
CS639:	
Data	Management	for	

Data	Science
Lecture	5:	Principles	of	RDBMS

Theodoros	Rekatsinas
1

2

Announcements
• PA2
• Installation	of	sql module
• NetID

• PA2	questions?

Today’s	Lecture

1. Finish	SQL

2. Overview	of	an	RDBMS

3. Transactions	and	ACID

3

1.	SQL	(continue	from	Lecture	5)

4

1.	SQL	(Aggregation	and	Group	
By)

5

6

Aggregation

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except	COUNT,	all	aggregations	
apply	to	a	single	attribute

SELECT AVG(price)
FROM Product
WHERE maker = “Toyota”

• SQL	supports	several	aggregation operations:
• SUM,	COUNT,	MIN,	MAX,	AVG

7

• COUNT	applies	to	duplicates,	unless	otherwise	stated

SELECT COUNT(category)
FROM Product
WHERE year > 1995

Note:	Same	as	COUNT(*).		
Why?

We	probably	want:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation:	COUNT

8

Purchase(product, date, price, quantity)

More	Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What	do	these	mean?

9

Simple	Aggregations
Purchase
Product Date Price Quantity
bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10
bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50		(=	1*20	+	1.50*20)

10

Grouping	and	Aggregation

SELECT product,
SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s	see	what	this	means…

Find	total	sales	
after	10/1/2005	
per	product.

Purchase(product, date, price, quantity)

11

Grouping	and	Aggregation

1.	Compute	the	FROM and	WHERE clauses

2.	Group	by	the	attributes	in	the	GROUP	BY

3.	Compute	the	SELECT clause:	grouped	attributes	and	aggregates

Semantics	of	the	query:

12

1.	Compute	the	FROM and	WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

13

2.	Group	by	the	attributes	in	the	GROUP	BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

14

3.	Compute	the	SELECT clause:	grouped	
attributes	and	aggregates
SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

15

HAVING	Clause

Same	query	as	
before,	except	that	
we	consider	only	
products	that	have	
more	than
100	buyers

HAVING	clauses	contains	conditions	on	aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas	WHERE	clauses	condition	on	individual	tuples…

16

General	form	of	Grouping	and	Aggregation

• S	=	Can	ONLY	contain	attributes	a1,…,ak and/or	aggregates	over	other	attributes
• C1 =	is	any	condition	on	the	attributes	in	R1,…,Rn
• C2 =	is	any	condition	on	the	aggregate	expressions

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Why?

17

General	form	of	Grouping	and	Aggregation
SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation	steps:
1. Evaluate	FROM-WHERE:	apply	condition	C1 on	the		

attributes	in	R1,…,Rn
2. GROUP	BY	the	attributes	a1,…,ak
3. Apply	condition	C2 to	each	group	(may	have	aggregates)
4. Compute	aggregates	in	S	and	return	the	result

18

Group-by	v.s.	Nested	Query

• Find	authors	who	wrote	³ 10	documents:
• Attempt	1:	with	nested	queries

SELECT DISTINCT Author.name
FROM Author
WHERE COUNT(

SELECT Wrote.url
FROM Wrote
WHERE Author.login = Wrote.login) > 10

Author(login, name)
Wrote(login, url)

This	is
SQL	by
a	novice

19

Group-by	v.s.	Nested	Query

• Find	all	authors	who	wrote	at	least	10	documents:
• Attempt	2:	SQL	style	(with	GROUP	BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login = Wrote.login
GROUP BY Author.name
HAVING COUNT(Wrote.url) > 10

No	need	for	DISTINCT:	automatically	from	GROUP	BY

This	is
SQL		by
an	expert

Group-by	vs.	Nested	Query

Which	way	is	more	efficient?

• Attempt	#1-With	nested:	How	many	times	do	we	do	a	SFW	query	
over	all	of	the	Wrote	relations?

• Attempt	#2-With	group-by:	How	about	when	written	this	way?

With	GROUP	BY	can	be	much more	efficient!

2.	Overview	of	an	RDBMS

21

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expression

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!

