

CS639: Data Management for Data Science

Lecture 26: Privacy [slides from Vitaly Shmatikov]

Theodoros Rekatsinas

Reading

• Dwork. "Differential Privacy" (invited talk at ICALP 2006).

Basic Setting

Examples of Sanitization Methods

- Input perturbation
 - Add random noise to database, release
- Summary statistics
 - Means, variances
 - Marginal totals
 - Regression coefficients
- Output perturbation
 - Summary statistics with noise
- Interactive versions of the above methods
 - Auditor decides which queries are OK, type of noise

Strawman Definition

- Assume x₁,...,x_n are drawn i.i.d. from unknown distribution
- Candidate definition: sanitization is safe if it only reveals the distribution
- Implied approach:
 - Learn the distribution
 - Release description of distribution or re-sample points
- This definition is tautological!
 - Estimate of distribution depends on data... why is it safe?

Blending into a Crowd

Frequency in DB or frequency in underlying population?

- Intuition: "I am safe in a group of k or more"
 - k varies (3... 6... 100... 10,000?)
- Many variations on theme
 - Adversary wants predicate g such that 0 < #{i | g(x_i)=true} < k
- Why?
 - Privacy is "protection from being brought to the attention of others" [Gavison]
 - Rare property helps re-identify someone
 - Implicit: information about a large group is public
 - E.g., liver problems more prevalent among diabetics

Clustering-Based Definitions

- Given sanitization S, look at all databases consistent with S
- Safe if no predicate is true for all consistent databases
- k-anonymity
 - Partition D into bins
 - Safe if each bin is either empty, or contains at least k elements
- Cell bound methods
 - Release marginal sums

	brown	blue	Σ
blond	2	10	12
brown	12	6	18
Σ	14	16	
<u> </u>			
	brown	blue	Σ
blond	[0,12]	[0,12]	12
brown	[0,14]	[0,16]	18
Σ	14	16	

Issues with Clustering

- Purely syntactic definition of privacy
- What adversary does this apply to?
 - Does not consider adversaries with side information
 - Does not consider probability
 - Does not consider adversarial algorithm for making decisions (inference)

"Bayesian" Adversaries

- Adversary outputs point $z \in D$
- Score = $1/f_z$ if $f_z > 0$, 0 otherwise
 - f_z is the number of matching points in D
- Sanitization is safe if $E(score) \le \varepsilon$
- Procedure:
 - Assume you know adversary's prior distribution over databases
 - Given a candidate output, update prior conditioned on output (via Bayes' rule)
 - If max_z E(score | output) < ε , then safe to release

Issues with "Bayesian" Privacy

- Restricts the type of predicates adversary can choose
- Must know prior distribution
 - Can one scheme work for many distributions?
 - Sanitizer works harder than adversary
- Conditional probabilities don't consider previous iterations
 - Remember simulatable auditing?

Classical Intution for Privacy

- "If the release of statistics S makes it possible to determine the value [of private information] more accurately than is possible without access to S, a disclosure has taken place." [Dalenius 1977]
 - Privacy means that anything that can be learned about a respondent from the statistical database can be learned without access to the database
- Similar to semantic security of encryption
 - Anything about the plaintext that can be learned from a ciphertext can be learned without the ciphertext

Problems with Classic Intuition

- Popular interpretation: prior and posterior views about an individual shouldn't change "too much"
 - What if my (incorrect) prior is that every UTCS graduate student has three arms?
- How much is "too much?"
 - Can't achieve cryptographically small levels of disclosure <u>and</u> keep the data useful
 - Adversarial user is <u>supposed</u> to learn unpredictable things about the database

Impossibility Result

[Dwork]

- Privacy: for some definition of "privacy breach,"
 - \forall distribution on databases, \forall adversaries A, \exists A'

such that $Pr(A(San)=breach) - Pr(A'()=breach) \le \varepsilon$

- For reasonable "breach", if San(DB) contains information about DB, then some adversary breaks this definition
- Example
 - Paris knows that Theo is 2 inches taller than the average Greek
 - DB allows computing average height of a Greek
 - This DB breaks Theos's privacy according to this definition...
 even if his record is not in the database!

