
CS639:	
Data	Management	for	

Data	Science
Lecture	4:	SQL	for	Data	Science

Theodoros	Rekatsinas
1

2

Announcements
• Assignment	1	is	due	tomorrow	(end	of	day)
• Any	questions?

• PA2	is	out.	It	is	due	on	the	19th
• Start	early	J
• Ask	questions	on	Piazza
• Go	over	activities	and	reading	before	attempting

• Out	of	town	for	the	next	two	lectures.	
• We	will	resume	on	Feb	13th.

Today’s	Lecture

1. Finish	Relational	Algebra	(slides	in	previous	lecture)

2. Introduction	to	SQL

3. Single-table	queries

4. Multi-table	queries

5. Advanced	SQL

3

1.	Introduction	to	SQL

4

SQL	Motivation

• But	why	use	SQL?
• The	relational	model	of	data is	the	most	widely	used	model	today

• Main	Concept:	the	relation- essentially,	a	table

Logical	data	independence:
protection	from	changes	in	the	
logical	structure	of	the	data

SQL	is	a	logical,	declarative	query	language.	We	use	SQL	because	
we	happen	to	use	the	relational	model.

Remember: The	reason	for	using	the	
relational	model	is	data	independence!

6

Basic	SQL

SQL	Introduction

• SQL	is	a	standard	language	for	querying	and	manipulating	data

• SQL	is	a	very	high-level	programming	language
• This	works	because	it	is	optimized	well!

• Many	standards	out	there:	
• ANSI	SQL,		SQL92	(a.k.a.	SQL2),		SQL99	(a.k.a.	SQL3),	….
• Vendors	support	various	subsets

Probably	the	world’s	most	successful	parallel
programming	language	(multicore?)

SQL stands	for
Structured	Query	Language

8

SQL	is	a…

• Data	Definition	Language	(DDL)
• Define	relational	schemata
• Create/alter/delete	tables	and	their	attributes

• Data	Manipulation	Language	(DML)
• Insert/delete/modify	tuples	in	tables
• Query	one	or	more	tables	– discussed	next!

9

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product
A	relation or	table is	a	
multiset of	tuples	
having	the	attributes	
specified	by	the	schema

Let’s	break	this	
definition	down

10

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A	multiset is	an	
unordered	list	(or:	a	set	
with	multiple	duplicate	
instances	allowed)

List:												[1,	1,	2,	3]
Set:												{1,	2,	3}
Multiset:			{1,	1,	2,	3}

i.e.	no	next(),	etc.	methods!

11

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product An	attribute (or	column)	
is	a	typed	data	entry	
present	in	each	tuple	in	
the	relation

Attributes	must	have	an	atomic
type	in	standard	SQL,	i.e.	not	a	
list,	set,	etc.	

12

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A	tuple or	row is	a	
single	entry	in	the	table	
having	the	attributes	
specified	by	the	schemaAlso	referred	to	sometimes	as	a	record

13

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

The	number	of	tuples	is	
the	cardinality of	the	
relation

The	number	of	
attributes	is	the	arity of	
the	relation

14

Data	Types	in	SQL

• Atomic	types:
• Characters:	CHAR(20),	VARCHAR(50)
• Numbers:	INT,	BIGINT,	SMALLINT,	FLOAT
• Others:	MONEY,	DATETIME,	…

• Every	attribute	must	have	an	atomic	type
• Hence	tables	are	flat

15

Table	Schemas

• The	schema of	a	table	is	the	table	name,	its	attributes,	and	their	
types:

• A	key is	an	attribute	whose	values	are	unique;	we	underline	a	key

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Key	constraints

• A	key	is	an	implicit	constraint	on	which	tuples	can	be	in	the	relation

• i.e.	if	two	tuples	agree	on	the	values	of	the	key,	then	they	must	be	
the	same	tuple!

