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Announcements
• PA2
• Installation	of	sql module
• NetID

• PA2	questions?



Today’s	Lecture

1. Finish	SQL

2. Overview	of	an	RDBMS

3. Transactions	and	ACID
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1.	SQL	(continue	from	Lecture	5)
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1.	SQL	(Aggregation	and	Group	
By)
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Aggregation

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except	COUNT,	all	aggregations	
apply	to	a	single	attribute

SELECT AVG(price)
FROM Product
WHERE maker = “Toyota”

• SQL	supports	several	aggregation operations:
• SUM,	COUNT,	MIN,	MAX,	AVG



7

• COUNT	applies	to	duplicates,	unless	otherwise	stated

SELECT COUNT(category) 
FROM Product
WHERE year > 1995

Note:	Same	as	COUNT(*).		
Why?

We	probably	want:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation:	COUNT
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Purchase(product, date, price, quantity)

More	Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What	do	these	mean?
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Simple	Aggregations
Purchase
Product Date Price Quantity
bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10
bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50		(=	1*20	+	1.50*20)
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Grouping	and	Aggregation

SELECT product,
SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s	see	what	this	means…

Find	total	sales	
after	10/1/2005	
per	product.

Purchase(product, date, price, quantity)
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Grouping	and	Aggregation

1.	Compute	the	FROM and	WHERE clauses

2.	Group	by	the	attributes	in	the	GROUP	BY

3.	Compute	the	SELECT clause:	grouped	attributes	and	aggregates

Semantics	of	the	query:
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1.	Compute	the	FROM and	WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT   product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

FROM



Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10
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2.	Group	by	the	attributes	in	the	GROUP	BY

SELECT   product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10
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3.	Compute	the	SELECT clause:	grouped	
attributes	and	aggregates
SELECT product, SUM(price*quantity) AS TotalSales
FROM     Purchase
WHERE    date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10
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HAVING	Clause

Same	query	as	
before,	except	that	
we	consider	only	
products	that	have	
more	than
100	buyers

HAVING	clauses	contains	conditions	on	aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas	WHERE	clauses	condition	on	individual	tuples…
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General	form	of	Grouping	and	Aggregation

• S	=	Can	ONLY	contain	attributes	a1,…,ak and/or	aggregates	over	other	attributes
• C1 =	is	any	condition	on	the	attributes	in	R1,…,Rn
• C2 =	is	any	condition	on	the	aggregate	expressions

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Why?
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General	form	of	Grouping	and	Aggregation
SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation	steps:
1. Evaluate	FROM-WHERE:	apply	condition	C1 on	the		

attributes	in	R1,…,Rn
2. GROUP	BY	the	attributes	a1,…,ak
3. Apply	condition	C2 to	each	group	(may	have	aggregates)
4. Compute	aggregates	in	S	and	return	the	result
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Group-by	v.s.	Nested	Query

• Find	authors	who	wrote	³ 10	documents:
• Attempt	1:	with	nested	queries

SELECT DISTINCT Author.name
FROM   Author
WHERE COUNT(

SELECT Wrote.url
FROM Wrote
WHERE Author.login = Wrote.login) > 10

Author(login, name)
Wrote(login, url)

This	is
SQL	by
a	novice
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Group-by	v.s.	Nested	Query

• Find	all	authors	who	wrote	at	least	10	documents:
• Attempt	2:	SQL	style	(with	GROUP	BY)

SELECT Author.name
FROM   Author, Wrote
WHERE Author.login = Wrote.login
GROUP BY Author.name
HAVING   COUNT(Wrote.url) > 10

No	need	for	DISTINCT:	automatically	from	GROUP	BY

This	is
SQL		by
an	expert



Group-by	vs.	Nested	Query

Which	way	is	more	efficient?

• Attempt	#1-With	nested:	How	many	times	do	we	do	a	SFW	query	
over	all	of	the	Wrote	relations?

• Attempt	#2-With	group-by:	How	about	when	written	this	way?

With	GROUP	BY	can	be	much more	efficient!



2.	Overview	of	an	RDBMS
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RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expression

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!



