
CS639:	
Data	Management	for	

Data	Science
Lecture	8:	Reasoning	about	Scale	
&	The	MapReduce	Abstraction

Theodoros	Rekatsinas
1



2

Logistics/Announcements

• Submission	template	for	PA2

• Bonus	problem	for	PA2

• Other	questions	on	PA2?



Today’s	Lecture

1. Scalability	and	Algorithmic	Complexity

2. Data-Parallel	Algorithms

3. The	MapReduce	Abstraction

3



1.	Scalability	and	Algorithmic	
Complexity

4



What	does	scalable	mean?

• Operationally:
• Works	even	if	the	data	does	not	fit	in	main	memory	

• Use	all	available	resources	(cores/memory)	on	a	single	node	(aka	scale	up)
• Can	make	use	of	1000s	of	cheap	computers	(cloud)	– elastic	(aka	scale	out)

• Algorithmically:
• If	you	have	N	data	items	you	should	not	perform	more	than	Nm	operations	
(polynomial	complexity)
• In	many	cases	it	should	be	N*log(N)	operations	(streaming	or	too	large	data)
• If	you	have	N	data	items,	you	must	do	no	more	than	Nm/k operations	for	some	
large	k	(k	=	number	of	cores/threads)



A	sketch	of	algorithmic	complexity

• Example:	Find	matching	string	sequences

• Given	a	set	of	string	sequences
• Find	all	sequences	equal	to	“GATTACGA”



Example:	Find	matching	string	sequences

GATTACGA



Example:	Find	matching	string	sequences

GATTACGA
TACCTGCC

Time	=	0:									TACCTGCC ?		GATTACGA



Example:	Find	matching	string	sequences

GATTACGA
TACCTGCC

Time	=	0:									TACCTGCC ?		GATTACGA
No	move	cursor	to	next	data	entry



Example:	Find	matching	string	sequences

GATTACGA
EFTAAGCA

Time	=	1:									EFTAAGCA ?		GATTACGA
No	move	cursor	to	next	data	entry



Example:	Find	matching	string	sequences

GATTACGA

Time	=	2:									XXXXXXX		?		GATTACGA
No	move	cursor	to	next	data	entry



Example:	Find	matching	string	sequences

GATTACGA

Time	=	n:									GATTACGA ?		GATTACGA
Yes!	Output	matching	sequence



Example:	Find	matching	string	sequences

GATTACGA

If	we	have	40	records	we	need	to	perform	40	comparisons



Example:	Find	matching	string	sequences

GATTACGA

For	N	records	we	perform	N	comparisons
The	algorithmic	complexity	is	order	N:	O(N)



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Time	=	0:	Start	at	50%	mark	CTGTACA <	GATTACGA

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Time	=	1:	Start	at	50%	mark	CTGTACA <	GATTACGA
Skip	to	75%	mark	(you	know	your	sequence	is	in	the	second	half)

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

Time	=	2:We	are	at	the	75%	mark	TTGTCCA >	GATTACGA
Skip	to	62.5%	mark Match:	GATTACGA =	GATTACGA
We	find	our	sequence	in	three	steps.	Now	we	can	scan	entries	
sequentially.

Increasing	Lexicographic	Order



What	if	we	knew	the	sequences	are	sorted

GATTACGA

How	many	comparisons?	
For	N	records	we	did	log(N)	comparisons
The	algorithm	has	complexity	O(log(N))	— much	better	scalability

Increasing	Lexicographic	Order



2.	Data-Parallel	Algorithms

20



New	task:	Trim	string	sequences

• Given	a	set	of	string	sequences
• Trim	the	final	n	characters	of	each	sequence
• Generate	a	new	dataset	



New	task:	Trim	string	sequences	(last	3	chars)

TACCTGCC

Time	=	0:									TACCTGCC ->		TACCTG



New	task:	Trim	string	sequences	(last	3	chars)

GATTCTGC

Time	=	1:									GATTCTGC ->	GATTC



New	task:	Trim	string	sequences	(last	3	chars)

CCCGAAT

Time	=	2:									CCCGAAT ->		CCCG
Can	we	use	a	data	structure	to	speed	this	operation?



New	task:	Trim	string	sequences	(last	3	chars)

CCCGAAT

Time	=	2:									CCCGAAT ->		CCCG
Can	we	use	a	data	structure	to	speed	this	operation?
No.	We	have	to	touch	every	record!	The	task	is	O(N).



New	task:	Trim	string	sequences	(last	3	chars)



New	task:	Trim	string	sequences	(last	3	chars)



New	task:	Trim	string	sequences	(last	3	chars)

Time	=	1:			Process	first	element	of	each	group



New	task:	Trim	string	sequences	(last	3	chars)

Time	=	2:			Process	second	element	of	each	group



New	task:	Trim	string	sequences	(last	3	chars)

Time	=	3:			Process	third	element	of	each	group
Etc..	How	much	time	does	this	take?



New	task:	Trim	string	sequences	(last	3	chars)

We	only	need	O(N/k)	operations	where	k	is	the	
number	of	groups	(workers)



Schematic	of	Parallel	Algorithms

1.	You	are	given	a	set	of	
“reads”.	You	have	to	
process	them	and	
generate	a	“write”

2.	You	distribute	the	
reads	among	k	
computers	(workers)



Schematic	of	Parallel	Algorithms
2.	You	distribute	the	
reads	among	k	
computers	(workers)

Function	f Function	f Function	f Function	f
3.	Apply	function	
f	to	each	read	
(for	every	item	in	
each	chunk)

4.	Obtain	a	big	
distributed	set	
of	outputs



Applications	of	parallel	algorithms

• Convert	TIFF	images	to	PNG
• Run	thousands	of	simulations	for	different	model	parameters
• Find	the	most	common	word	in	each	document
• Compute	the	word	frequency	of	every	word	in	a	single	document
• Etc….



Applications	of	parallel	algorithms

• Convert	TIFF	images	to	PNG
• Run	thousands	of	simulations	for	different	model	parameters
• Find	the	most	common	word	in	each	document
• Compute	the	word	frequency	of	every	word	in	a	single	document
• Etc….

• There	is	a	common	pattern	in	all	these	applications



Applications	of	parallel	algorithms

• A	function	that	maps	a	string	to	a	trimmed	string
• A	function	that	maps	a	TIFF	images	to	a	PNG	image
• A	function	that	maps a	set	of	parameters	to	simulation	results
• A	function	that	maps a	document	to	its	most	common	word
• A	function	that	maps a	document	to	a	histogram	of	word	frequencies



Applications	of	parallel	algorithms

• What	if	we	want	to	compute	the	word	frequency	across	all	
documents?



3.	The	MapReduce	Abstraction

38



Compute	the	word	frequency	across 5M	
documents



Compute	the	word	frequency	across 5M	
documents



Challenge:	in	this	task

• How	can	we	make	sure	that	a	single	computer	has	access	to	every	
occurrence	of	a	given	word	regardless	of	which	document	it	appeared	
in?

• Ideas?



Compute	the	word	frequency	across 5M	documents



Compute	the	word	frequency	across 5M	documents



Compute	the	word	frequency	across 5M	documents



Compute	the	word	frequency	across 5M	documents

A	hash	function	is	any	function	that	can	be	used	to	
map	data	of	arbitrary	size	to	a	data	of	a	fixed	size



Compute	the	word	frequency	across 5M	documents



The	Map	Reduce	Abstraction	for	Distributed	Algorithms

Distributed	
Data	Storage

Map

Reduce

(Shuffle)


