CS639: Data Management for Data Science

Midterm Review 2: MapReduce and NoSQL

Theodoros Rekatsinas
Today’s Lecture

1. Review Relational Databases and Relational Algebra

2. Next Lecture: Review MapReduce and NoSQL systems
The Map Reduce Abstraction for Distributed Algorithms

Distributed Data Storage

Map
(Shuffle)
Reduce
The Map Reduce Abstraction for Distributed Algorithms

Distributed Data Storage

Map

(Shuffle)

Reduce
The Map Reduce Abstraction for Distributed Algorithms

Distributed Data Storage

Map

(Shuffle)

Reduce
Map

(docID=1, v1)

(w1, 1)
(w2, 1)
(w3, 1)

(docID=2, v2)

...

(docID=3, v3)

...

....

Reduce

(w1, [1, 1, ...])
(w2, [1, 1,...])
(w3, [1, ...])

(w1, 73)
(w2, 31)
(w3, 15)

Shift
The Map Reduce Abstraction for Distributed Algorithms

- MapReduce is a high-level programming model and implementation for large-scale parallel data processing

- Like RDBMS adopt the relational data model, MapReduce has a data model as well
MapReduce’s Data Model

- Files!
 - A File is a bag of \((key, value)\) pairs
 - A bag is a multiset

- A map-reduce program:
 - Input: a bag of \((inputkey, value)\) pairs
 - Output: a bag of \((outputkey, value)\) pairs
• All the user needs to define are the MAP and REDUCE functions

• Execute proceeds in multiple MAP – REDUCE rounds
 • MAP – REDUCE = MAP phase followed REDUCE
MAP Phase

Step 1: the MAP phase

• User provides a MAP-function:
 • Input: \textbf{(input key, value)}
 • Output: bag of \textbf{(intermediate key, value)}

• System applies the map function in parallel to all \textbf{(input key, value)} pairs in the input file
Step 2: the REDUCE phase

• User provides a REDUCE-function:
 • Input: \((\text{intermediate key, bag of values})\)
 • Output: \((\text{intermediate key, values})\)

• The system will group all pairs with the same intermediate key, and passes the bag of values to the REDUCE function
MapReduce Programming Model

Input & Output: each a set of key/value pairs
Programmer specifies two functions:
map (in_key, in_value) -> list(out_key, intermediate_value)
 Processes input key/value pair
 Produces set of intermediate pairs
reduce (out_key, list(intermediate_value)) -> (out_key, list(out_values))
 Combines all intermediate values for a particular key
 Produces a set of merged output values (usually just one)
MapReduce: what happens in between?

- **Map**
 - Grab the relevant data from the source (parse into key, value)
 - Write it to an intermediate file

- **Partition**
 - Partitioning: identify which of R reducers will handle which keys
 - Map partitions data to target it to one of R Reduce workers based on a partitioning function (both R and partitioning function user defined)

- **Shuffle & Sort**
 - Shuffle: Fetch the relevant partition of the output from all mappers
 - Sort by keys (different mappers may have sent data with the same key)

- **Reduce**
 - Input is the sorted output of mappers
 - Call the user $Reduce$ function per key with the list of values for that key to aggregate the results
MapReduce: the complete picture
Step 1: Split input files into chunks (shards)

- Break up the input data into M pieces (typically 64 MB)

![Shard diagram]

Input files

Divided into M shards
Step 2: Fork processes

- Start up many copies of the program on a cluster of machines
 - **One master**: scheduler & coordinator
 - Lots of workers

- Idle workers are assigned either:
 - map tasks (each works on a shard) – there are M map tasks
 - reduce tasks (each works on intermediate files) – there are R
 * $R = \#$ partitions, defined by the user
Step 3: Run Map Tasks

- Reads contents of the input shard assigned to it
- Parses key/value pairs out of the input data
- Passes each pair to a user-defined *map* function
 - Produces intermediate key/value pairs
 - These are buffered in memory
Step 4: Create intermediate files

- Intermediate key/value pairs produced by the user’s *map* function buffered in memory and are periodically written to the local disk
 - Partitioned into R regions by a **partitioning function**
Step 4a: Partitioning

- Map data will be processed by Reduce workers
 - User’s Reduce function will be called once per unique key generated by Map.

- We first need to sort all the (key, value) data by keys and decide which Reduce worker processes which keys
 - The Reduce worker will do the sorting

- **Partition function**
 - Decides which of R reduce workers will work on which key
 - Default function: $\text{hash(key)} \mod R$
 - Map worker partitions the data by keys

- Each Reduce worker will later read their partition from every Map worker
Step 5: Reduce Task - sorting

- Reduce worker gets notified by the master about the location of intermediate files for its partition
- **Shuffle**: Uses RPCs to read the data from the local disks of the map workers
- **Sort**: When the reduce worker reads intermediate data for its partition
 - It sorts the data by the intermediate keys
 - All occurrences of the same key are grouped together
Step 6: Reduce Task - reduce

- The sort phase grouped data with a unique intermediate key
- User’s **Reduce** function is given the key and the set of intermediate values for that key

 < key, (value1, value2, value3, value4, ...) >

- The output of the **Reduce** function is appended to an output file
Step 7: Return to user

- When all *map* and *reduce* tasks have completed, the master wakes up the user program.

- The *MapReduce* call in the user program returns and the program can resume execution.
 - Output of *MapReduce* is available in *R* output files.
MapReduce: the complete picture

We need a distributed file system!
2. Spark
• Spark is really a different implementation of the MapReduce programming model
• What makes Spark different is that it operates on Main Memory
• Spark: we write programs in terms of operations on resilient distributed datasets (RDDs).
• RDD (simple view): a collection of elements partitioned across the nodes of a cluster that can be operated on in parallel.
• RDD (complex view): RDD is an interface for data transformation, RDD refers to the data stored either in persisted store (HDFS) or in cache (memory, memory+disk, disk only) or in another RDD
RDDs in Spark

RDD: Resilient Distributed Datasets

- **Like a big list:**
 - Collections of objects spread across a cluster, stored in RAM or on Disk
- **Built through parallel transformations**
- **Automatically rebuilt on failure**

Operations

- Transformations (e.g. map, filter, groupBy)
- Make sure input/output match
MapReduce vs Spark

Map and reduce tasks operate on key-value pairs

Spark operates on RDD
RDDs

- Partitions are recomputed on failure or cache eviction
- Metadata stored for interface:
 - Partitions – set of data splits associated with this RDD
 - Dependencies – list of parent RDDs involved in computation
 - Compute – function to compute partition of the RDD given the parent partitions from the Dependencies
 - Preferred Locations – where is the best place to put computations on this partition (data locality)
 - Partitioner – how the data is split into partitions
RDDs

Lazy computations model

Transformation cause only metadata change
DAG

- Directed Acyclic Graph – sequence of computations performed on data
- Node – RDD partition
- Edge – transformation on top of the data
- Acyclic – graph cannot return to the older partition
- Directed – transformation is an action that transitions data partitions state (from A to B)
Example: Word Count

```scala
> lines = sc.textFile("hamlet.txt")
> counts = lines.flatMap(lambda line: line.split(" "))
  .map(lambda word: (word, 1))
  .reduceByKey(lambda x, y: x + y)
```
Spark Architecture
Spark Components

- **Spark Driver**
- **Master**
- **Worker Nodes**
 - Worker Node 1
 - Tasks
 - Cache
 - RDD1-Block1
 - RDD1-Block2
 - RDD1-Block3
 - RDD1-Block4
 - Worker Node 2
 - Tasks
 - Cache
 - RDD1-Block1
 - RDD1-Block3
 - RDD1-Block4
 - Worker Node 3
 - Tasks
 - Cache
 - RDD1-Block1
 - RDD1-Block3
 - RDD1-Block5
 - Worker Node 4
 - Tasks
 - Cache
 - RDD1-Block2
 - RDD1-Block3
 - RDD1-Block4
 - Worker Node 5
 - Tasks
 - Cache
 - RDD1-Block2
 - RDD1-Block3
 - RDD1-Block5
Typical NoSQL architecture

Hashing function maps each key to a server (node)
CAP theorem for NoSQL

• What the CAP theorem really says: If you cannot limit the number of faults and requests can be directed to any server and you insist on serving every request you receive then you cannot possibly be consistent

• How it is interpreted: You must always give something up: consistency, availability or tolerance to failure and reconfiguration
CAP theorem for NoSQL

GIVEN:
- Many nodes
- Nodes contain *replicas of partitions* of the data

Consistency
- All replicas contain the same version of data
- Client always has the same view of the data (no matter what node)

Availability
- System remains operational on failing nodes
- All clients can always read and write

Partition tolerance
- Multiple entry points
- System remains operational on system split (communication malfunction)
- System works well across physical network partitions

CAP Theorem: satisfying all three at the same time is impossible
Visual Guide to NoSQL Systems

Available, Partition-Tolerant (AP) Systems achieve "eventual consistency" through replication and verification.

