
CS639:	
Data	Management	for	

Data	Science
Midterm	Review	1:	Relational	Databases	and	Relational	Algebra

Theodoros	Rekatsinas

1

Today’s	Lecture

1. Review	Relational	Databases	and	Relational	Algebra

2. Next	Lecture:	Review	MapReduce	and	NoSQL	systems

2

Data	science	workflow

3

Section	2

https://cacm.acm.org/blogs/blog-cacm/169199-data-science-
workflow-overview-and-challenges/fulltext

• Data	represents	the	traces of	real-world	processes.
• The	collected	traces	correspond	to	a	sample of	those	processes.

• There	is	randomness and	uncertainty in	the	data	collection	process.

• The	process	that	generates	the	data	is	stochastic (random).
• Example:	Let’s	toss	a	coin!	What	will	the	outcome	be?	Heads	or	tails?	There	are	
many	factors	that	make	a	coin	toss	a	stochastic	process.

• The	sampling	process	introduces	uncertainty.
• Example:	Errors	due	to	sensor	position	due	to	error	in	GPS,	errors	due	to	the	angles	
of	laser	travel	etc.

4

Section	2

Uncertainty	and	Randomness

• Data	represents	the	traces of	real-world	processes.

• Part	of	the	data	science	process:	We	need	to	model the	real-world.

• A	model	is	a	function fθ(x)
• x:	input	variables	(can	be	a	vector)
• θ:	model	parameters

5

Section	2

Models

• Data	represents	the	traces of	real-world	processes.

• There	is	randomness and	uncertainty in	the	data	collection	process.

• A	model	is	a	function fθ(x)
• x:	input	variables	(can	be	a	vector)
• θ:	model	parameters

• Models	should	rely	on	probability	theory	to	capture	uncertainty	and	
randomness!

6

Section	2

Modeling	Uncertainty	and	Randomness

The	Relational	Model:	Schemata

• Relational	Schema:

Students(sid: string, name: string, gpa: float)

AttributesString,	float,	int,	etc.	
are	the	domains of	
the	attributes

Relation	name

8

The	Relational	Model:	Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An	attribute (or	
column)	is	a	typed	
data	entry	present	
in	each	tuple	in	
the	relation

The	number	of	
attributes	is	the	arity of	
the	relation

9

The	Relational	Model:	Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A	tuple or	row (or	record)	is	a	single	
entry	in	the	table	having	the	
attributes	specified	by	the	schema

The	number	of	
tuples	is	the	
cardinality of	
the	relation

10

The	Relational	Model:	Data
Student

A	relational	instance is	a	set of	tuples	
all	conforming	to	the	same	schema

In	practice	DBMSs	
relax	the	set	
requirement,	and	
use	multisets.		

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

• A	relational	schema describes	the	data	that	is	contained	in	a	
relational	instance

To	Reiterate

Let	R(f1:Dom1,…,fm:Domm)	be	a	relational	schema then,	
an	instance	of	R	is	a	subset	of	Dom1 x	Dom2 x	…	x	Domn

In	this	way,	a	relational	schema R	is	a	total	function	from	attribute	
names to	types

• A	relational	schema describes	the	data	that	is	contained	in	a	
relational	instance

One	More	Time

A	relation	R	of	arity t is	a	function:	
R	:	Dom1 x	…	x	Domt à {0,1}

Then,	the	schema	is	simply	the	signature	of	the	function

I.e.	returns	whether	or	not	a	tuple	
of	matching	types	is	a	member	of	it

Note	here	that	order	matters,	attribute	name	doesn’t…
We’ll	(mostly)	work	with	the	other	model	(last	slide)	in	

which	attribute	name	matters,	order	doesn’t!

A	relational	database

• A	relational	database	schema is	a	set	of	relational	schemata,	one	for	
each	relation

• A	relational	database	instance is	a	set	of	relational	instances,	one	for	
each	relation

Two	conventions:	
1. We	call	relational	database	instances	as	simply	databases
2. We	assume	all	instances	are	valid,	i.e.,	satisfy	the	domain	constraints

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expression

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!

• Five	basic	operators:
1. Selection: s
2. Projection:	P
3. Cartesian	Product:	´
4. Union:	È
5. Difference:	-

• Derived	or	auxiliary	operators:
• Intersection,	complement
• Joins	(natural,equi-join,	theta	join,	semi-join)
• Renaming: r
• Division

Relational	Algebra	(RA)

Note	that	RA	Operators	are	Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How	do	we	represent	
this	query	in	RA?

Π"#$%&,()$(𝜎()$,-./(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎()$,-./(Π"#$%&,()$(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are	these	logically	equivalent?

