WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

CS639:
Data Management for
Data Science

Lecture 9: The MapReduce Programming Model
and Algorithms in MapReduce

Theodoros Rekatsinas



Logistics/Announcements

* Minor change on schedule

* Friday lecture covered by Paris Koutris

 We will skip Monday’s lecture (I am in the bay area)



Today’s Lecture

1. The MapReduce Abstraction
2. The MapReduce Programming Model

3. MapReduce Examples



1. The MapReduce Abstraction



The Map Reduce Abstraction for Distributed Algorithms

Distributed
Data Storage

Map
‘Q (Shuffle)
| =

Reduce




The Map Reduce Abstraction for Distributed Algorithms

map

|

e

red

uce

red

uce

Distributed
Data Storage
£

Map

red

uce

(Shuffle)

reduce Reduce




The Map Reduce Abstraction for Distributed Algorithms

map

|

e

red

uce

red

uce

Distributed
Data Storage
£

Map

red

uce

(Shuffle)

reduce Reduce




(docID=1, v1)

(wl, 1)

Shift

Reduce

1 (w2, 1)

(wl, [1,1,..])

(docID=2, v2)

d (w3, 1)

(w2, [1, 1,..])

| (w1, 73)

\\

> (wl, 1)

\

(docID=3, v3)

1 (w2, 1)

(w3, [1, ...])

1 (w2, 31)

> (w3, 15)




The Map Reduce Abstraction for Distributed Algorithms

* MapReduce is a high-level programming model and
implementation for large-scale parallel data
processing

 Like RDBMS adopt the the relational data model,
MapReduce has a data model as well



MapReduce’s Data Model

e Filesl!

 AFileis abag of (key, value) pairs
* Abagisamultiset

e A map-reduce Program.
* Input: a bag of (inputkey, value) pairs
QOutput: a bag of (outputkey, value) pairs



2. The MapReduce Programming Model



User input

e All the user needs to define are the MAP and
REDUCE functions

* Execute proceeds in multiple MAP — REDUCE rounds

MAP — REDUCE = MAP phase followed REDUCE



MAP Phase

Step 1: the MAP phase
e User provides a MAP-function:
* Input: (input key, value)
 Output: bag of (intermediate key, value)

 System applies the map function in parallel to all (input
key, value) pairs in the input file



REDUCE Phase

Step 2: the REDUCE phase

 User provides a REDUCE-function:
* Input: (intermediate key, bag of values)
 OQutput: (intermediate key, values)

* The system will group all pairs with the same intermediate
key, and passes the bag of values to the REDUCE function



MapReduce Programming Model

Input & Output: each a set of key/value pairs

Programmer specifies two functions:

map (in_key, in_value) -> list(out_key, intermediate value)
Processes input key/value pair
Produces set of intermediate pairs

reduce (out_key, list(intermediate value)) -> (out_key, list(out_values))
Combines all intermediate values for a particular key

Produces a set of merged output values (usually just one)



Example: what does the next program do?

map(String input_key, String input_value):
//input_key: document id
//input_value: document bag of words
for each word w in input_value:
Emitintermediate(w, 1);

reduce(String intermediate_key, Iterator intermediate_values):
//intermediate_key: word
//intermediate_values: ??7??
result = 0;
for each v in intermediate_values:
result +=v;
EmitFinal(intermediate_key, result);



Example: what does the next program do?

map(String input_key, String input_value):
//input_key: document id
//input_value: document bag of words
word_count = {}
for each word w in input_value:
increase word_count[w] by one
for each word w in word_count:

Emitintermediate(w, word_count[w]);

reduce(String intermediate_key, Iterator intermediate_values):
//intermediate_key: word
//intermediate_values: ????
result = 0;
for each v in intermediate_values:
result +=v;

EmitFinal(intermediate_key, result);



3. MapReduce Examples



Word length histogram

How many big, medium,
small, and tiny words are in
a document?

Big = 10+ letters
Medium = 5..9 letters
Small = 2..4 letters
Tiny = 1 letter

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that



Word length histogram

Split the document into
chunks and process
each chunk on a
different computer

Chunk 1

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many

real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

Chunk 2

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that



Word length histogram

Map Chunk 1

(204words)

Output
(Big, 17)
(Medium, 77)
(Small, 107)
(Tiny, 3)

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Chunk 1

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown

in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram'’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

Chunk 2

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were rying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that




Word length histogram

\VETREN !

MapReduce 1s a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown

in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine

Map task 2

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance. data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that

Output
(Big, 17)
(Medium, 77)
(Small, 107)
(Tiny, 3)

(Big, 17)
(Big, 20)

(Medium, 77)
(Medium, 71)

Output
(Big, 20)
(Medium, 71)
(Small, 93)
(Tiny, 6)

(Small, 107)
(Small, 93)

(Tiny, 3)
(Tiny, 6)

(Big, 37)

(Medium, 148)

(Small, 200)

(Tiny, 9)



Build an Inverted Index

Input:

docl, (“I love medium roast coffee”)
doc2, (“l do not like coffee”)
doc3, (“This medium well steak is great”)

doc4, (“I love steak”)

Output:

“roast”, (doc1)
“coffee”, (docl, doc?2)

“medium”, (doc1, doc3)
“steak”, (doc3, do4)



Let’s design the solution!
Input:

docl, (“I love medium roast coffee”)
doc2, (“I do not like coffee”)
doc3, (“This medium well steak is great”)

doc4, (“I love steak”)

Output:

“roast”, (docl)

“coffee”, (docl, doc?)
“medium”, (docl, doc3)
“steak”, (doc3, do4)



