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Today’s	Lecture

1. Review	Relational	Databases	and	Relational	Algebra

2. Next	Lecture:	Review	MapReduce	and	NoSQL	systems
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The	Map	Reduce	Abstraction	for	Distributed	Algorithms
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The	Map	Reduce	Abstraction	for	Distributed	Algorithms

• MapReduce	is	a	high-level	programming	model	and	
implementation	for	large-scale	parallel	data	
processing

• Like	RDBMS	adopt	the	the	relational	data	model,	
MapReduce	has	a	data	model	as	well



MapReduce’s	Data	Model

• Files!	

• A	File	is	a	bag	of		(key,	value) pairs
• A	bag	is	a	multiset

• A	map-reduce	program:
• Input:	a	bag	of	(inputkey,	value)	pairs
• Output:	a	bag	of (outputkey,	value)	pairs



User	input

• All	the	user	needs	to	define	are	the	MAP	and	
REDUCE	functions

• Execute	proceeds	in	multiple	MAP	– REDUCE	rounds
• MAP	– REDUCE	=	MAP	phase	followed	REDUCE



MAP	Phase

Step	1:	the	MAP	phase
• User	provides	a	MAP-function:
• Input:	(input	key,	value)
• Output:	bag	of	(intermediate	key,	value)

• System	applies	the	map	function	in	parallel	to	all	(input	
key,	value)	pairs	in	the	input	file



REDUCE	Phase

Step	2:	the	REDUCE	phase
• User	provides	a	REDUCE-function:
• Input:	(intermediate	key,	bag	of	values)
• Output:	(intermediate	key,	values)

• The	system	will	group	all	pairs	with	the	same	intermediate	
key,	and	passes	the	bag	of	values	to	the	REDUCE	function



MapReduce	Programming	Model

Input	&	Output:	each	a	set	of	key/value	pairs
Programmer	specifies	two	functions:
map	(in_key,	in_value)	->	list(out_key,	intermediate_value)

Processes	input	key/value	pair
Produces	set	of	intermediate	pairs

reduce	(out_key,	list(intermediate_value))	->	(out_key,	list(out_values))
Combines	all	intermediate	values	for	a	particular	key
Produces	a	set	of	merged	output	values	(usually	just	one)



MapReduce:	what	happens	in	between?



MapReduce:	the	complete	picture



Step	1:	Split	input	files	into	chunks	(shards)



Step	2:	Fork	processes



Step	3:	Run	Map	Tasks



Step	4:	Create	intermediate	files



Step	4a:	Partitioning



Step	5:	Reduce	Task	- sorting



Step	6:	Reduce	Task	- reduce



Step	7:	Return	to	user



MapReduce:	the	complete	picture

We	need	a	
distributed	
file	system!



2.	Spark
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Intro	to	Spark

• Spark	is	really	a	different	implementation	of	the	MapReduce	
programming	model

• What	makes	Spark	different	is	that	it	operates	on	Main	Memory
• Spark:	we	write	programs	in	terms	of	operations	on	resilient	

distributed	datasets	(RDDs).
• RDD	(simple	view):	a	collection	of	elements	partitioned	across	the	

nudes	of	a	cluster	that	can	be	operated	on	in	parallel.	
• RDD	(complex	view):	RDD	is	an	interface	for	data	transformation,	

RDD	refers	to	the	data	stored	either	in	persisted	store	(HDFS)	or	in	
cache	(memory,	memory+disk,	disk	only)	or	in	another	RDD



RDDs	in	Spark



MapReduce	vs	Spark



RDDs

• Partitions	are	recomputed	on	failure	or	cache	eviction
• Metadata	stored	for	interface:
• Partitions	– set	of	data	splits	associated	with	this	RDD
• Dependencies	– list	of	parent	RDDs	involved	in	computation
• Compute	– function	to	compute	partition	of	the	RDD	given	the	parent	

partitions	from	the	Dependencies
• Preferred	Locations	– where	is	the	best	place	to	put	computations	on	this	

partition	(data	locality)
• Partitioner – how	the	data	is	split	into	partitions



RDDs



DAG

• Directed	Acyclic	Graph	– sequence	of	computations	performed	on	
data

• Node	– RDD	partition
• Edge	– transformation	on	top	of	the	data
• Acyclic	– graph	cannot	return	to	the	older	partition
• Directed	– transformation	is	an	action	that	transitions	data	

partitions	state	(from	A	to	B)



Example:	Word	Count



Spark	Architecture



Spark	Components



Typical	NoSQL	architecture



CAP	theorem	for	NoSQL

• What	the	CAP	theorem	really	says: If	you	cannot	limit	the	number	of	
faults	and	requests	can	be	directed	to	any	server	and	you	insist	on	serving	
every	request	you	receive	then	you	cannot	possibly	be	consistent

• How	it	is	interpreted: You	must	always	give	something	up:	consistency,	
availability	or	tolerance	to	failure	and	reconfiguration



CAP	theorem	for	NoSQL
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Sharding of	data



Replica	Sets



How	does	NoSQL	vary	from	RDBMS?



Benefits	of	NoSQL



Benefits	of	NoSQL



Drawbacks	of	NoSQL



Drawbacks	of	NoSQL



ACID	or	BASE