• Notation:	R1⋈	R2

• Joins	R1 and	R2 on	equality	of	all	shared	attributes
• If	R1 has	attribute	set	A,	and	R2 has	attribute	set	B,	and	they	share	attributes	A⋂B	=	C,	can	also	be	
written:	R1⋈ 𝐶	R2

• Our	first	example	of	a	derived	RA operator:
• Meaning:		R1⋈ R2 =	PA	U	B(sC=D(𝜌=→?(R1)	´ R2))
• Where:

• The	rename	𝜌=→? renames	the	shared	attributes	in	
one	of	the	relations

• The	selection	sC=D	checks	equality	of	the	shared	attributes
• The	projection	PA	U	B	eliminates	the	duplicate	

common	attributes

Natural	Join	(⋈)

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

Example:	Converting	SQL	Query	->	RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
sname = pname;

Π()$,$DDE&""(𝜎()$,-./(𝑆 ⋈ 𝑃))

Students(sid,sname,gpa)
People(ssn,sname,address)

RA	Expressions	Can	Get	Complex!

Person									Purchase										Person										Product

sname=fred sname=gizmo

P pidP ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

P name

RA	has	Limitations	!

• Cannot	compute	“transitive	closure”

• Find	all	direct	and	indirect	relatives	of	Fred
• Cannot	express	in	RA	!!!		

• Need	to	write	C	program,	use	a	graph	engine,	or	modern	SQL…

Name1 Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse
Nancy Lou Sister

SQL	Time!

SQL	Time!

Find all the distinct names of all companies that are based in Japan.

SQL	Time!

Find all the distinct names of all companies that are based in Japan.

SQL	Time!

Find	the	distinct	names	of	all	companies	that	are	based	in	Japan	and	
that	sold	a	product	to	an	AI	based	in	Cupertino.	

SQL	Time!

Find	the	distinct	names	of	all	companies	that	are	based	in	Japan	and	
that	sold	a	product	to	an	AI	based	in	Cupertino.	

SQL	Time!

Find	the	distinct	names	of	all	companies	that	have	sold	at	least	six	
distinct	products.	

SQL	Time!

Find	the	distinct	names	of	all	companies	that	have	sold	at	least	six	
distinct	products.	

SQL	Time!

Find	the	distinct	names	of	all	companies	that	have	not	sold	even	a	
single	product.	

SQL	Time!

Find	the	distinct	names	of	all	companies	that	have	not	sold	even	a	
single	product.	

SQL	Time!

Find	the	distinct	names	of	all	companies	such	that	every	product	they	
have	ever	sold	costs	at	least	10	thousand	dollars.	Companies	that	have	
not	sold	any	products	should	not	be	counted,	as	they	are	losers.	

SQL	Time!

Find	the	distinct	names	of	all	companies	such	that	every	product	they	
have	ever	sold	costs	at	least	10	thousand	dollars.	Companies	that	have	
not	sold	any	products	should	not	be	counted,	as	they	are	losers.	

Logical	vs.	Physical	Optimization

• Logical	optimization	(we	will	only	see	this	one):
• Find	equivalent	plans	that	are	more	efficient
• Intuition:	Minimize	#	of	tuples	at	each	step	by	changing	
the	order	of	RA	operators

• Physical	optimization:
• Find	algorithm	with	lowest	IO	cost	to	execute	
our	plan
• Intuition:	Calculate	based	on	physical	parameters	
(buffer	size,	etc.)	and	estimates	of	data	size	(histograms)

Execution

SQL	Query

Relational	
Algebra	(RA)	Plan

Optimized
RA	Plan

Recall:	Logical	Equivalence	of	RA	Plans

• Given	relations	R(A,B)	and	S(B,C):

• Here,	projection	&	selection	commute:	
• 𝜎FG/(ΠF(𝑅)) = ΠF(𝜎FG/(𝑅))

• What	about	here?
• 𝜎FG/(ΠJ(𝑅))	?= ΠJ(𝜎FG/(𝑅))

ΠF,?

R(A,B) S(B,C)

T(C,D)

sA<10

ΠF,?(𝜎FLMN 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Translating	to	RA

Logical	Optimization

• Heuristically,	we	want	selections	and	projections	to	occur	as	early	as	
possible	in	the	plan	
• Terminology:	“push	down	selections”	and	“pushing	down	projections.”

• Intuition:We	will	have	fewer	tuples	in	a	plan.
• Could	fail	if	the	selection	condition	is	very	expensive	(say	runs	some	image	
processing	algorithm).	
• Projection	could	be	a	waste	of	effort,	but	more	rarely.

ΠF,?

R(A,B) S(B,C)

T(C,D)

sA<10

ΠF,?(𝜎FLMN 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	

ΠF,?

R(A,B)

S(B,C)

T(C,D)

ΠF,? 𝑇 ⋈ 𝜎FLMN(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	

sA<10

ΠF,?

R(A,B)

S(B,C)

T(C,D)

ΠF,? 𝑇 ⋈ 𝜎FLMN(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
projection	so	it	
occurs	earlier	

sA<10

ΠF,?

