Lecture 7 - Distributed ML

Source of original slides: Joseph Gonzales

What is the Problem Being Solved?

» Training models is fime consuming
» Convergence can be slow
» Training is computationally intensive

» Not all models fit in single machine or GPU memory

» Less of a problem: big data
» Problem for data preparation / management
» Not a problem for training ... why?

How do we measure success of large scale ML?

» Machine Learning: Minimize passes through the training data
» Easy to measure, but not informative ... why?

» Systems: minimize time to complete a pass through the
training data
» Easy to measure, but not informative ... why?
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Key Problems Addressed in

DistBelief Paper

Main Problem

> Speedup training for large models

Sub Problems

» How to partition models and data

» Variance in worker performance - Stragglers

» Failures in workers = Fault-Tolerance

Crash course on Stochastic Gradient Descent



The Gradient Descent Algorithm

9 « initial model parameters (random, warm start)

For t from 1 to convergence:
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9 + initial model parameters (random, warm start)
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How do we distribute this
computation?2

Data parallelism: divide data across machines, compute local
gradient sums and then aggregate across machines. repeat.

Over Training Dataset

Issues? Repeatedly scanning the data... what if we cache it?



The empirical gradient is an approximation of what | really want:
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Law of large numbers > more data provides a better
approximation (variance in the estimator decreases linearly)

Do I really need to use all the data?
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Random subset of Small B: fast but less accurate
the data Large B: slower but more accurate

60 « initial vector (random, zeros ...)

For t from 1 to convergence:
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Gradient Descent

0=0(t)

9 + initial vector (random, zeros ...)
For t from O to convergence:

B ~ Random subset of indices
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How do you distribute SGD?¢

0 « initial vector (random, zeros ...)

Model Parallelism

For t from 0 to convergence: speed up Gradient.

B ~ Random subset of indices Depends on Model
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Data Speed up Sum.
Parallelism Depends on size of B

Combine Model and Data Parallelism
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This appears in earlier work on graph systems ... Downpour SGD



Combine Model and Data Parallelism

Data Parallelism

Parasnater Servar w=w- r/Aw Parameter Server
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> Essentially a sharded key-value store
» support for put, get, add

» ldea appears in earlier papers:

“An Architecture for Parallel Topic “Scalable Inference in Latent Variable Models”,
Models”, Smola and Narayanamruthy. Ahmed, Aly, Gonzalez, Narayanamruthy, and
(VLDB'10) Smola. (WSDM'12)

Star Model Star Model Split Over 3 Machines

5% Sl

DistBelief was probably the first paper to call a sharded key-value store a Parameter Server.



How do you distribute SGD¢

0(©) « initial vector (random, zeros ...)
For t from O to convergence:

B ~ Random subset of indices
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Data Slow? (~150m:s)
Parallelism Depending on size of B

Batch Size Scaling

» Increase the batch size by adding machines
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» Each server processes a fixed batch size (e.g., n=32)

» As more servers are added (k) the effective overall
batch size increases linearly

» Why do these additional servers help?



Bigger isn't Always Better

> Motivation for larger batch sizes
» More opportunities for parallelism = but is it useful?
» Recall (1/n variance reduction):
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> Is a variance reduction helpful?

> Only if it let's you take bigger steps (move faster)
» Doesn’t affect the final answer...

Rough “Intfuition™

Small batch gradient descent acts as a regularizer
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Parameter values along some direction

Key problem: Addressing the generalization gap for large batch sizes.



Solution: Linear Scaling Rule

» Scale the learning rate linearly with the batch size
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» Addresses generalization performance by taking larger
steps (also improves training convergence)

> Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?
» Gradual warmup solution: increase learning rate scaling from
constant to linear in first few epochs
» Doesn’t help for very large k...



