Today: AutoML

Logistics

(Tuesday: Whiteboard via iPad)

Thursday: Discussion Sessions (Presenters will lead discussion + Theo)

Today: AutoML

Last class: Automated Feature Selection and how to frame this problem as search over the set of possible features.

How to search over the space of possible models.

Deep Learning:

- Vision (CNNs)
- Audio analytics
- Text (RNNs, Transformers)
- Images (CNNs)
- Tabular data.

Problem

The performance of DL: depends on

- Units in each layer/# layers
- Hyperparameters

- Learning rate, cross-validation parameters

Two types of HP (hyperparameters)

- Architectural HP
- Algorithmic HP (optimization)

Expansion of parameters

SD design decisions

Hyperparameter optimization evaluation costs
Current solution

Data → decision on hyper-parameters
 → user design a model.
 → trained model/eval.

Promise of AutoML

Data. → iterate to maximize performance.
 Meta-level learning/optimization
 Learning box
 → not just a trained model (learning pipeline)
 → never ending learning
 7 define this box

Learning box
\{ data cleaning \}
\{ "pre-proc" \}
\{ feature selection \}
\{ training algo selection \}
\{ model selection \}
\{ etc. \}

Formal Problem statement

AutoML: it is a hyper-parameter optim problem.

Grid search: eliminate parts of the grid

I: hyperparameters of a ML algorithm A has a domain \(\Delta \) (valid values that HR I can take)
Find A^* s.t. some utility is maximized

Utility function for ML: minimize our generalization

$L(A_2, D_{train}, D_{valid}) \to \min_{A_2} \text{loss}$

loss of A_2 using HP, A_2

trained on D_{train} and evaluated on D_{valid} (simulating generalization error)

$HPO: A^* = \arg \min_A L(A_2, D_{train}, D_{valid})$

Q: What is this domain Λ? What kind of variable types do we have?

LR: continuous variable

of h.units: discrete variable

ReLU or sigmoid: categorical (binary) variable (finite domain)

What optimizer to use: ADAM or SGD?

Some of the As are "unlocked" depending on specific configuration for other parameter As.

W. Adam \rightarrow momentum

SGD

Choose the ML model \leftarrow SVM (kernel, conditional HPs)
Instead of a single Algorithm $A \to A$
I have access to a set of As
$A = \{ A^{(1)}, \ldots, A^{(n)} \}$
$A^{(i)}$ the HP space of $A^{(i)} \quad \forall i=1\cdots n$

$L(A^{(i)}, D_{\text{train}}, D_{\text{valid}})$

$A^* = \arg\min_{A^{(i)}} L(A^{(i)}, D_{\text{train}}, D_{\text{valid}})$

$A^{(i)} \in A^{(i)} \quad \forall A^{(i)} \in A$

Analyze function L (costs)

$\left(\sum_{A^{(i)}} L(A^{(i)}) \right) \left(\sum_{z \in A^{(i)}} z \in A^{(i)} \right)$

Train over all $A^{(i)}$ (size of search space I have to consider)

A is a NN $\sim |A^{(i)}| = 50$
Search is expensive due to exponential explosion.

→ Evaluation at a single point?

Operations during Eval: \(A^{(i)} \) using \(A^{(i)} \) on \(D_{train} \) to evaluate on \(D_{valid} \)

Depending on the model

\(|D_{train}|, |D_{valid}| \rightarrow \) expensive op

How to solve this opt problem

Grid search

Blackbox opt

Grid points 12 configs

→ parallel

Learning rate (cont)
Blackbox opt Case 2: \[
\text{Fix } A \text{ } \sim \text{ N}
\]

\[
\arg\max_L (A_2, D_{\text{train}}, D_{\text{valid}})
\]

\#layer

Neighborhood

lr

\[
D_{\text{train}} \text{ lr} 0.13
\]

Explores this space to find a \((\#\text{layers, lr})\) config that maximizes my utility.

Random search considers only very recent information.
Type 3 of BlackBox opt

Bayesian optimization

High-level

Fit a probabilistic model to your function evaluations:

\[
\mathcal{D} \left< f(x), f(x) \right>
\]

\(f \): prob. distribution

\(f \): parameter values \(\theta_1, \theta_2, \ldots \)

\[
\frac{1}{D} \sum_{i=1}^{D} f(\theta_i), f(\theta_2), \ldots f(\theta_D)
\]
I have a point \(\mathbf{f}(x) \). \(\mathbf{f}(x) \to \) hidden random variable.

\[
P(\mathbf{f}(x) | \mathbf{f}(x_1), \mathbf{f}(x_2), \ldots, \mathbf{f}(x_d))
\]

use this to estimate utility \(\mathbf{f} \) on unknown points.

given a config param \(\mathbf{f} \)

instead of running my model to find \(\mathbf{f}(x) \)

\[
\begin{align*}
\text{#layer} & \quad \text{prob distr.} \\
2 & \quad \text{gradient step} \\
1 & \quad \text{gradient step}
\end{align*}
\]

\[
0.43 \quad \mathbf{f}(x_1) \quad 0.62 \quad (2 \text{ optimization problems to find the best performing model})
\]

\[
\sum (\text{combined})
\]
\[
\hat{a} = \arg\max P(f(a) | t(x)) \\
\text{depending on Gaussian distribution}
\]

Utility

very expensive evaluations

starting point

exp. evaluations with cheap inference

\Rightarrow \text{give me one good point to evaluate on}

Bayesian opt.: exchange