Lecture 6 - AutoML

Resources:

® Automl book:

Section 1. Motivation

Success of deep learning; we have deployments everywhere and successes in
different domains/applications

However, there is a big problem: The performance of deep learning models is

very sensitive to many hyper-parameters!
® Architectural hyper parameters

Units per layer

u::::_::} --------

" , Kernel size = , "

convolutional layers # fully connected layers

® Optimization algorithm, learning rates, momentum, batch normalization, batch
sizes, dropout rates, weight decay, data augmentation....

Easily 20-50 design decisions

Section 2. Goal of AutoML

The current deep learning practice requires the expert to choose the architecture
and the hyper parameters, train the deep learning model end-to-end and then

iterate

The promise of AutoML is true end-to-end learning

https://www.automl.org/book/

Meta-level _
! S learning & | —> Leiron):ng
N optimization
S’ A

The learning box can contain multiple ML-related operations:
— Clean and preprocess the data

Select/engineer better features

Select the model family

Set the hyper parameters

Construct ensembles of models

Section 3. Modern Hyperparameter Optimization
Section 3.1 AutoML as Hyperparameter Optimization

What is hyper parameter optimization?

Definition: Hyperparameter Optimization (HPO)
Let
@ A\ be the hyperparameters of a ML algorithm A with domain A,

® L(Ax, Dyrains Dyaliq) denote the loss of A, using hyperparameters A
trained on Dy,.qin and evaluated on D, ,;iq4.

The hyperparameter optimization (HPO) problem is to find a
hyperparameter configuration A* that minimizes this loss:

A" e arg min L(A,\ Dirain, Dl'uli(l)
AEA

We have different types of hyper parameters: continuous (learning rate), discrete
(number of unites), categorical (finite domain, e.g., algorithm, activation functions
etc)

We also have conditional hyperparameters they are activated only given another
hyperpameter value.

Example 1:
A = choice of optimizer (Adam or SGD)
B = Adam’s second momentum hyperparameter (only active if A=Adam)

Example 2:

A = choice of classifier (RF or SVM)
B = SVM's kernel parameter (only active if A = SVM)

Definition: Combined Algorithm Selection and Hyperparameter

Optimization (CASH)
Let

o A={AW ... AW} be a set of algorithms

o A denote the hyperparameter space of A®) fori=1,....n

° C(Af\i), Dyyains Dyalia) denote the loss of Al using A\ € A trained
on Dy,qin and evaluated on D, ,iq4-

The Combined Algorithm Selection and Hyperparameter Optimization
(CASH) problem is to find a combination of algorithm A* = A() and
hyperparameter configuration A* € A(Y) that minimizes this loss:

P (%)
A*)* € argmin E(A)\ s Dirain, Dmli(l)
ADeANeA®)

Top-level hyperparameter and then all other hyperparamters are conditional
hyperparamters.

Section 3.2 Blackbox optimization

DNN hyperparameter = - Validation
setting 4 performance f(4)

Blackbox |max f(A)
optimizer | A€4

Evaluating the function is expensive (remember our previous discussions on model
evaluation in the last class).

Methods for blackbox optimization:
1. Grid Search

2. Random Search

Grid Layout Random Lavout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Image source: Bergstra & Bengio, JMLR 2012

3. Bayesian optimization

o Approach

— Fit a proabilistic model to the
function evaluations (4, f (1))

— Use that model to trade off
exploration VS. exp]oitation acquisition max

acquisition (utility) function

e Popular since Mockus [1974]
— Sample-efficient
— Works when objective is
nonconvex, noisy, has
unknown derivatives, etc
— Recent convergence results
[Srinivas et al, 2010; Bull 2011; de

Freitas et al. 20 12; Kawaguchi et

al, 2016]

Image source: Brochu et al, 2010

See lecture notes for details

Bayesian optimization can be very slow. Different methods to speed things up!
Section 3.3. Beyond Hyperparameter Optimization

See:

Section 4. Neural Architecture Search Spaces

https://media.neurips.cc/Conferences/NIPS2018/Slides/hutter-vanschoren-part1-2.pdf
https://media.neurips.cc/Conferences/NIPS2018/Slides/hutter-vanschoren-part1-2.pdf

input

output

Chain-structured space
(different colours:
different layer types)

More complex space
with multiple branches
and skip connections

o Cell search space by Zoph et al [CVPR 2018]

E E{ Select one Select second Select operation for Select operation for Select method to
§ k) N hidden state N hidden state N first hidden state [| second hidden state [> combine hidden state
\ \ \ \ \
. & \ T \ T \ T \ T \ T
33
i \ \ \ \ \
=5 > P> F—>
88\ g - v L \ ‘o=
- - - - ~
[repeat B times |
} 1 repeat B times I {

— 5 categorical choices for Nth block:
o 2 categorical choices of hidden states, each with domain {0, ..., N-1}
o 2 categorical choices of operations
o 1 categorical choice of combination method
— Total number of hyperparameters for the cell: 5B (with B=5 by default)

e Unrestricted search space

— Possible with conditional hyperparameters
(but only up to a prespecified maximum number of layers)

— Example: chain-structured search space
o Top-level hyperparameter: number of layers L
o Hyperparameters of layer k conditional on L >=k

Use of reinforcement learning combined with recurrent neural networks to learn a
better model

Sample architecture A
with probability p

[y

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

1 J

Compute gradient of p and
scale it by R to update
the controller

Read work:

https://arxiv.org/pdf/1611.01578.pdf
http://rll.berkeley.edu/deeprlcoursesp17/docs/quoc_barret.pdf

In Neural Architecture Search, we use a controller to generate architectural hyperparameters of
neural networks. To be flexible, the controller is implemented as a recurrent neural network. Let’s
suppose we would like to predict feedforward neural networks with only convolutional layers, we
can use the controller to generate their hyperparameters as a sequence of tokens:

Number Filter Filter Stride Stride Number Filter
* |of Filters|, | Height [\ [Width [. | Height [\ | Width [, |of Filters[. | Height [\

‘ ‘L‘ayer N-1 Layer N Layer N+1

Figure 2: How our controller recurrent neural network samples a simple convolutional network. It
predicts filter height, filter width, stride height, stride width, and number of filters for one layer and

repeats. Every prediction is carried out by a softmax classifier and then fed into the next time step
as input.

