WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

CS639:
Data Management for
Data Science

Lecture 8: Reasoning about Scale
& The MapReduce Abstraction

Theodoros Rekatsinas

Logistics/Announcements

 Submission template for PA2

 Bonus problem for PA2

 Other questions on PA2?

Today’s Lecture

1. Scalability and Algorithmic Complexity
2. Data-Parallel Algorithms

3. The MapReduce Abstraction

1. Scalability and Algorithmic
Complexity

What does scalable mean?

e Operationally:
* Works even if the data does not fit in main memory
* Use all available resources (cores/memory) on a single node (aka scale up)
e Can make use of 1000s of cheap computers (cloud) — elastic (aka scale out)

* Algorithmically:
* |f you have N data items you should not perform more than N™ operations
(polynomial complexity)
* In many cases it should be N*log(N) operations (streaming or too large data)

* If you have N data items, you must do no more than N™/k operations for some
large k (k = number of cores/threads)

A sketch of algorithmic complexity

* Example: Find matching string sequences

* Given a set of string sequences
* Find all sequences equal to “GATTACGA”

Example: Find matching string sequences

L_.g GATTACGA

Example: Find matching string sequences

1‘ L_.a GATTACGA

TACCTGCC

Time =0: TACCTGCC ? GATTACGA

Example: Find matching string sequences

1‘ L_.a GATTACGA

TACCTGCC

Time =0: TACCTGCC ? GATTACGA
No move cursor to next data entry

Example: Find matching string sequences

T L_.a GATTACGA

EFTAAGCA

Time =1: EFTAAGCA ? GATTACGA
No move cursor to next data entry

Example: Find matching string sequences

’r L_.g GATTACGA

Time = 2: XXXXXXX ? GATTACGA
No move cursor to next data entry

Example: Find matching string sequences

L_.g GATTACGA

Time = n: GATTACGA ? GATTACGA
Yes! Output matching sequence

Example: Find matching string sequences

L_.a GATTACGA

If we have 40 records we need to perform 40 comparisons

Example: Find matching string sequences

L_.g GATTACGA

For N records we perform N comparisons
The algorithmic complexity is order N: O(N)

What if we knew the sequences are sorted

Increasing Lexicographic Order

O7, L—-) GATTACGA ﬂ_ODZ

What if we knew the sequences are sorted

Increasing Lexicographic Order

O7, 1 50% lv—“;;GATTACGA ﬂ_O()Z

Time = 0: Start at 50% mark CTGTACA < GATTACGA

What if we

e

!!A!JAIAA

the sequences are sorted

Increasing Lexicographic Order

Time = 1: Start at 50% mark CTGTACA < GATTACGA
Skip to 75% mark (you know your sequence is in the second half)

What if we # the sequences are sorted

Increasirngg Lexicographic Order
A S A]

i W
il

GATTACG? t l

62, 6/

Time = 2: We are at the 75% mark TTGTCCA > GATTACGA
Skip to 62.5% mark Match: GATTACGA = GATTACGA
We find our sequence in three steps. Now we can scan entries

continontiallyvy

What if we # the sequences are sorted

Increasirngg Lexicographic Order
.-.

"] \‘\“]
mw W Illlll

GATTACG? v l

How many comparisons?
For N records we did log(N) comparisons
The algorithm has complexity O(log(N)) — much better scalability

2. Data-Parallel Algorithms

New task: Trim string sequences

* Given a set of string sequences
* Trim the final n characters of each sequence
* Generate a new dataset

New task: Trim string sequences (last 3 chars)

Ir

TACCTGCC

Time =0: TACCTGCC -> TACCTG

New task: Trim string sequences (last 3 chars)

T

GATTCTGC

Time =1: GATTCTGC -> GATTC

New task: Trim string sequences (last 3 chars)

lr

CCCGAAT

Time = 2; CCCGAAT -> CCCaG
Can we use a data structure to speed this operation?

New task: Trim string sequences (last 3 chars)

lr

CCCGAAT

Time = 2: CCCGAAT -> CCCG
Can we use a data structure to speed this operation?
No. We have to touch every record! The task is O(N).

