervised learning techniques. (These semi-
supervised learning techniques reduced the amount of labeled data needed to achieve the same
accuracy improvement by 40 times!) [Finally, we’ve dramatically reduced the amount of time
required to teach Alexa new langua@@® by using machine translation and transfer learning
techniques, which allows us to serve customers in more countries (like India and Japan).



The Rise of Weak Supervision

Definition: Supervision with noisy (much easier to collect) labels; prediction
on a larger set, and then training of a model.

Related to semi-supervised learning and ensemble learning

Examples: use of non-expert labelers (crowdsourcing), use of curated
catalogs (distant supervision), use of heuristic rules (labeling functions)

Methods developed to tackle data integration
problems are closely related to weak supervision.




Learning from Crowds [raykar et al., JMLR'10]

Setup: Supervised learning but instead of gold groundtruth one has access
to multiple annotators providing (possibly noisy) labels (no absolute gold
standard).

Task: Learn a classifier from multiple noisy labels.

Closely related to Dawid-Skene!

Difference: Estimating the ground truth and the annotator
performance is a byproduct here. Goal is to learn a classifier.



Learning from Crowds [raykar et al., JMLR'10]
D= {(x27YZ)}'£\]—;1

Example Task: Binary classification N examples, with labels y; = y?,...,yE

provided by R different annotators



Learning from Crowds [raykar et al., JMLR'10]
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Example Task: Binary classification N examples, with labels y; = 32, ..., yF

rovided by R different annotators
Annotator performance: P y
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Learning from Crowds [raykar et al., JMLR'10]
D= {(xzayz) 11121
Example Task: Binary classification N examples, with labels y; = 32, ..., yF

rovided by R different annotators
Annotator performance: P y

Sensitivity (true positive rate) Specificity ( 1- false positive rate)
o) =Prly’ = 1|y = 1] 37 = Pry’ =0y = 0]
pi = 0_('wTa:,-).
: N a = TeP1—al. Mogel
Learning: Pr[D|6] = H laipi+ bi(1 — pi)] ' ,11 parameters
= {w, a, B}

B ﬁ[ﬁf}l—yf[l—sflyf.
EM algorithm to obtain maximum-likelihood estimates.
Difference with Dawid-Skene is the estimation of w.




Distant Supervision [Mintz et al., ACL09]

Goal: Extracting structured knowledge from text.

Hypothesis: If two entities belong to a certain relation, any sentence containing
those two entities is likely to express that relation.

Idea: Use a database of relations to gets lots of noisy training examples

o Instead of hand-creating seed tuples (bootstrapping)
o Instead of using hand-labeled corpus (supervised)

Benefits: has the advantages of supervised learning (leverage reliable
hand-created knowledge), has the advantages of unsupervised learning (leverage
unlimited amounts of text data).



Distant Supervision [Mintz et al., ACL09]

Corpus Text Training Data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL09]

Corpus Text Training Data

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

(Bill Gates, Microsoft)
Label: Founder
Feature: X founded Y

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL09]

Corpus Text Training Data
Bill Gates founded Microsoft in 1975. (Bill Gates, Microsoft)
Bill Gates, founder of Microsoft, ... Label: Founder
Bill Gates attended Harvard from ... Feature: X founded Y
Google was founded by Larry Page ... Feature: X, founder of Y
Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL09]

Corpus Text

Bill Gates founded Microsoft in 1975.
Bill Gates, founder of Microsoft, ...

Bill Gates attended Harvard from ...
Google was founded by Larry Page ...

Freebase

(Bill Gates, Founder, Microsoft)
(Larry Page, Founder, Google)
(Bill Gates, CollegeAttended, Harvard)

Training Data

((Bill Gates, Microsoft) A
Label: Founder
Feature: X founded Y
kFeature: X, founder of Y )
4 A
(Bill Gates, Harvard)
Label: CollegeAttended
\Feature: X attended Y )

For negative examples, sample
unrelated pairs of entities.

[Adapted example from Luke Zettlemoyer]



Distant Supervision [Mintz et al., ACL09]

Entity Linking is an inherent problem
in Distant Supervision.

