Lecture 8 - Efficient model serving

Machine Learning Prediction Serving

1. Models are learned from data Performance goal:
1) Low latency

2. Models are deployed and served together 2) High throughput

3) Minimal resource usage
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How do Models Look inside Boxes?
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Limitation 1: Resource Waste

* Resources are isolated across Black boxes ¢ .’ )

1. Unable to share memory space Jp—
=» Waste memory to maintain duplicate objects .’
(despite similarities between models)

2. No coordination for CPU resources between boxes

|
=» Serving many models can use too many threads \ )

machine

Limitation 2: Inconsideration for Ops’ Characteristics

1. Operators have different performance characteristics
* Concat materializes a vector
* LogReg takes only 0.3% (contrary to the training phase)

2. There can be a better plan if such characteristics are considered
* Re-use the existing vectors
* Apply in-place update in LogReg
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Limitation 3: Lazy Initialization

* ML.Net initializes code and memory lazily (efficient in training phase)

* Run 250 Sentiment Analysis models 100 times
=>» cold: first execution / hot: average of the rest 99

* Long-tail latency in the cold case
* Code analysis, Just—in-time (JIT) compilation, memory allocation, etc
* Difficult to provide strong Service-Level-Agreement (SLA)
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Requirements of a serving system

Serving system

e Goals:
o High flexibility for writing applications
o High efficiency on GPUs
o Satisfy latency SLA
e Challenges
o Provide common abstraction for different frameworks
o Achieve high efficiency
m  Sub-second latency SLA that limits the batch size
m  Model optimization and multi-tenancy causes long tail

Cascades:
Reading Rapid Object Detection using a Boosted Cascade of Simple Features

https://www.cs.cmu.edu/~efros/courses/LBMVO07/Papers/viola-cvpr-01.pdf

Talk about Cascading classifiers:



https://cs.nyu.edu/courses/fall12/CSCI-GA.2560-001/
FaceRecognitionBoosting.pdf

Then talk about Willump
https://mlsys.org/media/Slides/mlsys/2020/balla(02-14-30)-02-15-45-1416-
willump_a_stat.pdf


https://cs.nyu.edu/courses/fall12/CSCI-GA.2560-001/FaceRecognitionBoosting.pdf
https://cs.nyu.edu/courses/fall12/CSCI-GA.2560-001/FaceRecognitionBoosting.pdf
https://mlsys.org/media/Slides/mlsys/2020/balla(02-14-30)-02-15-45-1416-willump_a_stat.pdf
https://mlsys.org/media/Slides/mlsys/2020/balla(02-14-30)-02-15-45-1416-willump_a_stat.pdf