1.	Which	would	you	select	as	a	key?
2.	Is	a	key	always	guaranteed	to	exist?
3.	Can	we	have	more	than	one	key?

A	key is	a	minimal	subset	of	attributes that	acts	as	a	
unique	identifier	for	tuples	in	a	relation

Students(sid:string, name:string, gpa: float)

NULL	and	NOT	NULL

• To	say	“don’t	know	the	value”	we	use	NULL
• NULL	has	(sometimes	painful)	semantics,	more	details	later

sid name gpa
123 Bob 3.9
143 Jim NULL Say,	Jim	just	enrolled	in	his	first	class.	

In	SQL,	we	may	constrain	a	column	to	be	NOT	NULL,	e.g.,	“name”	in	this	table

Students(sid:string, name:string, gpa: float)

General	Constraints

• We	can	actually	specify	arbitrary	assertions
• E.g.	“There	cannot	be	25	people	in	the	DB	class”

• In	practice,	we	don’t	specify	many	such	constraints.	Why?
• Performance!

Whenever	we	do	something	ugly	(or	avoid	doing	something	
convenient)	it’s	for	the	sake	of	performance

Go	over	Activity	2-1

19

2.	Single-table	queries

20

21

SQL	Query

• Basic	form	(there	are	many	many	more	bells	and	whistles)

Call	this	a	SFW query.

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

22

Simple	SQL	Query:	Selection
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SELECT *
FROM Product
WHERE Category = ‘Gadgets’

Selection is	the	operation	
of	filtering	a	relation’s	
tuples	on	some	condition

23

Simple	SQL	Query:	Projection
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Manufacturer
Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Projection is	the	
operation	of	producing	an	
output	table	with	tuples	
that	have	a	subset	of	their	
prior	attributes

24

Notation

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Product(PName, Price, Category, Manfacturer)

Answer(PName, Price, Manfacturer)

Input	schema

Output	schema

25

A	Few	Details

• SQL	commands are	case	insensitive:
• Same:	SELECT,		Select,		select
• Same:	Product,			product

• Values are	not:
• Different: ‘Seattle’,		‘seattle’

• Use	single	quotes	for	constants:
• ‘abc’		- yes
• “abc”	- no

26

LIKE:	Simple	String	Pattern	Matching

• s	LIKE p:		pattern	matching	on	strings
• p	may	contain	two	special	symbols:
• %		=	any	sequence	of	characters
• _			=	any	single	character

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

27

DISTINCT:	Eliminating	Duplicates

SELECT DISTINCT Category
FROM Product

Versus

SELECT Category
FROM Product

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household

28

ORDER	BY:	Sorting	the	Results

SELECT PName, Price, Manufacturer
FROM Product
WHERE Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName

Ties	are	broken	by	the	
second	attribute	on	the	
ORDER	BY	list,	etc.

Ordering	is	ascending,	
unless	you	specify	the	
DESC	keyword.

Go	over	Activity	2-2

29

3.	Multi-table	queries

30

Foreign	Key	constraints

student_id alone	is	not	a	
key- what	is?

sid name gpa
101 Bob 3.2
123 Mary 3.8

student_id cid grade

123 564 A
123 537 A+

Students Enrolled

We	say	that	student_id is	a	foreign	key that	refers	to	Students

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• Suppose	we	have	the	following	schema:

• And	we	want	to	impose	the	following	constraint:
• ‘Only	bona	fide	students	may	enroll	in	courses’ i.e.	a	student	
must	appear	in	the	Students	table	to	enroll	in	a	class

Declaring	Foreign	Keys

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

CREATE TABLE Enrolled(
student_id CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (student_id, cid),
FOREIGN KEY (student_id) REFERENCES Students(sid)

)

Foreign	Keys	and	update	operations

DBA	chooses	(syntax	in	the	book)

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• What	if	we	insert	a	tuple	into	Enrolled,	but	no	corresponding	
student?
• INSERT	is	rejected	(foreign	keys	are	constraints)!

• What	if	we	delete	a	student?
1. Disallow	the	delete
2. Remove	all	of	the	courses	for	that	student
3. SQL	allows	a	third	via	NULL	(not	yet	covered)

34

Keys	and	Foreign	Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

What	is	a	
foreign	key	vs.	
a	key	here?

35

Joins

Ex: Find	all	products	under	$200	manufactured	in	Japan;
return	their	names	and	prices.	

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country) Note:	we	will	often	omit	
attribute	types	in	schema	
definitions	for	brevity,	but	
assume	attributes	are	
always	atomic	types

36

Joins

Ex: Find	all	products	under	$200	manufactured	in	Japan;
return	their	names	and	prices.	

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

A	join between	tables	returns	
all	unique	combinations	of	
their	tuples	which	meet	
some	specified	join	condition

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

37

Joins

Several	equivalent	ways	to	write	a	basic	join	in	SQL:

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

SELECT PName, Price
FROM Product
JOIN Company ON Manufacturer = Cname

AND Country=‘Japan’
WHERE Price <= 200

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

38

Joins

PName Price Category Manuf
Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country
GWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price
SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

39

Tuple	Variable	Ambiguity	in	Multi-Table

SELECT DISTINCT name, address
FROM Person, Company
WHERE worksfor = name

Person(name, address, worksfor)

Company(name, address)

Which	“address”	does	
this	refer	to?

Which	“name”s??

40

Person(name, address, worksfor)

Company(name, address)

SELECT DISTINCT Person.name, Person.address
FROM Person, Company
WHERE Person.worksfor = Company.name

SELECT DISTINCT p.name, p.address
FROM Person p, Company c
WHERE p.worksfor = c.name

Both	equivalent	
ways	to	resolve	
variable	
ambiguity

Tuple	Variable	Ambiguity	in	Multi-Table

41

Meaning	(Semantics)	of	SQL	Queries

SELECT x1.a1, x1.a2, …, xn.ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions(x1,…, xn)

Answer	=	{}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions(x1,…,	xn)

then Answer	=	Answer	È {(x1.a1,	x1.a2,	…,	xn.ak)}
return Answer

Almost	never	the	fastest way	
to	compute	it!

Note:	this is	a	multiset union

An	example	of	SQL	semantics

42

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross	
Product

A B C
3 3 4
3 3 5

A
3
3

Apply	
ProjectionApply	

Selections	/	
Conditions

Output

Note	the	semantics of	a	join

43

SELECT R.A
FROM R, S
WHERE R.A = S.B

Recall:	Cross	product	(A	X	B)	is	the	set	of	all	
unique	tuples	in	A,B

Ex:	{a,b,c}	X	{1,2}	
=	{(a,1),	(a,2),	(b,1),	(b,2),	(c,1),	(c,2)}

=	Filtering!

=	Returning	only	some attributes

Remembering	this	order	is	critical	to	understanding	the	
output	of	certain	queries	(see	later	on…)

1. Take	cross	product:
𝑋 = 𝑅×𝑆

2. Apply	selections	/	conditions:
𝑌 = 𝑟, 𝑠 ∈ 𝑋	 	𝑟. 𝐴 == 𝑟. 𝐵}

3. Apply	projections to	get	final	output:
𝑍 = (𝑦. 𝐴,)	𝑓𝑜𝑟	𝑦 ∈ 𝑌

Note:	we	say	“semantics”	not	“execution	
order”

• The	preceding	slides	show	what	a	join	means

• Not	actually	how	the	DBMS	executes	it	under	the	covers

Go	over	Activity	2-3

45

4.	Advanced	SQL

46

47

Set	Operators	and	Nested	
Queries

48

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

Computes	R	Ç (S	È T)

But	what	if	S	=	f?

S T

R

Go	back	to	the	semantics!

What	does	it	compute?

49

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

• Recall	the	semantics!
1. Take	cross-product
2. Apply	selections /	conditions
3. Apply	projection

• If	S	=	{},	then	the	cross	product	of	R,	S,	T	=	{},	and	the	query	result	=	{}!

Must	consider	semantics	here.		
Are	there	more	explicit	way	to	do	set	operations	like	this?

50

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What	does	this	look	like	in	Python?

