Lecture 9 - Compression (High-perf hardware)

Models are Getting Larger
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Larger data sets and models lead to better accuracy but also increase
computation time. Therefore progress in deep neural networks is limited by
how fast the networks can be computed.

Likewise the application of convnets to low latency inference problems,
such as pedestrian detection in self driving car video imagery, is limited by
how fast a small set of images, possibly a single image, can be classified.

Acceleration



Run a network faster (Performance, inf/s)

Run a network more efficiently

— Energy (inf/J)
— Cost (inf/s$)

Inference
— Just running the network forward

Training

— Running the network forward
— Back-propagation of gradient
— Update of parameters

Key operations are Matrix Vector multiplications (dense data),
sparse during inference.

Why GPUs? SIMD What about other approaches? We will cover 1)
Reduced Precision Arithmetic (the goal is to increase the amount of
data we can perform operations over), 2) Compression (reduce
operations we have to perform), and 3) Better algorithms (Low-
Rank approximation).

1. Reducing precision



Reducing precision
Reduces storage
Reduces energy

Improves performance

Has little effect on accuracy — to a point

DNN, key operation is dense M x V

weight matrix
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How much accuracy do we need in the computations:

b; = f(z Wij ai)
J

Wij = wij + aaigj

Number Representation

Range Accuracy

1 8 23

FP32 S E M 10738 - 108 .000006%
1 5 10

FP16 S E M 6x105-6x10*  .05%
1 31
1 15
1 7

Int8 m 0-127 Y

FP32 = single precision
FP16 = half-precision



Traditional floating point (IEEE 754 style)

1011111010000 000

sign exponent significand fraction (mantissa)

s e S

“1sx2:x(1+ ) (normalized significand)

-1‘x2°x(1+%+ é)=-1.625

Cost of Operations

Relative Energy Cost Relative Area Cost

Operation: Energy (pJ) Area (um?)

8b Add 0.03 36

16b Add 0.05 67

32b Add o N 137

16b FP Add 04 [N 1360

32b FP Add 0.0 [N 4184

8b Mult 0.2 [ 282

32b Mult 31 [ 3495

16b FP Mult 11— 1640

32b FP Mult 37 7700

32b SRAM Read (8KB) 5 ———— N/A

32b DRAM Read 640 em————— N/A
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Mixed Precision

Store weights as 4b using
Trained quantization,

decode to 16b
ecode to accumulate 24b or 32b

to avoid saturation

Store activations as 16b

16b x 16b multiply
round result to 16b

Store weights as 4b using
Trained quantization,

to 1
decode to 16b accumulate 24b or 32b

to avoid saturation

Store activations as 16b 16b x 16b multiply

round result to 16b

Batch normalization important to ‘center’ dynamic range



Weight Update

Learning rate may
be very small
(105 or less)

Aw rounded to
zero

No learning!

Stochastic Rounding

Learning rate may
be very small
(10° or less)

Aw very small

Stochastic rounding -> let’s say we add 0.3 to 0 100 times if we round 0.3 we will
get zero. If we round it 70% of the time to 0 and 30% to 1 then we get E[Sum]=30

| =] with probability 1 — (z — |z])
Round(z) = { |z] +1 with probability z — |z]



Examples

3.5 has a 50% chance to round to 3, and a 50% chance to round to 4
2.4 has a 60% chance to round to 2, and a 40% chance to round to 3
1.6 has a 40% chance to round to 1, and a 60% chance to round to 2
-2.1 has a 90% chance to round to -2, and a 10% chance to round to -3

-4.7 has a 30% chance to round to -4, and a 70% chance to round to -5

Summary of Reduced Precision

Can save memory capacity, memory bandwidth, memory power, and
arithmetic power by using smaller numbers

FP16 works with little effort

— 2x gain in memory, 4x in multiply power

With care, one can use

— 8b for convolutions
— 4b for fully-connected layers

» Batch normalization — important to ‘center’ ranges
» Stochastic rounding — important to retain small increments

2. Pruning



Pruning

before pruning after pruning
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Pruning of AlexNet
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Speedup of Pruning on CPU/GPU

® CPU Dense (Baseline) = CPU Pruned = GPU Dense ®=GPU Pruned = mGPU Dense ®mGPU Pruned

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Figure 9: Compared with the original network, pruned network layer achieved 3x speedup on CPU,
3.5x on GPU and 4.2x on mobile GPU on average. Batch size = 1 targeting real time processing.
Performance number normalized to CPU.

Intel Core i7 5930K: MKL CBLAS GEMV, MKL SPBLAS CSRMV
NVIDIA GeForce GTX Titan X: cuBLAS GEMV, cuSPARSE CSRMV
NVIDIA Tegra K1: cuBLAS GEMV, cuSPARSE CSRMV

3. Reduce weight storage for remaining weights

Trained Quantization
(Weight Sharing)

Quantization: less precision
Pruning: less quantity
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Weight Sharing via K-Means

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
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* In-frequent weights: use more bits to represent
* Frequent weights: use less bits to represent
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5. Low Rank Approximations

Quantization: less bits per weight

Pruning: less number of weights
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* Layer responses lie in a low-

rank subspace

* Decompose a convolutional
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Low Rank Approximation for FC

Build a mapping from row / column indices of matrix W = [W(x, y)] to
vectors ¢ and j: x <> % = (i1,...,ig) and y <> 7 = (j1, ... ,Jd)-

TT-format for matrix W':
Wity sidi iy Ja) = W(x(3),y(3)) = Gilir, )] Goliz, jo] - - - G alias ja]

1xr rxr rxil
Type 1 im. time (ms) 100 im. time (ms)
CPU fully-connected layer | 16.1 97.2
CPU TT-layer 1.2 94.7
GPU fully-connected layer | 2.7 33

GPU TT-layer 1.9 12.9



