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Lecture 8: Reasoning about Scale
& The MapReduce Abstraction

Theodoros Rekatsinas



Logistics/Announcements

 Submission template for PA2

 Bonus problem for PA2

 Other questions on PA2?



Today’s Lecture

1. Scalability and Algorithmic Complexity
2. Data-Parallel Algorithms

3. The MapReduce Abstraction



1. Scalability and Algorithmic
Complexity



What does scalable mean?

e Operationally:
* Works even if the data does not fit in main memory
* Use all available resources (cores/memory) on a single node (aka scale up)
e Can make use of 1000s of cheap computers (cloud) — elastic (aka scale out)

* Algorithmically:
* |f you have N data items you should not perform more than N™ operations
(polynomial complexity)
* In many cases it should be N*log(N) operations (streaming or too large data)

* If you have N data items, you must do no more than N™/k operations for some
large k (k = number of cores/threads)



A sketch of algorithmic complexity

* Example: Find matching string sequences

* Given a set of string sequences
* Find all sequences equal to “GATTACGA”



Example: Find matching string sequences

L_.g GATTACGA



Example: Find matching string sequences

1‘ L_.a GATTACGA

TACCTGCC

Time =0: TACCTGCC ? GATTACGA



Example: Find matching string sequences

1‘ L_.a GATTACGA

TACCTGCC

Time =0: TACCTGCC ? GATTACGA
No move cursor to next data entry



Example: Find matching string sequences

T L_.a GATTACGA

EFTAAGCA

Time =1: EFTAAGCA ? GATTACGA
No move cursor to next data entry



Example: Find matching string sequences

’r L_.g GATTACGA

Time = 2: XXXXXXX ? GATTACGA
No move cursor to next data entry



Example: Find matching string sequences

L_.g GATTACGA

Time = n: GATTACGA ? GATTACGA
Yes! Output matching sequence



Example: Find matching string sequences

L_.a GATTACGA

If we have 40 records we need to perform 40 comparisons



Example: Find matching string sequences

L_.g GATTACGA

For N records we perform N comparisons
The algorithmic complexity is order N: O(N)



What if we knew the sequences are sorted

Increasing Lexicographic Order

O7, L—-) GATTACGA ﬂ_ODZ



What if we knew the sequences are sorted

Increasing Lexicographic Order

O7, 1 50% lv—“;;GATTACGA ﬂ_O()Z

Time = 0: Start at 50% mark CTGTACA < GATTACGA



What if we

e

!!A!JAIAA

the sequences are sorted

Increasing Lexicographic Order

Time = 1: Start at 50% mark CTGTACA < GATTACGA
Skip to 75% mark (you know your sequence is in the second half)



What if we # the sequences are sorted

Increasirngg Lexicographic Order
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Time = 2: We are at the 75% mark TTGTCCA > GATTACGA
Skip to 62.5% mark Match: GATTACGA = GATTACGA
We find our sequence in three steps. Now we can scan entries

continontiallyvy



What if we # the sequences are sorted

Increasirngg Lexicographic Order
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How many comparisons?
For N records we did log(N) comparisons
The algorithm has complexity O(log(N)) — much better scalability



2. Data-Parallel Algorithms



New task: Trim string sequences

* Given a set of string sequences
* Trim the final n characters of each sequence
* Generate a new dataset



New task: Trim string sequences (last 3 chars)

Ir

TACCTGCC

Time =0: TACCTGCC -> TACCTG



New task: Trim string sequences (last 3 chars)

T

GATTCTGC

Time =1: GATTCTGC -> GATTC



New task: Trim string sequences (last 3 chars)

lr

CCCGAAT

Time = 2; CCCGAAT -> CCCaG
Can we use a data structure to speed this operation?



New task: Trim string sequences (last 3 chars)

lr

CCCGAAT

Time = 2: CCCGAAT -> CCCG
Can we use a data structure to speed this operation?
No. We have to touch every record! The task is O(N).



New task: Trim string sequences (last 3 chars)

\




New task: Trim string sequences (last 3 chars)

LRI AT



New task: Trim string sequences (last 3 chars)

LT R AR AT

Time = 1: Process first element of each group



New task: Trim string sequences (last 3 chars)

T ERTE AR RN R

Time = 2: Process second element of each group



New task: Trim string sequences (last 3 chars)

LRI HERTTAR

Time = 3: Process third element of each group
Etc.. How much time does this take?



New task: Trim string sequences (last 3 chars)

LRI HERTTN

We only need O(N/k) operations where k is the
number of groups (workers)



Schematic of Parallel Algorithms

1. You are given a set of
“reads”. You have to
process them and
generate a “write”

2. You distribute the
reads among k
computers (workers)




2. You distribute the

Schematic of Parallel Algorithms reads among k

computers (workers)
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4. Obtain a big
distributed set
of outputs

3. Apply function
f to each read
(for every item in
each chunk)




Applications of parallel algorithms

* Convert TIFF images to PNG
* Run thousands of simulations for different model parameters
* Find the most common word in each document

 Compute the word frequency of every word in a single document
* Etc....



Applications of parallel algorithms

* Convert TIFF images to PNG

* Run thousands of simulations for different model parameters

* Find the most common word in each document

 Compute the word frequency of every word in a single document
* Etc....

* There is a common pattern in all these applications



Applications of parallel algorithms

* A function that maps a string to a trimmed string

* A function that maps a TIFF images to a PNG image

* A function that maps a set of parameters to simulation results
* A function that maps a document to its most common word

* A function that maps a document to a histogram of word frequencies



Applications of parallel algorithms

 What if we want to compute the word frequency across all
documents?
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3. The MapReduce Abstraction



Compute the word frequency across 5M
documents
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Compute the word frequency across 5M
documents
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Challenge: in this task

* How can we make sure that a single computer has access to every
occurrence of a given word regardless of which document it appeared
in?

e |[deas?



Compute the word frequency across 5M documents

L Millions of D cumernshs

Y .
T O O ]

\ \ l | m‘“
WMof W ap MJ," M&l? &? Dighboted

[&]_rl_] 1 UL bk

w oveds




Compute the word frequency across 5M documents
D\S‘\'n\ou“'ccx

L w oveds

Worken fo

) U1 U sk

U-NCY




Compute the word frequency across 5M documents
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Compute the word frequency across 5M documents
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A hash function is any function that can be used to
map data of arbitrary size to a data of a fixed size
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Compute the word frequency across 5M documents
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The Map Reduce Abstraction for Distributed Algorithms

Distributed
Data Storage

Map

(Shuffle)
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Reduce



