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Logistics/Announcements

• Submission	template	for	PA2

• Bonus	problem	for	PA2

• Other	questions	on	PA2?



Today’s	Lecture

1. Scalability	and	Algorithmic	Complexity

2. Data-Parallel	Algorithms

3. The	MapReduce	Abstraction
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1.	Scalability	and	Algorithmic	
Complexity
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What	does	scalable	mean?

• Operationally:
• Works	even	if	the	data	does	not	fit	in	main	memory	

• Use	all	available	resources	(cores/memory)	on	a	single	node	(aka	scale	up)
• Can	make	use	of	1000s	of	cheap	computers	(cloud)	– elastic	(aka	scale	out)

• Algorithmically:
• If	you	have	N	data	items	you	should	not	perform	more	than	Nm	operations	
(polynomial	complexity)
• In	many	cases	it	should	be	N*log(N)	operations	(streaming	or	too	large	data)
• If	you	have	N	data	items,	you	must	do	no	more	than	Nm/k operations	for	some	
large	k	(k	=	number	of	cores/threads)



A	sketch	of	algorithmic	complexity

• Example:	Find	matching	string	sequences

• Given	a	set	of	string	sequences
• Find	all	sequences	equal	to	“GATTACGA”



Example:	Find	matching	string	sequences

GATTACGA



Example:	Find	matching	string	sequences

GATTACGA
TACCTGCC

Time	=	0:									TACCTGCC ?		GATTACGA



Example:	Find	matching	string	sequences

GATTACGA
TACCTGCC

Time	=	0:									TACCTGCC ?		GATTACGA
No	move	cursor	to	next	data	entry



Example:	Find	matching	string	sequences

GATTACGA
EFTAAGCA

Time	=	1:									EFTAAGCA ?		GATTACGA
No	move	cursor	to	next	data	entry



Example:	Find	matching	string	sequences

GATTACGA

Time	=	2:									XXXXXXX		?		GATTACGA
No	move	cursor	to	next	data	entry



Example:	Find	matching	string	sequences

GATTACGA

Time	=	n:									GATTACGA ?		GATTACGA
Yes!	Output	matching	sequence



Example:	Find	matching	string	sequences

GATTACGA

If	we	have	40	records	we	need	to	perform	40	comparisons



Example:	Find	matching	string	sequences

GATTACGA

For	N	records	we	perform	N	comparisons
The	algorithmic	complexity	is	order	N:	O(N)



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Time	=	0:	Start	at	50%	mark	CTGTACA <	GATTACGA

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Time	=	1:	Start	at	50%	mark	CTGTACA <	GATTACGA
Skip	to	75%	mark	(you	know	your	sequence	is	in	the	second	half)

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Time	=	2:We	are	at	the	75%	mark	TTGTCCA >	GATTACGA
Skip	to	62.5%	mark Match:	GATTACGA =	GATTACGA
We	find	our	sequence	in	three	steps.	Now	we	can	scan	entries	
sequentially.

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

How	many	comparisons?	
For	N	records	we	did	log(N)	comparisons
The	algorithm	has	complexity	O(log(N))	— much	better	scalability

Increasing	Lexicographic	Order



2.	Data-Parallel	Algorithms
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New	task:	Trim	string	sequences

• Given	a	set	of	string	sequences
• Trim	the	final	n	characters	of	each	sequence
• Generate	a	new	dataset	



New	task:	Trim	string	sequences	(last	3	chars)

TACCTGCC

Time	=	0:									TACCTGCC ->		TACCTG



New	task:	Trim	string	sequences	(last	3	chars)

GATTCTGC

Time	=	1:									GATTCTGC ->	GATTC



New	task:	Trim	string	sequences	(last	3	chars)

CCCGAAT

Time	=	2:									CCCGAAT ->		CCCG
Can	we	use	a	data	structure	to	speed	this	operation?



New	task:	Trim	string	sequences	(last	3	chars)

CCCGAAT

Time	=	2:									CCCGAAT ->		CCCG
Can	we	use	a	data	structure	to	speed	this	operation?
No.	We	have	to	touch	every	record!	The	task	is	O(N).



New	task:	Trim	string	sequences	(last	3	chars)



New	task:	Trim	string	sequences	(last	3	chars)



New	task:	Trim	string	sequences	(last	3	chars)

Time	=	1:			Process	first	element	of	each	group



New	task:	Trim	string	sequences	(last	3	chars)

Time	=	2:			Process	second	element	of	each	group



New	task:	Trim	string	sequences	(last	3	chars)

Time	=	3:			Process	third	element	of	each	group
Etc..	How	much	time	does	this	take?



New	task:	Trim	string	sequences	(last	3	chars)

We	only	need	O(N/k)	operations	where	k	is	the	
number	of	groups	(workers)



Schematic	of	Parallel	Algorithms

1.	You	are	given	a	set	of	
“reads”.	You	have	to	
process	them	and	
generate	a	“write”

2.	You	distribute	the	
reads	among	k	
computers	(workers)



Schematic	of	Parallel	Algorithms
2.	You	distribute	the	
reads	among	k	
computers	(workers)

Function	f Function	f Function	f Function	f
3.	Apply	function	
f	to	each	read	
(for	every	item	in	
each	chunk)

4.	Obtain	a	big	
distributed	set	
of	outputs



Applications	of	parallel	algorithms

• Convert	TIFF	images	to	PNG
• Run	thousands	of	simulations	for	different	model	parameters
• Find	the	most	common	word	in	each	document
• Compute	the	word	frequency	of	every	word	in	a	single	document
• Etc….



Applications	of	parallel	algorithms

• Convert	TIFF	images	to	PNG
• Run	thousands	of	simulations	for	different	model	parameters
• Find	the	most	common	word	in	each	document
• Compute	the	word	frequency	of	every	word	in	a	single	document
• Etc….

• There	is	a	common	pattern	in	all	these	applications



Applications	of	parallel	algorithms

• A	function	that	maps	a	string	to	a	trimmed	string
• A	function	that	maps	a	TIFF	images	to	a	PNG	image
• A	function	that	maps a	set	of	parameters	to	simulation	results
• A	function	that	maps a	document	to	its	most	common	word
• A	function	that	maps a	document	to	a	histogram	of	word	frequencies



Applications	of	parallel	algorithms

• What	if	we	want	to	compute	the	word	frequency	across	all	
documents?



3.	The	MapReduce	Abstraction
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Compute	the	word	frequency	across 5M	
documents



Compute	the	word	frequency	across 5M	
documents



Challenge:	in	this	task

• How	can	we	make	sure	that	a	single	computer	has	access	to	every	
occurrence	of	a	given	word	regardless	of	which	document	it	appeared	
in?

• Ideas?



Compute	the	word	frequency	across 5M	documents



Compute	the	word	frequency	across 5M	documents



Compute	the	word	frequency	across 5M	documents



Compute	the	word	frequency	across 5M	documents

A	hash	function	is	any	function	that	can	be	used	to	
map	data	of	arbitrary	size	to	a	data	of	a	fixed	size



Compute	the	word	frequency	across 5M	documents



The	Map	Reduce	Abstraction	for	Distributed	Algorithms

Distributed	
Data	Storage

Map

Reduce

(Shuffle)


