Lecture 7 - Distributed ML

Source of original slides: Joseph Gonzales

What is the Problem Being Solved?

» Training models is fime consuming
» Convergence can be slow
» Training is computationally intensive

» Not all models fit in single machine or GPU memory

» Less of a problem: big data
» Problem for data preparation / management
» Not a problem for training ... why?

How do we measure success of large scale ML?

» Machine Learning: Minimize passes through the training data
» Easy to measure, but not informative ... why?

» Systems: minimize time to complete a pass through the
training data
» Easy to measure, but not informative ... why?

|deal Metric of Success

How do we measure

Learning?

“Learning” “Learning”

Second Record

Convergence
Machine Learning
Property

Record

Second

Throughput
System
Property

Key Problems Addressed in

DistBelief Paper

Main Problem

> Speedup training for large models

Sub Problems

» How to partition models and data

» Variance in worker performance - Stragglers

» Failures in workers = Fault-Tolerance

Crash course on Stochastic Gradient Descent

The Gradient Descent Algorithm

9 « initial model parameters (random, warm start)

For t from 1 to convergence:

et gt —p, [=

n -
Learning Rate
e : Average Gradient of
Howdo e distribute this Over Training Dataset
computation?2

9 + initial model parameters (random, warm start)

For t from 1 to convergence:

1 —
et 9t —_ p, - Z; VoL(yi, f(zs;0))| o™

9=06(t)
Learning Rate

Average Gradient of

How do we distribute this
computation?2

Data parallelism: divide data across machines, compute local
gradient sums and then aggregate across machines. repeat.

Over Training Dataset

Issues? Repeatedly scanning the data... what if we cache it?

The empirical gradient is an approximation of what | really want:

Ve, £(050) ~ By (Ve £2:0)

=1

Law of large numbers > more data provides a better
approximation (variance in the estimator decreases linearly)

Do I really need to use all the data?

— Z VGL yz, f(wz, 9) Z VOL y'&a f(w'u 0))

Random subset of Small B: fast but less accurate
the data Large B: slower but more accurate

60 « initial vector (random, zeros ...)

For t from 1 to convergence:

1
O 60—, | = Y VeL(yi, f(:;9))
1=1

Gradient Descent

0=0(t)

9 + initial vector (random, zeros ...)
For t from O to convergence:

B ~ Random subset of indices

gt+1) . p(t) _ Nt (ZVOL(y'n (zi;0))

zEB

Stochastic Gradient Descent

9:9(’5))

suoloUN4 $507 9|gpsodwooaq BUILNSSY

How do you distribute SGD?¢

0 « initial vector (random, zeros ...)

Model Parallelism

For t from 0 to convergence: speed up Gradient.

B ~ Random subset of indices Depends on Model

1
o+l gt) _ i Bl ZVGL(%, f(z;0))
|B| =9

1€B

Stochastic Gradient Descent

Data Speed up Sum.
Parallelism Depends on size of B

Combine Model and Data Parallelism

Model Parallelism Data Parallelism
Parameter Server w=w- WAW

O000000
o/ 1]\
00 00 00
w00 (00 00
B & &

Data
Shards

Machine |
7 sulgpei

Machine 3
p suIpEl

This appears in earlier work on graph systems ... Downpour SGD

Combine Model and Data Parallelism

Data Parallelism

Parasnater Servar w=w- r/Aw Parameter Server

O000000 i (JOO00000
Tl =\

Modal | Asynchronousb] Mo:l;l‘ 0 Synchronous
reicns () (0 (00 Rep D%ﬁ@ﬁ@@

=8 B8 O -

Downpour SGD Sandblaster L-BFGS

Parameter Server W= w- 'wa

Parameter Servers O00000

/A I ¢+ \ R
> Essentially a sharded key-value store
» support for put, get, add

» ldea appears in earlier papers:

“An Architecture for Parallel Topic “Scalable Inference in Latent Variable Models”,
Models”, Smola and Narayanamruthy. Ahmed, Aly, Gonzalez, Narayanamruthy, and
(VLDB'10) Smola. (WSDM'12)

Star Model Star Model Split Over 3 Machines

5% Sl

DistBelief was probably the first paper to call a sharded key-value store a Parameter Server.

How do you distribute SGD¢

0(©) « initial vector (random, zeros ...)
For t from O to convergence:

B ~ Random subset of indices

1
P+ 9t _ p, (@ ZVGL(%, f(zi;0))
icB

Stochastic Gradient Descent

0:0(*«))

Data Slow? (~150m:s)
Parallelism Depending on size of B

Batch Size Scaling

» Increase the batch size by adding machines

k
1 1
(t+1) () _ 4 _E:_E: : .

iEBj
» Each server processes a fixed batch size (e.g., n=32)

» As more servers are added (k) the effective overall
batch size increases linearly

» Why do these additional servers help?

Bigger isn't Always Better

> Motivation for larger batch sizes
» More opportunities for parallelism = but is it useful?
» Recall (1/n variance reduction):

1 1
- > VeL(yi, f(z:;0)) ~ Bl > VoL(yi, f(z:;0))
i=1 eB
> Is a variance reduction helpful?

> Only if it let's you take bigger steps (move faster)
» Doesn’t affect the final answer...

Rough “Intfuition™

Small batch gradient descent acts as a regularizer

\ N\

Loss

Sharp Minima
Hypothesis

Parameter values along some direction

Key problem: Addressing the generalization gap for large batch sizes.

Solution: Linear Scaling Rule

» Scale the learning rate linearly with the batch size
A3

N

1) . o0 L1851

0 —~ 60— EE 5. > VoL(yi, f(z:;0))
= 1Bl =6

iGBj
» Addresses generalization performance by taking larger
steps (also improves training convergence)

> Sub-problem: Large learning rates can be destabilizing in
the beginning. Why?
» Gradual warmup solution: increase learning rate scaling from
constant to linear in first few epochs
» Doesn’t help for very large k...