• Semantics:
1. Take	cross-product

2. Apply	selections /	conditions

3. Apply	projection

Joins	/	cross-products are	just	nested	for	
loops (in	simplest	implementation)!

If-then	statements!

R	Ç (S	È T)

S T

R

51

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What	does	this	look	like	in	Python?

R	Ç (S	È T)

S T

R

output = {}

for r in R:
for s in S:

for t in T:
if r[‘A’] == s[‘A’] or r[‘A’] == t[‘A’]:

output.add(r[‘A’])
return list(output)

Can	you	see	now	what	happens	if	S	=	[]?

52

Multiset	operations

Recall	Multisets

53

Tuple

(1,	a)

(1,	a)

(1, b)

(2,	c)

(2,	c)

(2,	c)

(1,	d)

(1,	d)

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 1

(2,	c) 3

(1, d) 2Equivalent	
Representations
of	a	Multiset

Multiset X

Multiset X

Note:	In	a	set	all	
counts	are	{0,1}.

𝝀 𝑿 =	“Count	of	tuple	in	X”
(Items	not	listed	have	
implicit	count	0)

Generalizing	Set	Operations	to	Multiset
Operations

54

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 2

(1,	b) 0

(2,	c) 2

(1, d) 0

Multiset Z

∩ =

𝝀 𝒁 = 𝒎𝒊𝒏(𝝀 𝑿 , 𝝀 𝒀)
For	sets,	this	is	
intersection

55

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 5

(1,	b) 1

(2,	c) 3

(1, d) 2

Multiset Z

∪ =

𝝀 𝒁 = 𝒎𝒂𝒙(𝝀 𝑿 , 𝝀 𝒀)
For	sets,	

this	is	union

Generalizing	Set	Operations	to	Multiset
Operations

Multiset Operations	in	SQL

56

s

Explicit	Set	Operators:	INTERSECT

57

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∩ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

UNION

58

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

Why	aren’t	there	
duplicates?

What	if	we	want	
duplicates?

UNION	ALL

59

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

ALL	indicates	
the	Multiset	
disjoint	union	
operation

s

60

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 7

(1,	b) 1

(2,	c) 5

(1, d) 2

Multiset Z

=

𝝀 𝒁 = 	𝝀 𝑿 + 	𝝀 𝒀
For	sets,	

this	is	disjoint
union

Generalizing	Set	Operations	to	Multiset
Operations

t

EXCEPT

61

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 \{𝑟. 𝐴|𝑟. 𝐴 = 𝑡. 𝐴}

What	is	the	
multiset version?

𝝀 𝒁 = 	𝝀 𝑿 − 	𝝀 𝒀
For	elements	that	are	in	X

INTERSECT:	Still	some	subtle	problems…

62

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc = ‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc = ‘China’

What	if	two	companies	have	HQ	in	US:	BUT	one	has	factory	in	
China	(but	not	US)	and	vice	versa?	 What	goes	wrong?

“Headquarters	of	
companies	which	
make	gizmos	in	US	
AND China”

INTERSECT:	Remember	the	semantics!

63

Company(name, hq_city) AS C
Product(pname, maker,
factory_loc) AS P

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc=‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Example:		C		JOIN		P	on	maker	=	name
C.name C.hq_city P.pname P.maker P.factory_loc

X	Co. Seattle X X	Co. U.S.

Y	Inc. Seattle X Y Inc. China

s

INTERSECT:	Remember	the	semantics!

64

Company(name, hq_city) AS C
Product(pname, maker,
factory_loc) AS P

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc=‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Example:		C		JOIN		P	on	maker	=	name
C.name C.hq_city P.pname P.maker P.factory_loc

X	Co. Seattle X X	Co. U.S.

Y	Inc. Seattle X Y Inc. China

X	Co	has	a	factory	in	the	US	(but	not	China)
Y	Inc.	has	a	factor	in	China	(but	not	US)

But	Seattle	is	returned	by	the	query!

We	did	the	INTERSECT	
on	the	wrong	attributes!