Logical	vs.	Physical	Optimization

• Logical	optimization	(we	will	only	see	this	one):
• Find	equivalent	plans	that	are	more	efficient
• Intuition:	Minimize	#	of	tuples	at	each	step	by	changing	
the	order	of	RA	operators

• Physical	optimization:
• Find	algorithm	with	lowest	IO	cost	to	execute	
our	plan
• Intuition:	Calculate	based	on	physical	parameters	
(buffer	size,	etc.)	and	estimates	of	data	size	(histograms)

Execution

SQL	Query

Relational	
Algebra	(RA)	Plan

Optimized
RA	Plan



Recall:	Logical	Equivalence	of	RA	Plans

• Given	relations	R(A,B)	and	S(B,C):

• Here,	projection	&	selection	commute:	
• 𝜎"#$(Π"(𝑅)) = Π"(𝜎"#$(𝑅))

• What	about	here?
• 𝜎"#$(Π*(𝑅))	?= Π*(𝜎"#$(𝑅))



Π",.

R(A,B) S(B,C)

T(C,D)

sA<10

Π",.(𝜎"/01 𝑇 ⋈ 𝑅 ⋈ 𝑆 )

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

Translating	to	RA



Logical	Optimization

• Heuristically,	we	want	selections	and	projections	to	occur	as	early	as	
possible	in	the	plan	
• Terminology:	“push	down	selections”	and	“pushing	down	projections.”

• Intuition:We	will	have	fewer	tuples	in	a	plan.
• Could	fail	if	the	selection	condition	is	very	expensive	(say	runs	some	image	
processing	algorithm).	
• Projection	could	be	a	waste	of	effort,	but	more	rarely.



Π",.

R(A,B) S(B,C)

T(C,D)

sA<10

Π",.(𝜎"/01 𝑇 ⋈ 𝑅 ⋈ 𝑆 )

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	



Π",.

R(A,B)

S(B,C)

T(C,D)

Π",. 𝑇 ⋈ 𝜎"/01(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	

sA<10



Π",.

R(A,B)

S(B,C)

T(C,D)

Π",. 𝑇 ⋈ 𝜎"/01(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

Optimizing	RA	Plan Push	down	
projection	so	it	
occurs	earlier	

sA<10



Π",.

R(A,B)

S(B,C)

T(C,D)

Π",. 𝑇 ⋈ Π",5 𝜎"/01(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B)  S(B,C)  T(C,D)

Optimizing	RA	Plan We	eliminate	B	
earlier!

sA<10

Π",6

In	general,	when	
is	an	attribute	not	
needed…?



3.	Transactions	and	ACID
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Transactions:	Basic	Definition

A	transaction	(“TXN”)	is	a	sequence	
of	one	or	more	operations (reads	or	
writes)	which	reflects	a	single	real-
world	transition.

START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all



Transactions:	Basic	Definition

A	transaction	(“TXN”)	is	a	sequence	of	one	or	
more	operations (reads	or	writes)	which	reflects	
a	single	real-world	transition.

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

Examples:

• Transfer	money	between	accounts

• Purchase	a	group	of	products

• Register	for	a	class	(either	waitlist	or	
allocated)
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Transactions	in	SQL

• In	“ad-hoc”	SQL:
• Default:	each	statement	=	one	transaction

• In	a	program,	multiple	statements	can	be	grouped	together	as	a	
transaction:

START TRANSACTION
UPDATE Bank SET amount = amount – 100
WHERE name = ‘Bob’
UPDATE Bank SET amount = amount + 100 
WHERE name = ‘Joe’

COMMIT
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Transaction	Properties:	ACID

• Atomic
• State	shows	either	all	the	effects	of	txn,	or	none	of	them

• Consistent
• Txn moves	from	a	state	where	integrity	holds,	to	another	where	integrity	
holds

• Isolated
• Effect	of	txns is	the	same	as	txns running	one	after	another	(ie looks	like	batch	
mode)

• Durable
• Once	a	txn has	committed,	its	effects	remain	in	the	database

ACID	continues	to	be	a	source	of	great	debate!	
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ACID:	Atomicity

• TXN’s	activities	are	atomic:	all	or	nothing

• Intuitively:	in	the	real	world,	a	transaction	is	something	that	
would	either	occur	completely or	not	at	all

• Two	possible	outcomes	for	a	TXN

• It	commits:	all	the	changes	are	made

• It	aborts:	no	changes	are	made



Transactions
• A	key	concept	is	the	transaction	(TXN):	an atomic
sequence	of	db	actions	(reads/writes)

Atomicity:	An	action	
either	completes	
entirely or	not	at	all
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Acct Balance
a10 20,000
a20 15,000

Acct Balance
a10 17,000
a20 18,000

Transfer	$3k	from	a10	to	a20:
1. Debit	$3k	from	a10
2. Credit	$3k	to	a20

• Crash	before	1,
• After	1	but	before	2,	
• After	2.

