
CS639:	
Data	Management	for	

Data	Science
Midterm	Review	2:	MapReduce	and	NoSQL

Theodoros	Rekatsinas

1



Today’s	Lecture

1. Review	Relational	Databases	and	Relational	Algebra

2. Next	Lecture:	Review	MapReduce	and	NoSQL	systems

2



The	Map	Reduce	Abstraction	for	Distributed	Algorithms

Distributed	
Data	Storage

Map

Reduce

(Shuffle)



The	Map	Reduce	Abstraction	for	Distributed	Algorithms

Distributed	
Data	Storage

Map

Reduce

(Shuffle)

map map map map map map

reduce reduce reduce reduce



The	Map	Reduce	Abstraction	for	Distributed	Algorithms

Distributed	
Data	Storage

Map

Reduce

(Shuffle)

map map map map map map

reduce reduce reduce reduce



(docID=1, v1)

(docID=2, v2)

(docID=3,	v3)

….

(w1,	1)

(w2,	1)

(w3,	1)

(w1,	1)

(w2,	1)

…

…

Map

(w1,	[1,	1,	…])

(w2,	[1,	1,…])

(w3,	[1,	…])

(w1,	73)

(w2,	31)

(w3,	15)

Reduce

Shift



The	Map	Reduce	Abstraction	for	Distributed	Algorithms

• MapReduce	is	a	high-level	programming	model	and	
implementation	for	large-scale	parallel	data	
processing

• Like	RDBMS	adopt	the	the	relational	data	model,	
MapReduce	has	a	data	model	as	well



MapReduce’s	Data	Model

• Files!	

• A	File	is	a	bag	of		(key,	value) pairs
• A	bag	is	a	multiset

• A	map-reduce	program:
• Input:	a	bag	of	(inputkey,	value)	pairs
• Output:	a	bag	of (outputkey,	value)	pairs



User	input

• All	the	user	needs	to	define	are	the	MAP	and	
REDUCE	functions

• Execute	proceeds	in	multiple	MAP	– REDUCE	rounds
• MAP	– REDUCE	=	MAP	phase	followed	REDUCE



MAP	Phase

Step	1:	the	MAP	phase
• User	provides	a	MAP-function:
• Input:	(input	key,	value)
• Output:	bag	of	(intermediate	key,	value)

• System	applies	the	map	function	in	parallel	to	all	(input	
key,	value)	pairs	in	the	input	file



REDUCE	Phase

Step	2:	the	REDUCE	phase
• User	provides	a	REDUCE-function:
• Input:	(intermediate	key,	bag	of	values)
• Output:	(intermediate	key,	values)

• The	system	will	group	all	pairs	with	the	same	intermediate	
key,	and	passes	the	bag	of	values	to	the	REDUCE	function



MapReduce	Programming	Model

Input	&	Output:	each	a	set	of	key/value	pairs
Programmer	specifies	two	functions:
map	(in_key,	in_value)	->	list(out_key,	intermediate_value)

Processes	input	key/value	pair
Produces	set	of	intermediate	pairs

reduce	(out_key,	list(intermediate_value))	->	(out_key,	list(out_values))
Combines	all	intermediate	values	for	a	particular	key
Produces	a	set	of	merged	output	values	(usually	just	one)



MapReduce:	what	happens	in	between?



MapReduce:	the	complete	picture



Step	1:	Split	input	files	into	chunks	(shards)



Step	2:	Fork	processes



Step	3:	Run	Map	Tasks



Step	4:	Create	intermediate	files



Step	4a:	Partitioning



Step	5:	Reduce	Task	- sorting



Step	6:	Reduce	Task	- reduce



Step	7:	Return	to	user



MapReduce:	the	complete	picture

We	need	a	
distributed	
file	system!



2.	Spark

24



Intro	to	Spark

• Spark	is	really	a	different	implementation	of	the	MapReduce	
programming	model

• What	makes	Spark	different	is	that	it	operates	on	Main	Memory
• Spark:	we	write	programs	in	terms	of	operations	on	resilient	

distributed	datasets	(RDDs).
• RDD	(simple	view):	a	collection	of	elements	partitioned	across	the	

nudes	of	a	cluster	that	can	be	operated	on	in	parallel.	
• RDD	(complex	view):	RDD	is	an	interface	for	data	transformation,	

RDD	refers	to	the	data	stored	either	in	persisted	store	(HDFS)	or	in	
cache	(memory,	memory+disk,	disk	only)	or	in	another	RDD



RDDs	in	Spark



MapReduce	vs	Spark



RDDs

• Partitions	are	recomputed	on	failure	or	cache	eviction
• Metadata	stored	for	interface:
• Partitions	– set	of	data	splits	associated	with	this	RDD
• Dependencies	– list	of	parent	RDDs	involved	in	computation
• Compute	– function	to	compute	partition	of	the	RDD	given	the	parent	

partitions	from	the	Dependencies
• Preferred	Locations	– where	is	the	best	place	to	put	computations	on	this	

partition	(data	locality)
• Partitioner – how	the	data	is	split	into	partitions



RDDs



DAG

• Directed	Acyclic	Graph	– sequence	of	computations	performed	on	
data

• Node	– RDD	partition
• Edge	– transformation	on	top	of	the	data
• Acyclic	– graph	cannot	return	to	the	older	partition
• Directed	– transformation	is	an	action	that	transitions	data	

partitions	state	(from	A	to	B)



Example:	Word	Count



Spark	Architecture



Spark	Components



Typical	NoSQL	architecture



CAP	theorem	for	NoSQL

• What	the	CAP	theorem	really	says: If	you	cannot	limit	the	number	of	
faults	and	requests	can	be	directed	to	any	server	and	you	insist	on	serving	
every	request	you	receive	then	you	cannot	possibly	be	consistent

• How	it	is	interpreted: You	must	always	give	something	up:	consistency,	
availability	or	tolerance	to	failure	and	reconfiguration



CAP	theorem	for	NoSQL



37



Sharding of	data



Replica	Sets



How	does	NoSQL	vary	from	RDBMS?



Benefits	of	NoSQL



Benefits	of	NoSQL



Drawbacks	of	NoSQL



Drawbacks	of	NoSQL



ACID	or	BASE