Logical	vs.	Physical	Optimization

• Logical	optimization	(we	will	only	see	this	one):
• Find	equivalent	plans	that	are	more	efficient
• Intuition:	Minimize	#	of	tuples	at	each	step	by	changing	
the	order	of	RA	operators

• Physical	optimization:
• Find	algorithm	with	lowest	IO	cost	to	execute	
our	plan
• Intuition:	Calculate	based	on	physical	parameters	
(buffer	size,	etc.)	and	estimates	of	data	size	(histograms)

Execution

SQL	Query

Relational	
Algebra	(RA)	Plan

Optimized
RA	Plan

Recall:	Logical	Equivalence	of	RA	Plans

• Given	relations	R(A,B)	and	S(B,C):

• Here,	projection	&	selection	commute:	
• 𝜎"#$(Π"(𝑅)) = Π"(𝜎"#$(𝑅))

• What	about	here?
• 𝜎"#$(Π*(𝑅))	?= Π*(𝜎"#$(𝑅))

Π",.

R(A,B) S(B,C)

T(C,D)

sA<10

Π",.(𝜎"/01 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Translating	to	RA

Logical	Optimization

• Heuristically,	we	want	selections	and	projections	to	occur	as	early	as	
possible	in	the	plan	
• Terminology:	“push	down	selections”	and	“pushing	down	projections.”

• Intuition:We	will	have	fewer	tuples	in	a	plan.
• Could	fail	if	the	selection	condition	is	very	expensive	(say	runs	some	image	
processing	algorithm).	
• Projection	could	be	a	waste	of	effort,	but	more	rarely.

Π",.

R(A,B) S(B,C)

T(C,D)

sA<10

Π",.(𝜎"/01 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	

Π",.

R(A,B)

S(B,C)

T(C,D)

Π",. 𝑇 ⋈ 𝜎"/01(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	

sA<10

Π",.

R(A,B)

S(B,C)

T(C,D)

Π",. 𝑇 ⋈ 𝜎"/01(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
projection	so	it	
occurs	earlier	

sA<10

Π",.

R(A,B)

S(B,C)

T(C,D)

Π",. 𝑇 ⋈ Π",5 𝜎"/01(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan We	eliminate	B	
earlier!

sA<10

Π",6

In	general,	when	
is	an	attribute	not	
needed…?

3.	Transactions	and	ACID

31

Transactions:	Basic	Definition

A	transaction	(“TXN”)	is	a	sequence	
of	one	or	more	operations (reads	or	
writes)	which	reflects	a	single	real-
world	transition.

START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

Transactions:	Basic	Definition

A	transaction	(“TXN”)	is	a	sequence	of	one	or	
more	operations (reads	or	writes)	which	reflects	
a	single	real-world	transition.

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

Examples:

• Transfer	money	between	accounts

• Purchase	a	group	of	products

• Register	for	a	class	(either	waitlist	or	
allocated)

34

Transactions	in	SQL

• In	“ad-hoc”	SQL:
• Default:	each	statement	=	one	transaction

• In	a	program,	multiple	statements	can	be	grouped	together	as	a	
transaction:

START TRANSACTION
UPDATE Bank SET amount = amount – 100
WHERE name = ‘Bob’
UPDATE Bank SET amount = amount + 100
WHERE name = ‘Joe’

COMMIT

35

Transaction	Properties:	ACID

• Atomic
• State	shows	either	all	the	effects	of	txn,	or	none	of	them

• Consistent
• Txn moves	from	a	state	where	integrity	holds,	to	another	where	integrity	
holds

• Isolated
• Effect	of	txns is	the	same	as	txns running	one	after	another	(ie looks	like	batch	
mode)

• Durable
• Once	a	txn has	committed,	its	effects	remain	in	the	database

ACID	continues	to	be	a	source	of	great	debate!	

36

ACID:	Atomicity

• TXN’s	activities	are	atomic:	all	or	nothing

• Intuitively:	in	the	real	world,	a	transaction	is	something	that	
would	either	occur	completely or	not	at	all

• Two	possible	outcomes	for	a	TXN

• It	commits:	all	the	changes	are	made

• It	aborts:	no	changes	are	made

Transactions
• A	key	concept	is	the	transaction	(TXN):	an atomic
sequence	of	db	actions	(reads/writes)

Atomicity:	An	action	
either	completes	
entirely or	not	at	all

37

Acct Balance
a10 20,000
a20 15,000

Acct Balance
a10 17,000
a20 18,000

Transfer	$3k	from	a10	to	a20:
1. Debit	$3k	from	a10
2. Credit	$3k	to	a20

• Crash	before	1,
• After	1	but	before	2,	
• After	2.