One	Solution:	Nested	Queries

65

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT DISTINCT hq_city
FROM Company, Product
WHERE maker = name

AND name IN (
SELECT maker
FROM Product
WHERE factory_loc = ‘US’)

AND name IN (
SELECT maker
FROM Product
WHERE factory_loc = ‘China’)

“Headquarters	of	
companies	which	
make	gizmos	in	US	
AND China”

Note:	If	we	hadn’t	
used	DISTINCT	here,	
how	many	copies	of	
each	hq_city would	
have	been	returned?

s

High-level	note	on	nested	queries

• We	can	do	nested	queries	because	SQL	is	compositional:

• Everything	(inputs	/	outputs)	is	represented	as	multisets- the	output	of	one	
query	can	thus	be	used	as	the	input	to	another	(nesting)!

• This	is	extremely powerful!

67

Nested	queries:	Sub-queries	Returning	
Relations

SELECT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name
AND p.buyer = ‘Joe Blow‘)

“Cities	where	one	
can	find	
companies	that	
manufacture	
products	bought	
by	Joe	Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

Another	
example:

68

Nested	Queries

SELECT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe Blow’

Is	this	query	equivalent?

Beware	of	duplicates!	

69

Nested	Queries

SELECT DISTINCT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe Blow’

Now	they	are	equivalent

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name

AND p.buyer = ‘Joe Blow‘)

70

Subqueries Returning	Relations

SELECT name
FROM Product
WHERE price > ALL(

SELECT price
FROM Product
WHERE maker = ‘Gizmo-Works’)

Product(name, price, category, maker)

You	can	also	use	operations	of	the	form:				
• s	>	ALL	R
• s	<	ANY	R
• EXISTS	R

Find	products	that	
are	more	expensive	
than	all	those	
produced	by	
“Gizmo-Works”

Ex:

ANY	and	ALL	not	supported	by	
SQLite.

71

Subqueries	Returning	Relations

SELECT p1.name
FROM Product p1
WHERE p1.maker = ‘Gizmo-Works’

AND EXISTS(
SELECT p2.name
FROM Product p2
WHERE p2.maker <> ‘Gizmo-Works’

AND p1.name = p2.name)

Product(name, price, category, maker)

You	can	also	use	operations	of	the	form:				
• s	>	ALL	R
• s	<	ANY	R
• EXISTS	R

Find	‘copycat’	
products,	i.e.	
products	made	by	
competitors	with	
the	same	names	as	
products	made	by	
“Gizmo-Works”

Ex:

<>	means	!=

72

Nested	queries	as	alternatives	to	INTERSECT	
and	EXCEPT

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE NOT EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

INTERSECT	and	EXCEPT	not	in	
some	DBMSs!

If	R,	S	have	no	
duplicates,	then	
can	write	without	
sub-queries	
(HOW?)(SELECT R.A, R.B

FROM R)
EXCEPT
(SELECT S.A, S.B
FROM S)

73

Correlated	Queries

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title = m.title)

Movie(title, year, director, length)

Note	also:	this	can	still	be	expressed	as	single	SFW	query…

Find	movies	whose	
title	appears	more	
than	once.

Note	the	scoping	
of	the	variables!

74

Complex	Correlated	Query

SELECT DISTINCT x.name, x.maker
FROM Product AS x
WHERE x.price > ALL(

SELECT y.price
FROM Product AS y
WHERE x.maker = y.maker

AND y.year < 1972)

Find	products	(and	their	
manufacturers)	that	are	
more	expensive	than	all	
products	made	by	the	
same	manufacturer	
before	1972

Product(name, price, category, maker, year)

Can	be	very	powerful	(also	much	harder	to	optimize)

Go	over	Activity	3-1

75

Basic	SQL	Summary

• SQL	provides	a	high-level	declarative	language	for	manipulating	data	
(DML)

• The	workhorse	is	the	SFW	block

• Set	operators	are	powerful	but	have	some	subtleties

• Powerful,	nested	queries	also	allowed.

76

