Objectives of today's lecture
* review supervision of machine learning models
» review multi-task learning

Section 1. Training Data for Machine Learning

The revolution in Al is largely due to the availability of data. Consider ImageNet for a moment as well as more recent
benchmarks in Natural Language Processing tasks. The core commonality of these benchmarks is that they make
available labeled training datasets with (hundreds of) thousands of training examples.

We will next see why labeled training data is fundamental in machine learning (we will review supervision) and we will
provide an overview of data collection in machine learning pipelines.

Section 1.1 Traditional Supervision Review

Standard supervised learning setup: We are given a training set of input-output (x, y) pairs, the learning algorithm
chooses a predictor h: X -> Y from a hypothesis class H (set of all “predictors” considered by the learning algorithm) and
we evaluate it based on unseen test data.
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We will use the training error (empirical risk) to find a hypothesis that minimizes the testing error (expected risk).
Supervised learning is a minimization problem:
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Depending on the task in hand (classification vs regression) we can use different loss functions. We present some
examples below:
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Section 1.2 Data Collection Overview

Please read the overview in the Survey Paper of Roh et al., 2019
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Figure 1. An overview of data collection problems in
machine learning
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Figure 2. The data collection flow chart.




Section 2. Noisy Data Labeling

We will cover three state-of-the-art methods for scaling data labeling (the goal is to reduce the time cost associated with
data labeling):

+ we can scale to multiple labelers (using crowdsourcing/expert-sourcing); labels can be noisy and have conflicts.

+ we can convert human intuition and knowledge regarding the class or targetof i value of an example to programatic
functions that can be applied to large collections of input, unlabeled data; rules can be noisy and correlated

+ In many cases we do not have explicit labels but we want the model to capture structure and dependencies in the data

generating distribution. We can use the context available in the raw data to enable self-supervised learning.
Section 2.1 Fusing Noisy Data (from the Crowd)

The generative model behind the labels generated by independent labelers for a data point; we consider items with binary
labels.

Let Y* be the true (hidden/unknown) label of the data point. Let Y* take values in {-1,1}. Consider K labelers and let X_k with
k=1, 2, ..., Kbe the labels assigned to the data point by the K labelers. We only observe labels X_k and need to fuse them
into a single label \hat{Y} for the data point.

We consider the following generative process for generating labels X_k

Step 1. Sample Y* ~ P(Y)
Step 2. Iterate over each labeler:
Given Y*, for labeler k flip a coin following a Bernoulli distribution with parameter p_k
(we will refer to p_k as the accuracy of labeler k)
If the coin returns 1 then set X_k = Y* else set X_k = -Y*

Goal: Assuming that the labelers are independent and that we only know the values for labels X_k generated from the
process above how can we find the unknown value Y*?

Section 2.1.1 Majority Vote (All labelers have the same accuracy p)

Majority Vote (MV) decides for type t if more than one half of the ratings are in favor of t (can be extended to plurality vote
when we consider categorical and not binary types; here we focus on binary types) W
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Section 2.1.2 Weighted Majority Vote and The Maximum A Posteriori Label (Labelers are independent but
have different accuracy values)
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Section 2.1.3 Learning the Labeler Accuracies
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Link: http://cs229.stanford.edu/notes2019fall/weak_supervision_notes.pdf



Section 2.2 Generating Labeled Data Programmatically (Data Programming)
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Figure 3: The typical programmatic labeling pipeline. Programs and heuristics are used as labelers
(similar to the crowdsourcing setting).

Section 2.3 Self-Supervised Learning

Hope to learn something equivalent Train this part on downstream
using unlabeled data tasks using labeled data

The goal of self-supervised learning: Learn a “good” representation of the data in an unsupervised manner and
then fine-tune it to different downstream tasks (using minimal labeled examples).

Typical loss:
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Link: http://www.offconvex.org/2019/03/19/CURL/



Section 3. Multi-task Learning

Example of related tasks:
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Section 3.1 Two Forms of Multi-Task Learning

Hard-parameter sharing: shared representation across different neural networks.
Soft-parameter sharing: regularization term in the loss so that weights of different network components “align”.
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Figure 2: Soft parameter sharing for multi-task learning in deep neural networks

Figure 1: Hard parameter sharing for multi-task learning in deep neural networks

Section 3.2 Why does Multi-Task Learning work?

+ Implicit increase of the training data for each network.
+ Representation bias: representations that perform well in multiple tasks are learned (less overfitting)

Link: https://arxiv.org/abs/1706.05098