(Very Informal) Proof Sketch

- Suppose DB is uniformly random
 - Entropy I(DB ; San(DB)) > 0
- "Breach" is predicting a predicate g(DB)
- Adversary knows r, H(r ; San(DB)) ⊕ g(DB)
 - H is a suitable hash function, r=H(DB)
- By itself, does not leak anything about DB (why?)
- Together with San(DB), reveals g(DB) (why?)

Differential Privacy (1)

Example with Greeks and Theo

Adversary learns Theo's height even if he is not in the database

 Intuition: "Whatever is learned would be learned regardless of whether or not Theoparticipates"

Dual: Whatever is already known, situation won't get worse

Differential Privacy (2)

Game i: Adv. interacts with $San(DB_{-i})$; $DB_{-i} = (x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$ Given S and prior p() on DB, define n+1 posterior distrib's

$$p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$$

Differential Privacy (3)

Definition: San is safe if \forall prior distributions p(¢) on DB, \forall transcripts S, \forall i =1,...,n StatDiff(p₀(¢|S) , p_i(¢|S)) $\leq \varepsilon$

Indistinguishability

Which Distance to Use?

- Problem: ε must be large
 - Any two databases induce transcripts at distance $\leq n\epsilon$
 - To get utility, need $\varepsilon > 1/n$
- Statistical difference 1/n is not meaningful!
- Example: release random point in database
 - $San(x_1,...,x_n) = (j, x_j)$ for random j
- For every i , changing x_i induces statistical difference 1/n
- But some x_i is revealed with probability 1

Formalizing Indistinguishability

Definition: San is ε-indistinguishable if

 \forall A, \forall <u>DB</u>, <u>DB</u>' which differ in 1 row, \forall sets of transcripts S

 $p(San(DB) \in S) \in (1 \pm \varepsilon) p(San(DB') \in S)$

Equivalently,
$$\forall$$
 S:

$$p(San(DB) = S) = f(San(DB') = S) = f(San(DB') = S)$$

Indistinguishability ⇒ Diff. Privacy

Definition: San is safe if

 \forall prior distributions p(¢) on DB,

 \forall transcripts S, \forall i =1,...,n

StatDiff($p_0(c|S)$, $p_i(c|S)$) $\leq \varepsilon$

$$p_i(DB|S) = p(DB|S \text{ in Game } i) = \frac{p(San(DB_{-i}) = S) \times p(DB)}{p(S \text{ in Game } i)}$$

For every S and DB, indistinguishability implies

$$\frac{p_i(DB|S)}{p_0(DB|S)} = \frac{p(San(DB_{-i}) = S)}{p(San(DB) = S)} \times \frac{p(S \text{ in Game 0})}{p(S \text{ in Game }i)} \approx 1 \pm 2\epsilon$$

This implies StatDiff($p_0(c|S)$, $p_i(c|S)$) $\leq \epsilon$

Sensitivity with Laplace Noise

Theorem

 $If A(x) = f(x) + Lap\left(\frac{GS_f}{\varepsilon}\right) then A is \varepsilon-indistinguishable.$

Laplace distribution $Lap(\lambda)$ has density $h(y) \propto e^{-\frac{\|y\|_1}{\lambda}}$

Sliding property of $\operatorname{Lap}\left(\frac{\operatorname{GS}_{f}}{\varepsilon}\right)$: $\frac{h(y)}{h(y+\delta)} \leq e^{\varepsilon \cdot \frac{\|\delta\|}{\operatorname{GS}_{f}}}$ for all y, δ *Proof idea:* A(x): blue curve A(x'): red curve $\delta = f(x) - f(x') \leq \operatorname{GS}_{f}$

Differential Privacy: Summary

 San gives ε-differential privacy if for all values of DB and Me and all transcripts t:

