
●
○

●
○
○
○

●

●

●

●

Lecture 5 - ML in database systems

Section 1. Learning in a DBMS

Source: Cloudy with High Chance of DBMS: A 10-year Prediction for
Enterprise-Grade ML, CIDR 2020

Why ML in a Database System?

Proximity to Data: minimize data movement
We want to avoid data duplication -> inconsistency

Database systems are optimized for efficient access and manipulation of data:
Data layout, buffer management, indexing
Normalization can improve performance (We will see later)
Schema information can help in modeling/data validation

Predictions with data: We can use trained models as user-defined predicates
with data in the database
Security: Data governance we can control who and what models have access
to what data (we can leverage existing SLAs)

Challenges of Learning in Database

Abstractions: The relational abstraction might not be the right one for
learning algorithms
Access Patterns: How does the ML algorithm access data? Sequentially,
randomly, repeated scans

●

●

Cost Models and Learning: Can the cost-optimizations of the DB system
help?
New Data Types: Images, video, models, how do we store them and manage
them?

Section 2. Key Ideas in relational database management systems.

1) Logical data independence: Relational database system organize the data
logically in relations (Tables). The ability to change the Conceptual (Logical)
schema without changing the External schema (User View) is called logical data
independence. For example, the addition or removal of new entities, attributes, or
relationships to the conceptual schema or having to rewrite existing application
programs.

●
●

●
○
○

●
●

2) Physical data independence: The ability to change the physical schema
without changing the logical schema is called physical data independence. For
example, a change to the internal schema, such as using different file organization
or storage structures, storage devices, or indexing strategy, should be possible
without having to change the conceptual or external schemas.

Database management systems hide how data is stored, The system can optimize
storage and computation without changing applications.

The physical data layout/ordering of the data is determined by the system and the
goal is to maximize performance.

3) Relational Algebra and Declarative Specification of Data Processing (SQL)

Declarative programming: Users just need to state what they want not how to
implement it and how to get it.
Advantages of declarative programming: Enable the system to find the best way
to achieve the result (optimization), more compact and easier to learn for non-
programmers (?)

Challenges of declarative programming
System performance depends heavily on automatic optimization
Some languages may not be Turing complete (user-defined extensions)

Another big advantage of databases is: out-of-core computation

Premise: data does not fit in memory
Database systems are typically designed to operate on databases larger than
main memory

Algorithms must manage memory buffers and disk
Page level memory buffers
Sequential reads/writes to disk

Understand relative costs of memory vs disk
Core idea: bring part of the data in memory and operate on it

EXAMPLE: Grace hash join

Grace Hash Join 1: Partition Phase

Grace Hash Join 2: Build and Probe

Cost of Hash Join

Section 3. Examples of ML and DB integration.

Reading: https://www.cs.stanford.edu/people/chrismre/papers/bismarck.pdf

Many ML techniques (mostly generalized linear models) can be reduced to
mathematical programming and there is a single solver (Incremental Gradient
Descent) that fits existing database system abstractions (User Defined
Aggregates).

Section 4. Reading on Workload optimization