New task: Trim string sequences (last 3 chars)

\

New task: Trim string sequences (last 3 chars)

LRI AT

New task: Trim string sequences (last 3 chars)

LT R AR AT

Time = 1: Process first element of each group

New task: Trim string sequences (last 3 chars)

T ERTE AR RN R

Time = 2: Process second element of each group

New task: Trim string sequences (last 3 chars)

LRI HERTTAR

Time = 3: Process third element of each group
Etc.. How much time does this take?

New task: Trim string sequences (last 3 chars)

LRI HERTTN

We only need O(N/k) operations where k is the
number of groups (workers)

Schematic of Parallel Algorithms

1. You are given a set of
“reads”. You have to
process them and
generate a “write”

2. You distribute the
reads among k
computers (workers)

2. You distribute the

Schematic of Parallel Algorithms reads among k

computers (workers)

J J

m

Y d

4. Obtain a big
distributed set
of outputs

3. Apply function
f to each read
(for every item in
each chunk)

Applications of parallel algorithms

* Convert TIFF images to PNG
* Run thousands of simulations for different model parameters
* Find the most common word in each document

 Compute the word frequency of every word in a single document
* Etc....

Applications of parallel algorithms

* Convert TIFF images to PNG

* Run thousands of simulations for different model parameters

* Find the most common word in each document

 Compute the word frequency of every word in a single document
* Etc....

* There is a common pattern in all these applications

Applications of parallel algorithms

* A function that maps a string to a trimmed string

* A function that maps a TIFF images to a PNG image

* A function that maps a set of parameters to simulation results
* A function that maps a document to its most common word

* A function that maps a document to a histogram of word frequencies

Applications of parallel algorithms

 What if we want to compute the word frequency across all
documents?

p ~
N\ as”™
~ - L
~AA—" i -l
~ N\~ e == o
"'V'—/D ——————
R 1) |=
N U=

eople , 63
_> z_a}-)s‘ﬂ.OD b\

0\035) As.i

3. The MapReduce Abstraction

Compute the word frequency across 5M
documents

L Millions of D cumershs I

| , D\’S\'Vi\w\‘(awmong \ wovkers

I_ID [1 L]

for eadh | S
c\oC FQ*UW\ Wmaf w\av w\ WW\? &?
(NO\‘O\)’QV'C OO W\GAI & \‘l ¥

Compute the word frequency across 5M
documents

L Millions f Dhcumernths |

| , D\’S\'Vi\ao\‘e awmong \ wovkers

I_ID [1 L]

for e:*ch\u N | a? wap -
doC f2ZAum Wa wwv W\ ™M &
(woro\,’e\’f Q) \70\\%3/ \ “’ o wh\,}:r <

Challenge: in this task

* How can we make sure that a single computer has access to every
occurrence of a given word regardless of which document it appeared
in?

e |[deas?

Compute the word frequency across 5M documents

L Millions of D cumernshs

Y .
T O O]

\ \ l | m‘“
WMof W ap MJ," M&l? &? Dighboted

[&]_rl_] 1 UL bk

w oveds

Compute the word frequency across 5M documents
D\S‘\'n\ou“'ccx

L w oveds

Worken fo

) U1 U sk

U-NCY

Compute the word frequency across 5M documents

z‘srbikd
[T R I R N LA R

+ Werken fo

[T T R (T e

Compute the word frequency across 5M documents

Copler \ XX

Co\mmuwlcou*fom

I [TTTT) S (T R (T ek

WZ VS¢ & k\as\a. 'eumch'ov. \'\zxe’

A hash function is any function that can be used to
map data of arbitrary size to a data of a fixed size

Distribouted
List *
sety of

w oveds

Worken fo

U-QMC.\/

Compute the word frequency across 5M documents

2\5‘\'\1\31‘}64
. st @
I ol fwef | L §
// W ovaS
COMmqucoJﬂ.om

1l sety of
phase Llllll‘ \“”,_) m | Z:Zeam

+ + Werkes fo
\ | | wIncy
R redvce
Feduce Vti" L Now we just
l’ cound the

The Map Reduce Abstraction for Distributed Algorithms

Distributed
Data Storage

Map

(Shuffle)

‘&\

Reduce