R(A,B)

S(B,C)

T(C,D)

ΠF,? 𝑇 ⋈ ΠF,P 𝜎FLMN(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan We	eliminate	B	
earlier!

sA<10

ΠF,=

In	general,	when	
is	an	attribute	not	
needed…?

Please	go	over	the	examples	here:

• https://courses.cs.washington.edu/courses/cse544/99sp/homeworks
/sample/sample.html

• Only	the	first	4	questions!

40

41

Transaction	Properties:	ACID

• Atomic
• State	shows	either	all	the	effects	of	txn,	or	none	of	them

• Consistent
• Txn moves	from	a	state	where	integrity	holds,	to	another	where	integrity	
holds

• Isolated
• Effect	of	txns is	the	same	as	txns running	one	after	another	(ie looks	like	batch	
mode)

• Durable
• Once	a	txn has	committed,	its	effects	remain	in	the	database

ACID	continues	to	be	a	source	of	great	debate!	

42

ACID:	Atomicity

• TXN’s	activities	are	atomic:	all	or	nothing

• Intuitively:	in	the	real	world,	a	transaction	is	something	that	
would	either	occur	completely or	not	at	all

• Two	possible	outcomes	for	a	TXN

• It	commits:	all	the	changes	are	made

• It	aborts:	no	changes	are	made

Transactions
• A	key	concept	is	the	transaction	(TXN):	an atomic
sequence	of	db	actions	(reads/writes)

Atomicity:	An	action	
either	completes	
entirely or	not	at	all

43

Acct Balance
a10 20,000
a20 15,000

Acct Balance
a10 17,000
a20 18,000

Transfer	$3k	from	a10	to	a20:
1. Debit	$3k	from	a10
2. Credit	$3k	to	a20

• Crash	before	1,
• After	1	but	before	2,	
• After	2.

Written	naively,	in	
which	states	is	

atomicity preserved?

DB	Always	
preserves	
atomicity!

44

ACID:	Consistency

• The	tables	must	always	satisfy	user-specified	integrity	constraints
• Examples:

• Account	number	is	unique
• Stock	amount	can’t	be	negative
• Sum	of	debits	and	of	credits is	0

• How	consistency	is	achieved:
• Programmer	makes	sure	a	txn takes	a	consistent	state	to	a	consistent	state
• Systemmakes	sure	that	the	txn is	atomic

45

ACID:	Isolation

• A	transaction	executes	concurrently	with	other	transactions

• Isolation:	the	effect	is	as	if	each	transaction	executes	in	
isolation of	the	others.

• E.g.	Should	not	be	able	to	observe	changes	from	other	
transactions	during	the	run

Challenge:	Scheduling	Concurrent	
Transactions
• The	DBMS	ensures	that	the	execution	of	{T1,…,Tn}	is	
equivalent	to	some	serial execution

• One	way	to	accomplish	this:	Locking
• Before	reading	or	writing,	transaction	requires	a	lock	from	
DBMS,	holds	until	the	end

• Key	Idea: If	Ti wants	to	write	to	an	item	x	and	Tjwants	
to	read	x,	then	Ti,	Tj conflict.		Solution	via	locking:
• only	one	winner	gets	the	lock
• loser	is	blocked	(waits)	until	winner	finishes

A	set	of	TXNs	is	
isolated if	their	effect	
is	as	if	all	were	
executed	serially

46

What	if	Ti	and	Tj need	X	and	
Y,	and	Ti asks	for	X	before	Tj,
and	Tj asks	for	Y	before	Ti?
->	Deadlock!		One	is	
aborted…

All	concurrency	issues	handled	by	the	DBMS…

47

ACID:	Durability

• The	effect	of	a	TXN	must	continue	to	exist	(“persist”)	after	
the	TXN
• And	after	the	whole	program	has	terminated
• And	even	if	there	are	power	failures,	crashes,	etc.
• And	etc…

•Means:	Write	data	to	disk

Ensuring	Atomicity	&	Durability
• DBMS	ensures	atomicity even	if	a	TXN	crashes!

• One	way	to	accomplish	this:	Write-ahead	logging	
(WAL)

• Key	Idea: Keep	a	log	of	all	the	writes	done.
• After	a	crash,	the	partially	executed	TXNs	are	undone	
using	the	log

Write-ahead	Logging	
(WAL): Before	any	
action	is	finalized,	a	
corresponding	log	
entry	is	forced	to	disk

48

We	assume	that	the	log	is	on	
“stable”	storage

All	atomicity	issues	also	handled	by	the	DBMS…

Challenges	for	ACID	properties

• In	spite	of	failures:	Power	failures,	but	not	media	failures

• Users	may	abort	the	program:	need	to	“rollback	the	changes”
• Need	to	log what	happened

• Many	users	executing	concurrently
• Can	be	solved	via	locking	(we’ll	see	this	next	lecture!)

And	all	this	with…	Performance!!