Written	naively,	in	
which	states	is	

atomicity preserved?

DB	Always	
preserves	
atomicity!

38

ACID:	Consistency

• The	tables	must	always	satisfy	user-specified	integrity	constraints
• Examples:

• Account	number	is	unique
• Stock	amount	can’t	be	negative
• Sum	of	debits	and	of	credits is	0

• How	consistency	is	achieved:
• Programmer	makes	sure	a	txn takes	a	consistent	state	to	a	consistent	state
• Systemmakes	sure	that	the	txn is	atomic

39

ACID:	Isolation

• A	transaction	executes	concurrently	with	other	transactions

• Isolation:	the	effect	is	as	if	each	transaction	executes	in	
isolation of	the	others.

• E.g.	Should	not	be	able	to	observe	changes	from	other	
transactions	during	the	run

Challenge:	Scheduling	Concurrent	
Transactions
• The	DBMS	ensures	that	the	execution	of	{T1,…,Tn}	is	
equivalent	to	some	serial execution

• One	way	to	accomplish	this:	Locking
• Before	reading	or	writing,	transaction	requires	a	lock	from	
DBMS,	holds	until	the	end

• Key	Idea: If	Ti wants	to	write	to	an	item	x	and	Tjwants	
to	read	x,	then	Ti,	Tj conflict.		Solution	via	locking:
• only	one	winner	gets	the	lock
• loser	is	blocked	(waits)	until	winner	finishes

A	set	of	TXNs	is	
isolated if	their	effect	
is	as	if	all	were	
executed	serially

40

What	if	Ti	and	Tj need	X	and	
Y,	and	Ti asks	for	X	before	Tj,
and	Tj asks	for	Y	before	Ti?
->	Deadlock!		One	is	
aborted…

All	concurrency	issues	handled	by	the	DBMS…

41

ACID:	Durability

• The	effect	of	a	TXN	must	continue	to	exist	(“persist”)	after	
the	TXN
• And	after	the	whole	program	has	terminated
• And	even	if	there	are	power	failures,	crashes,	etc.
• And	etc…

•Means:	Write	data	to	disk

Ensuring	Atomicity	&	Durability
• DBMS	ensures	atomicity even	if	a	TXN	crashes!

• One	way	to	accomplish	this:	Write-ahead	logging	
(WAL)

• Key	Idea: Keep	a	log	of	all	the	writes	done.
• After	a	crash,	the	partially	executed	TXNs	are	undone	
using	the	log

Write-ahead	Logging	
(WAL): Before	any	
action	is	finalized,	a	
corresponding	log	
entry	is	forced	to	disk

42

We	assume	that	the	log	is	on	
“stable”	storage

All	atomicity	issues	also	handled	by	the	DBMS…

Challenges	for	ACID	properties

• In	spite	of	failures:	Power	failures,	but	not	media	failures

• Users	may	abort	the	program:	need	to	“rollback	the	changes”
• Need	to	log what	happened

• Many	users	executing	concurrently
• Can	be	solved	via	locking	(we’ll	see	this	next	lecture!)

And	all	this	with…	Performance!!

A	Note:	ACID	is	contentious!

• Many	debates	over	ACID,	both	historically
and currently

• Many	newer	“NoSQL”	DBMSs	relax	ACID

• In	turn,	now	“NewSQL”	reintroduces	ACID	
compliance	to	NoSQL-style	DBMSs…

ACID	is	an	extremely	important	&	successful	
paradigm,	but	still	debated!

Summary	of	DBMS

• DBMS	are	used	to	maintain,	query,	and	manage	large	datasets.
• Provide	concurrency,	recovery	from	crashes,	quick	application	development,	
integrity,	and	security

• Key	abstractions	give	data	independence

• DBMS	R&D	is	one	of	the	broadest	fields	in	CS.	Fact!	

45