Relation

/business/person/company
/people/person/place_lived
/location/location/contains
. /business/company/founders

The quality of matches can vary Ioeciple]person/ratonality

significantly and has a direct effect on  /iocation/neighborhood/neighborhood_of

extraction qu ality. /people/person/children
/people/deceased_person/place_of_death
/people/person/place_of_birth
/location/country/administrative_divisions

Freebase Matches

#sents
302
450

2793
95
723
68
30
68
162
424

% true
60.0
51.0
48.4
41.0
39.7
80.0
22.1
12.0




Snorkel: Code as Supervision [ratner et al., NIPS16, VLDB"18]

-------------------------

Input: Labeling Functions, Generative Noise-Aware i Ex. Application:
: Knowledge Base :

Creation (KBC)

Unlabeled data Model Discriminative Model

Output: Probabilistic
Training Labels L

We use the resulting
prob. labels to train

Users write labeling We model the labeling

functions to generate functions' behavior to

noisy labels de-noise them a model

[Slide by Alex Ratner]



Snorkel: Code as Supervision [ratner et al., NIPS16, VLDB"18]

Snorkel biomedical workshop in collaboration with
)NLM the NIH Mobilize Center

mobilize 15 companies and research groups attended

[ »

How well did these new Snorkel users do?

o Mtnrs~Oupe 0 New Snorkel users matched or beat
SRR 7 1 A) 7 hours of hand-labeling

-
i‘ 28 2.8)( Faster than hand-labeling data

— Z 0 Average improvement
s e %0’ J 45-56 in model performance

L3 Cleveland Clinic @w@ﬁm
Caltech Stanford

WQO BCM Hospital & Clinics

ALLEN INSTITUTE
ARTIFICIAL INTELLIGENCE

e Marta Gowa Zanos m
For a newbie, | write pretty darn good

B kel #N L labeling
functions. Thanks &M\ ant

—

)

3rd Place Score

No machine learning experience
Beginner-level Python

[Slide by Alex Ratner]



Challenges in Creating Training Data

e Richly-formatted data is still a challenge. How can attack weak
supervision when data includes images, text, tables, video, etc.?

e Combining weak supervision with other data enrichment techniques
such as data augmentation is an exciting direction. How can
reinforcement learning help here (http://goo.gl/K2gqopQ)?

e How can we combine weak supervision with techniques from
semi-supervised?


http://goo.gl/K2qopQ

Recipe for Creating Training Data

e Problem definition: Go beyond gold labels to
noisy training data.

e Short answers @ o
o Transition from “gold” labels to @ - “
“high-confidence” labels. &
/

© Modeling error rates is key. The notion of data
source is different.

o Need for debugging tools, bias detection, and
recommendations of weak supervision signals.



Outline

e Partl. Introduction
e Partll. ML for DI
e Partlll. DI for ML

o Creating training data
o Data cleaning

e PartlV. Conclusions and research direction



DI and ML: A Natural Synergy

e Data integration is one of the oldest problems in data management

e Transition from logic to probabilities revolutionized data integration
o Probabilities allow us to reason about inherently noisy data
o Similar to the Al-revolution in the 80s [https://vimeo.com/48195434]

e Modern machine learning and deep learning have the power to
streamline DI


https://vimeo.com/48195434

Revisit: Recipe for Data Extraction

e Problem definition: Extract structure [
from semi- or un-structured data
e Short answers [

Data Extraction

L 2

Schema Alignment }

o Wrapper induction
2\ Read 7 >
has high prec/rec i~
o Distant supervision is critical for
collecting training data
o DL effective for texts and LR is

often effective for semi-stru data

L 2

Entity Linkage

L 2

Data Fusion




Revisit: Recipe for Schema Alignment

e Problem definition: Align attributes
with the same semantics
e Short answers

. . K — % Schema Alignment }
o Interactive semi- roRcll;Zt;o

Data Extraction

. 4

automatic mapping g g - @
o DL-based universal schema [ Entity Linkage

revived the field @
o Combine schema matching and Data Fusion
universal schema for future




Revisit: Recipe for Entity Linkage

e Problem definition: Link references to [ }
the same entity
e Short answers s [ Schorma Alianmen }
o RF w. attribute- ° emyg ©
similarity features g B
o DL to handle texts and noises [ Entity Linkage }

Data Extraction

L 2

o End-to-end solution is future work @

Data Fusion




Recipe for Data Fusion

e Problem definition: Resolve conflicts _
. Data Extraction
and obtain correct values @
e Short answers
o Reasoning about source iy Schema Alignment }
quality is key and works for easy cases @
o Semi-supervised learning has shown Entity Linkage }
BIG potential @
o Representation learning provides
positive evidence for streamlining data [ Data Fusion }

fusion.