Written	naively,	in	
which	states	is	

atomicity preserved?

DB	Always	
preserves	
atomicity!
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ACID:	Consistency

• The	tables	must	always	satisfy	user-specified	integrity	constraints
• Examples:

• Account	number	is	unique
• Stock	amount	can’t	be	negative
• Sum	of	debits	and	of	credits is	0

• How	consistency	is	achieved:
• Programmer	makes	sure	a	txn takes	a	consistent	state	to	a	consistent	state
• Systemmakes	sure	that	the	txn is	atomic
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ACID:	Isolation

• A	transaction	executes	concurrently	with	other	transactions

• Isolation:	the	effect	is	as	if	each	transaction	executes	in	
isolation of	the	others.

• E.g.	Should	not	be	able	to	observe	changes	from	other	
transactions	during	the	run



Challenge:	Scheduling	Concurrent	
Transactions
• The	DBMS	ensures	that	the	execution	of	{T1,…,Tn}	is	
equivalent	to	some	serial execution

• One	way	to	accomplish	this:	Locking
• Before	reading	or	writing,	transaction	requires	a	lock	from	
DBMS,	holds	until	the	end

• Key	Idea: If	Ti wants	to	write	to	an	item	x	and	Tjwants	
to	read	x,	then	Ti,	Tj conflict.		Solution	via	locking:
• only	one	winner	gets	the	lock
• loser	is	blocked	(waits)	until	winner	finishes

A	set	of	TXNs	is	
isolated if	their	effect	
is	as	if	all	were	
executed	serially
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What	if	Ti	and	Tj need	X	and	
Y,	and	Ti asks	for	X	before	Tj,
and	Tj asks	for	Y	before	Ti?
->	Deadlock!		One	is	
aborted…

All	concurrency	issues	handled	by	the	DBMS…
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ACID:	Durability

• The	effect	of	a	TXN	must	continue	to	exist	(“persist”)	after	
the	TXN
• And	after	the	whole	program	has	terminated
• And	even	if	there	are	power	failures,	crashes,	etc.
• And	etc…

•Means:	Write	data	to	disk



Ensuring	Atomicity	&	Durability
• DBMS	ensures	atomicity even	if	a	TXN	crashes!

• One	way	to	accomplish	this:	Write-ahead	logging	
(WAL)

• Key	Idea: Keep	a	log	of	all	the	writes	done.
• After	a	crash,	the	partially	executed	TXNs	are	undone	
using	the	log

Write-ahead	Logging	
(WAL): Before	any	
action	is	finalized,	a	
corresponding	log	
entry	is	forced	to	disk
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We	assume	that	the	log	is	on	
“stable”	storage

All	atomicity	issues	also	handled	by	the	DBMS…



Challenges	for	ACID	properties

• In	spite	of	failures:	Power	failures,	but	not	media	failures

• Users	may	abort	the	program:	need	to	“rollback	the	changes”
• Need	to	log what	happened

• Many	users	executing	concurrently
• Can	be	solved	via	locking	(we’ll	see	this	next	lecture!)

And	all	this	with…	Performance!!



A	Note:	ACID	is	contentious!

• Many	debates	over	ACID,	both	historically
and currently

• Many	newer	“NoSQL”	DBMSs	relax	ACID

• In	turn,	now	“NewSQL”	reintroduces	ACID	
compliance	to	NoSQL-style	DBMSs…

ACID	is	an	extremely	important	&	successful	
paradigm,	but	still	debated!



Summary	of	DBMS

• DBMS	are	used	to	maintain,	query,	and	manage	large	datasets.
• Provide	concurrency,	recovery	from	crashes,	quick	application	development,	
integrity,	and	security

• Key	abstractions	give	data	independence

• DBMS	R&D	is	one	of	the	broadest	fields	in	CS.	Fact!	
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