
CS639:	
Data	Management	for	

Data	Science
Lecture	25:	EDA

Theodoros	Rekatsinas

1



Data	Visualizations	Today
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Data	Visualizations	Today
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Standard	Data	Visualization	Recipe:

1. Load dataset	into	data	viz tool
2. Start with	a	desired	hypothesis/pattern	(explore	

combination	of	attributes)
3. Select viz to	be	generated
4. See if	it	matches	desired	pattern
5. Repeat 3-4	until	you	find	a	match
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Tedious	and	Time-consuming!

Key	Issue:

Visualization	can	be	generated	by:
varying	subsets	of	data
varying	attributes	being	visualized

Too	many	visualization	to	look	at	to	find	desired	
visual	patterns!



1.	Visualization	recommendations
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What	you	will	learn	about	in	this	section

1. Space	of	Visualizations

2. Recommendation	Metrics
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Goal

Given	a	dataset	and	a	task,	automatically	produce	a	set	of	visualizations	
that	are	the	most	“interesting”	given	the	task
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Particularly	vague



Goal

Given	a	dataset	and	a	task,	automatically	produce	a	set	of	visualizations	
that	are	the	most	“interesting”	given	the	task
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Example
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• Data	analyst	studying	census	data
• age,	education,	marital-status,	sex,	race,	income,	hours-worked	etc.

• A =	#	attributes	in	table

• Task:	Compare	on	various	socioeconomic	indicators,	unmarried	adults	vs.	all	adults



Space	of	visualizations
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For	simplicity,	assume	a	single	table	
(star	schema)

Visualizations	=	agg.	+	grp.	by	queries

Vi	=	SELECT	d,	f(m)	
FROM	table	
WHERE	___
GROUP	BY	d	

(d,	m,	f):	
dimension,	measure,	aggregate
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Space	of	visualizations
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Vi	=	SELECT	d,	f(m)	
FROM	table	
WHERE	___
GROUP	BY	d	

(d,	m,	f):	
dimension,	measure,	aggregate
{d} :	race,	work-type,	sex	etc.
{m} :	capital-gain,	capital-loss,	hours-per-week
{f} :		COUNT,	SUM,	AVG	



Goal

Given	a	dataset	and	a	task,	automatically	produce	a	set	of	visualizations	
that	are	the	most	“interesting”	given	the	task
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Interesting	visualizations
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Deviation-based	Utility

A	visualization	is	interesting	if	it	displays	
a	large	deviation	from	some	reference

Task:	compare	unmarried	adults	with	all	adults
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Target	 Reference

V1	=	SELECT	d,	f(m)	FROM	table	WHERE	target	GROUP	BY	d	
V2	=	SELECT	d,	f(m)	FROM	table	WHERE	reference	GROUP	BY	d	



Deviation-based	Utility	Metric
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A	visualization	is	interesting	if	it	displays	
a	large	deviation	from	some	reference

Many	metrics	for	computing	distance	between	distributions

V1

V2

D	[P(	V1),	P(V2)]

Earth	mover’s	distance
L1,	L2	distance
K-L	divergence

Any	distance	metric	b/n	
distributions	is	OK!



Computing	Expected	Trend
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Race	vs.	AVG(capital-gain)
Reference	Trend
SELECT	race,	AVG(capital-gain)	FROM	censusGROUP	
BY	race	

P(V1)	

Expected

Distribution



Computing	Actual	Trend
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Race	vs.	AVG(capital-gain)
TargetTrend
SELECT	race,	AVG(capital-gain)	FROM	censusGROUP	
BY	race	WHERE marital-status=‘unmarried’

P(V2)	

Actual

Distribution



Computing	Utility
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U	=	D[P(V1) ,	P(V2)]
D =	EMD,	L2	etc.



Low	Utility	Visualization
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Actual
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High	Utility	Visualization
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Other	metrics
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• Data	characteristics
• Task	or	Insight
• Semantics	and	Domain	Knowledge
• Visual	Ease	of	Understanding
• User	Preference



2.	DB-inspired	Optimizations
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What	you	will	learn	about	in	this	section

1. Ranking	Visualizations

2. Optimizations
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Ranking
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Across	all	(d,	m,	f),	where
V1	=	SELECT	d,	f(m)	FROM	table	WHERE	target	GROUP	BY	d	

V2	=	SELECT	d,	f(m)	FROM	table	WHERE	reference	GROUP	BY	d	

Vi	=	(d:	dimension,	m:	measure,	f:	aggregate)

10s	of	dimensions,	10s	of	measures,	handful	of	aggregates

2*	d	*	m	*	f	

è100s	of	queries	for	a	single	user	task!

èCan	be	even	larger.	How?

Goal:	return	k	best	utility	visualizations	(d,	m,	f),
(those	with	largest	D[V1,	V2])



Even	larger	space	of	queries
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• Binning
• 3	dimensional	or	4	dimensional	visualizations
• Scatterplot	or	map	visualizations
• …



Back	to	ranking

26

Across	all	(d,	m,	f),	where
V1	=	SELECT	d,	f(m)	FROM	table	WHERE	target	GROUP	BY	d	

V2	=	SELECT	d,	f(m)	FROM	table	WHERE	reference	GROUP	BY	d	

Goal:	return	k	best	utility	visualizations	(d,	m,	f),
(those	with	largest	D[V1,	V2])

Naïve	Approach
For	each	(d,	m,	f)	in	sequence

evaluate	queries	for	V1	(target),	V2	(reference)
compute	D[V1,	V2]

Return	the	k	(d,	m,	f)	with	largest	D	values



Issues	with	Naïve	Approach
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•Repeated	processing	of	same	data	
in	sequence	across	queries
•Computation	wasted	on	low-utility	
visualizations

Sharing

Pruning



Optimizations
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• Each	visualization	=	2	SQL	queries

• Latency	>	100s
• Minimize	number	of	queries	and	scans
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Optimizations
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• Combine	aggregate	queries	on	target	and	ref

• Combine	multiple	aggregates
(d1,	m1,	f1),	(d1,	m2,	f1)	à (d1,	[m1,	m2],	f1)

• Combine	multiple	group-bys*
(d1,	m1,	f1),	(d2,	m1,	f1)	à ([d1,	d2],	m1,	f1)
Could	be	problematic…

• Parallel	Query	Execution



Combining	Multiple	Group-by’s
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• Too	few	group-bys leads	to	many	table	scans

• Too	many	group-bys hurt	performance
• #	groups	=	Π (#	distinct	values	per	attributes)

• Optimal	group-by	combination	≈	bin-packing
• Bin	volume	=	log	S	(max	number	of	groups)
• Volume	of	items	(attributes)	=	log	(|ai|)
• Minimize	#	bins	s.t.

Σi log	(|ai|)	<=	log	S



Pruning	optimizations
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• Keep	running	estimates	of	utility
• Prune	visualizations	based	on	estimates

• Two	flavors
• Vanilla	Confidence	Interval	based	Pruning
• Multi-armed	Bandit	Pruning

Discard	low-utility	views	early	to	avoid	wasted	computation
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Visualizations
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More	on	automated	visualizations
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ZQL:	a	viz exploration	language
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Intelligent	query	optimizer
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Summary
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Human	in	the	
loop	analytics	

are	here	to	stay!