DI and ML: A Natural Synergy
e Data is bottleneck of modern ML and Al applications
e Dl-related methods and algorithms have revolutionized the way

supervision is performed.
o Weak supervision signals are integrated into training datasets

e Data integration solutions (e.g., data cataloging solutions) can lead to
cheaper collection of training data and more effective data enrichment



Recipe for Data Cleaning

e Problem definition: Detect and repair
erroneous data.

Morgan sT | €icag 60608 I
[ 655 ’ correlations
Chicago | IL

e Short answers o s o o O S e

iAes S | ciagel| 1 | coson External data introduce evidence

Ext_Address | Ext_City ‘Ex&_state‘ Ext_Zip

o ML can help partly-automate cleaning. o
Domain-expertise is still required.
o Scalability of ML-based data cleaning methods is
a pressing challenge. Exciting systems research!
o We need more end-to-end systems!




Revisit: Recipe for Creating Training Data

e Problem definition: Go beyond gold labels to
noisy training data.
e Short answers
o Transition from “gold” labels to
“high-confidence” labels.
© Modeling error rates is key. The notion of data
source is different.
o Need for debugging tools, bias detection, and
recommendations of weak supervision signals.

(&)
R
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Opportunities for DI

One System vs. An Ecosystem: Every RBMS is a monolithic system. This paradigm has failed for DI. Tools for
different DI tasks are prevalent. We need abstractions and execution frameworks for such ecosystems.

Humans-in-the-loop: DI tasks can be very complex. Is weak supervision the right approach to inject domain
knowledge? What about quality evaluation?

Multi-modal DI: ML-based DI has focused on structured data with the exception of DI over images using
crowdsourcing and some recent efforts that target textual data. DL is the de facto solution to reasoning about
high dimensional data. Can is help develop unified DI solutions for visual, textual, and structured data?

Efficient Model Serving: This means efficient model serving. Many compute-intensive operations such as
normalization and blocking are required. Featurization may also rely on compute-heavy tasks (e.g., computing
string similarity). What is the role of pipelining and RDBMS-style optimizations?



Opportunities for ML

Data Catalogs: Data augmentation relies on data transformations performed on data records
in a single dataset. How can we leverage data catalogs and data hubs to enable data
augmentation go beyond a single dataset?

Robust/Valuable Data for ML applications: The DB community has focused on assessing the
value of data [Dong et al., VLDB12, Koutris et al., JACM 2015]. These ideas are not pervasive to
ML but if ML is to become a commodity [Jordan, 2018] we need methods to reason about the
value of data.

DI for Benchmarks: Increasing efforts on creating manually curated benchmarks for ML.
Current efforts rely on manual collection and curation. How can we leverage meta-data and
existing DI solutions to automate such efforts?

“How reliable are our current measures of progress in machine learning?” ( /‘
Do CIFAR-10 Classifiers Generalize to CIFAR-10?, Ben Recht et al., 2018 M L Pe rf




DI & ML as Synergy

e ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION
o Automating DI tasks with training data
o Ensemble learning and deep learning provide promising solutions
o Better understanding of semantics by neural network

e DI for effective ML: DATA, DATA, DATA
o The software 2.0 stack is data hungry
o Create large-scale training datasets from different sources
o Cleaning of data used for training



DI & ML as Synergy

e ML for effective DI: AUTOMATION, AUTOMATION, AUTOMATION
o Automating DI tasks with training data
o Ensemble learning and deep learning provide promising solutions
o Better understanding of semantics by neural network

e DI for effective ML: DATA, DATA, DATA
o The software 2.0 stack is data hungry
o Create large-scale training datasets from different sources
o Cleaning of data used for training

Thank you!
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