Lecture 5 - ML in database systems

Section 1. Learning in a DBMS
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Figure 1: Flock reference architecture for a canonical data science lifecycle.

Source: Cloudy with High Chance of DBMS: A 10-year Prediction for
Enterprise-Grade ML, CIDR 2020

Why ML in a Database System?

® Proximity to Data: minimize data movement
O We want to avoid data duplication -> inconsistency
® Database systems are optimized for efficient access and manipulation of data:
© Data layout, buffer management, indexing
0 Normalization can improve performance (We will see later)
© Schema information can help in modeling/data validation
® Predictions with data: We can use trained models as user-defined predicates
with data in the database
® Security: Data governance we can control who and what models have access
to what data (we can leverage existing SLAS)

Challenges of Learning in Database

® Abstractions: The relational abstraction might not be the right one for
learning algorithms

® Access Patterns: How does the ML algorithm access data? Sequentially,
randomly, repeated scans



® Cost Models and Learning: Can the cost-optimizations of the DB system

help?

® New Data Types: Images, video, models, how do we store them and manage

them?

Section 2. Key Ideas in relational database management systems.

Sales relation:

~ Tuple (row)

Name

Sue $200.00

Joey $333.99 _\

Alice $999.00
(column) |

1) Logical data independence: Relational database system organize the data
logically in relations (Tables). The ability to change the Conceptual (Logical)
schema without changing the External schema (User View) is called logical data
independence. For example, the addition or removal of new entities, attributes, or
relationships to the conceptual schema or having to rewrite existing application

programs.
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2) Physical data independence: The ability to change the physical schema
without changing the logical schema is called physical data independence. For
example, a change to the internal schema, such as using different file organization
or storage structures, storage devices, or indexing strategy, should be possible
without having to change the conceptual or external schemas.

Database management systems hide how data is stored, The system can optimize
storage and computation without changing applications.

The physical data layout/ordering of the data is determined by the system and the
goal is to maximize performance.

3) Relational Algebra and Declarative Specification of Data Processing (SQL)

Declarative programming: Users just need to state what they want not how to
implement it and how to get it.

Advantages of declarative programming: Enable the system to find the best way
to achieve the result (optimization), more compact and easier to learn for non-
programmers (?)

Challenges of declarative programming
® System performance depends heavily on automatic optimization
® Some languages may not be Turing complete (user-defined extensions)

Another big advantage of databases is: out-of-core computation

Premise: data does not fit in memory
Database systems are typically designed to operate on databases larger than
main memory
® Algorithms must manage memory buffers and disk
O Page level memory buffers
O Sequential reads/writes to disk
® Understand relative costs of memory vs disk
® Core idea: bring part of the data in memory and operate on it

EXAMPLE: Grace hash join



Grace Hash Join
R, S =a,(RxS)

» Requires equality predicate 6.
» Works for Equi-Joins & Natural Joins

» Two Stages:
w » Partition tuples from R and S by join key

g’\\i\ » all tuples for a given key in same partition
> Build & Probe a separate hash table for each partition
Qo@( » Assume partition of smaller rel. fits in memory
CP(\ » Recurse if necessary...

Grace Hash Join 1: Partition Phase
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Grace Hash Join 2: Build and Probe
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Partltlonlng Phase Build & Pro'be Phase
» Partitioning phase: read+write both relations
= 2([R]+[S]) I/Os

» Matching phase: read both relations, forward output
= [R+[S]

> Total cost of 2-pass hash join = 3([R]+[S])

Section 3. Examples of ML and DB integration.

Reading: https://www.cs.stanford.edu/people/chrismre/papers/bismarck.pdf



Interfaces

‘ Analytics Task H Objective

Interfaces:
User«( LR @ User—= @ Logistic Regression (LR) 3, log(1 + exp(—yiw™ z;)) + pl|d]1
Classification (SVM) 3 (1 — yiwTms) 4 + pllw]
LR M LMF Recommendation (LMF) Z(i’j)EQ(L?Rj — Mi;)* + u||L, R|%
Labeling (CRF) [48] >k [E] w; Fj (yk, zr) — log Z(z‘k)]
) ! Kalman Filters ST 11Cwe — Fwe)l3 + |we — Aw,_1]|3
Current In-RDBMS Analytics Bismarck In-RDBMS Analytics | Portfolio Optimization pTw —+ wiTw s.t. w cA

Many ML techniques (mostly generalized linear models) can be reduced to
mathematical programming and there is a single solver (Incremental Gradient
Descent) that fits existing database system abstractions (User Defined
Aggregates).

LR_Transition(ModelCoef *w, Example e) { ... SVM_Transition(ModelCoef *w, Example e) { ...
wx = Dot_Product(w, e.x); wx = Dot_Product(w, e.x);
sig = Sigmoid(-wx * e.y); c = stepsize * e.y;
c = stepsize * e.y * sig; if(1 - wx * e.y > 0) {
Scale_And_Add(w, e.x, ¢c); ... } Scale_And_Add(w, e.x, ¢); } ... }
CREATE AGGREGATE bismarck (..){ » State contains:
initialize(args) > state: > Model weights, k, ...
randomly initialize model weights
transition(state, row) > state: » Invoked repeatedly
single gradient update » Once per epoch
wktD)  y®) _ o, VI <row’ w(k)) » Bismarck stored
procedure
terminate(state) > result . .
return current model for epoch » Termination cond.
mexge (state, state) > state » Similar to IGD

used for parallel model averaging



Data Ordering Issues

» Data indexed/clustered on key feature or even the label

> Example: predicting customer churn - data is partitioned by
active customers and cancelled customers
> Why?

» May slow down convergence:

1

(1) Random
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Data Order Solutions

Shuffle data

» on each epoch (pass through data): Closest to stochastic gradient alg.
» Expensive data movement and duplication

» Once: good compromise but requires data movement and dup.
Sample data

. . Shared Model
» single reservoir sample per pass /0 Worker Memory Worker
» Train on less data per scan - slower convergence Reservolr gGradiznl Loop over

Sampling d
on Buffer A (]
» multiplexed reservoir sampling ““‘““
» Concurrently fraining on sample and raw data streams

Section 4. Reading on Workload optimization



Problem Formulation

Data » Solve multiple problems for

.. HENNAA subsets of rows and columns of
M

original data

2

X > Block conisists of:
ry » Loss functions L
o > Set of Sets of Rows / Columns
Solve (within e of opfisnum) .
» Accuracies e

x; = arg min L ((Allg,z);,b;))
z€ER? !

> Explore optimizations targeted at
solving the related problems

> Materialization, Sampling,
Compute reuse

For each t:
R, : set of rows

F; : set of cols

Optimization: Lazy vs Eager Materialization

> Lazy Materialization: construct each feature table as it is
needed from raw data

> Eager Materialization: precomputes the superset of
columns (features) and then projects away what is not
needed for each optimization task

> Tradeoffs

» Lazy = Higher computational cost, less storage overhead
» Eager - Less compute, greater storage overhead