Relational (comparison)
- Key-Value
- Column-Oriented/Tabular
- Document-Oriented

Data Models

Available
- Dynamo
- Voldemort
- Tokyo Cabinet
- KAI

Partition Tolerance
- Cassandra
- SimpleDB
- CouchDB
- Riak

Pick Two

Consistent, Available (CA) Systems have trouble with partitions and typically deal with it with replication.

Consistent, Partition-Tolerant (CP) Systems have trouble with availability while keeping data consistent across partitioned nodes.

Consistency:
- All clients always have the same view of the data.

Partition Tolerance:
- The system works well despite physical network partitions.

Available:
- Each client can always read and write.

CA
- RDBMSs (MySQL, Postgres, etc)
- Aster Data Greenplum Vertica

AP
- Cassandra
- SimpleDB
- CouchDB
- Riak

CP
- BigTable
- Hypertable
- Hbase

- MongoDB
- Terrastore
- Scalaris
- Berkeley DB
- MemcacheDB
- Redis
Sharding of data

- Distributes a single logical database system across a cluster of machines
- Uses range-based partitioning to distribute documents based on a specific shard key
- Automatically balances the data associated with each shard
- Can be turned on and off per collection (table)
Replica Sets

- Redundancy and Failover
- Zero downtime for upgrades and maintenance

- Master-slave replication
 - Strong Consistency
 - Delayed Consistency

- Geospatial features
How does NoSQL vary from RDBMS?

- Looser schema definition
- Applications written to deal with specific documents/data
 - Applications aware of the schema definition as opposed to the data
- Designed to handle distributed, large databases
- Trade offs:
 - No strong support for ad hoc queries but designed for speed and growth of database
 - Query language through the API
 - Relaxation of the ACID properties
Benefits of NoSQL

Elastic Scaling
- RDBMS scale up – bigger load, bigger server
- NO SQL scale out – distribute data across multiple hosts seamlessly

DBA Specialists
- RDBMS require highly trained expert to monitor DB
- NoSQL require less management, automatic repair and simpler data models

Big Data
- Huge increase in data RDMS: capacity and constraints of data volumes at its limits
- NoSQL designed for big data
Benefits of NoSQL

Flexible data models
- Change management to schema for RDMS have to be carefully managed
- NoSQL databases more relaxed in structure of data
 - Database schema changes do not have to be managed as one complicated change unit
 - Application already written to address an amorphous schema

Economics
- RDMS rely on expensive proprietary servers to manage data
- No SQL: clusters of cheap commodity servers to manage the data and transaction volumes
- Cost per gigabyte or transaction/second for NoSQL can be lower than the cost for a RDBMS
Drawbacks of NoSQL

Support
- RDBMS vendors provide a high level of support to clients
 - Stellar reputation
- NoSQL – are open source projects with startups supporting them
 - Reputation not yet established

Maturity
- RDMS mature product: means stable and dependable
 - Also means old no longer cutting edge nor interesting
- NoSQL are still implementing their basic feature set
Drawbacks of NoSQL

Administration
- RDMS administrator well defined role
- No SQL’s goal: no administrator necessary however NO SQL still requires effort to maintain

Lack of Expertise
- Whole workforce of trained and seasoned RDMS developers
- Still recruiting developers to the NoSQL camp

Analytics and Business Intelligence
- RDMS designed to address this niche
- NoSQL designed to meet the needs of an Web 2.0 application - not designed for ad hoc query of the data
- Tools are being developed to address this need
ACID or BASE

- Atomicity
- Consistency
- Isolation
- Durability

Basically
- Available (CP)
- Soft-state (State of system may change over time)
- Eventually consistent (Asynchronous propagation)

Pritchett, D.: BASE: An Acid Alternative (queue.acm.org/detail.cfm?id=1394126)