CS639: Data Management for Data Science

Lecture 25: EDA

Theodoros Rekatsinas
Data Visualizations Today

Now billions of $$$ of revenue/year!
Data Visualizations Today

- Billions in revenue
- Huge audience
- Interactions not code

Data Visualization is Data Science for the 99%!

However, these tools are SERIOUSLY limited in their power...

Deriving insights is laborious and time-consuming!

↑ errors ↑ frustration ↑ wasted time ↓ insights ↓ exploration
Standard Data Visualization Recipe:

1. **Load** dataset into data viz tool
2. **Start** with a desired hypothesis/pattern (explore combination of attributes)
3. **Select** viz to be generated
4. **See** if it matches desired pattern
5. **Repeat** 3-4 until you find a match
Tedious and Time-consuming!

Key Issue:

Visualization can be generated by:
- varying subsets of data
- varying attributes being visualized

Too many visualization to look at to find desired visual patterns!
1. Visualization recommendations
What you will learn about in this section

1. Space of Visualizations

2. Recommendation Metrics
Goal

Given a dataset and a task, automatically produce a set of visualizations that are the most “interesting” given the task

Particularly vague
Goal

Given a dataset and a task, automatically produce a set of visualizations that are the most “interesting” given the task.
Example

• Data analyst studying census data
• age, education, marital-status, sex, race, income, hours-worked etc.
 • $A = \#$ attributes in table

• Task: Compare on various socioeconomic indicators, unmarried adults vs. all adults
Space of visualizations

For simplicity, assume a single table (star schema)

Visualizations = agg. + grp. by queries

\[V_i = \text{SELECT} \ d, \ f(m) \]
\[\text{FROM} \ \text{table} \]
\[\text{WHERE} \ ___ \]
\[\text{GROUP BY} \ d \]

(d, m, f):
- dimension
- measure
- aggregate

<table>
<thead>
<tr>
<th>Year</th>
<th>MA</th>
<th>CA</th>
<th>IL</th>
<th>NY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Space of visualizations

\[V_i = \text{SELECT } d, f(m) \]
FROM table
WHERE ___
GROUP BY d

(d, m, f):
dimension, measure, aggregate
{d} : race, work-type, sex etc.
{m} : capital-gain, capital-loss, hours-per-week
{f} : COUNT, SUM, AVG
Goal

Given a dataset and a task, automatically produce a set of visualizations that are the most “interesting” given the task
Interesting visualizations

A visualization is interesting if it displays

a large deviation from some reference

Deviation-based Utility

Task: compare unmarried adults with all adults

\[
V_1 = \text{SELECT } d, f(m) \text{ FROM table WHERE target GROUP BY } d
\]

\[
V_2 = \text{SELECT } d, f(m) \text{ FROM table WHERE reference GROUP BY } d
\]

Compare induced probability distributions!
Deviation-based Utility Metric

A visualization is interesting if it displays

* a large deviation from some reference

Many metrics for computing distance between distributions

\[D [P(V_1), P(V_2)] \]

Earth mover’s distance

L1, L2 distance

K-L divergence

Any distance metric b/n distributions is OK!
Computing Expected Trend

Race vs. AVG(capital-gain)

Reference Trend

SELECT race, AVG(capital-gain) FROM census GROUP BY race

$P(V_1)$

Expected Distribution
Computing Actual Trend

Race vs. AVG(capital-gain)

Target Trend

SELECT race, AVG(capital-gain) FROM census GROUP BY race WHERE marital-status='unmarried'

\[P(V_2) \]

Actual Distribution
Computing Utility

\[U = D[P(V_1), P(V_2)] \]

\[D = \text{EMD, L2 etc.} \]
Low Utility Visualization

race vs. AVG(capital-gain)

- Amer-Indian-Eskimo
- Asian-Pac-Islander
- Black
- Other
- White

Actual
Expected
High Utility Visualization

![Bar chart showing actual vs. expected AVG(capital-gain) by race.](chart.png)
Other metrics

• Data characteristics
• Task or Insight
• Semantics and Domain Knowledge
• Visual Ease of Understanding
• User Preference
2. DB-inspired Optimizations
What you will learn about in this section

1. Ranking Visualizations

2. Optimizations
Ranking

Across all \((d, m, f)\), where

\[
V_1 = \text{SELECT } d, f(m) \text{ FROM table WHERE target GROUP BY } d
\]
\[
V_2 = \text{SELECT } d, f(m) \text{ FROM table WHERE reference GROUP BY } d
\]

Goal: \text{return } k \text{ best utility visualizations } (d, m, f),
\text{(those with largest } D[V_1, V_2])

\(V_i = (d: \text{dimension}, m: \text{measure}, f: \text{aggregate})\)

10s of dimensions, 10s of measures, handful of aggregates

\[2 \times d \times m \times f\]

\(\Rightarrow 100s \text{ of queries for a single user task!}\)

\(\Rightarrow \text{Can be even larger. How?}\)
Even larger space of queries

• Binning
• 3 dimensional or 4 dimensional visualizations
• Scatterplot or map visualizations
• ...
Back to ranking

Across all (d, m, f), where

\[
\begin{align*}
V1 &= \text{SELECT } d, f(m) \text{ FROM table WHERE target GROUP BY } d \\
V2 &= \text{SELECT } d, f(m) \text{ FROM table WHERE reference GROUP BY } d
\end{align*}
\]

Goal: return \(k \) best utility visualizations \((d, m, f)\), (those with largest \(D[V1, V2] \))

Naïve Approach

For each \((d, m, f)\) in sequence

- evaluate queries for \(V1 \) (target), \(V2 \) (reference)
- compute \(D[V1, V2] \)

Return the \(k \) \((d, m, f)\) with largest \(D \) values
Issues with Naïve Approach

- Repeated processing of same data in sequence across queries
- Computation wasted on low-utility visualizations
Optimizations

• Each visualization = 2 SQL queries

• Latency > 100s

• Minimize number of queries and scans
Optimizations

• Combine aggregate queries on target and ref

• Combine multiple aggregates
 \((d1, m1, f1), (d1, m2, f1) \Rightarrow (d1, [m1, m2], f1)\)

• Combine multiple group-bys*
 \((d1, m1, f1), (d2, m1, f1) \Rightarrow ([d1, d2], m1, f1)\)
 Could be problematic...

• Parallel Query Execution
Combining Multiple Group-by’s

• Too few group-bys leads to many table scans

• Too many group-bys hurt performance
 • # groups = \(\Pi \) (# distinct values per attributes)

• Optimal group-by combination \(\approx \) bin-packing
 • Bin volume = \(\log S \) (max number of groups)
 • Volume of items (attributes) = \(\log (|a_i|) \)
 • Minimize # bins s.t.
 \[\Sigma_i \log (|a_i|) \leq \log S \]
Pruning optimizations

Discard low-utility views early to avoid wasted computation

• Keep running estimates of utility
• Prune visualizations based on estimates
 • Two flavors
 • Vanilla Confidence Interval based Pruning
 • Multi-armed Bandit Pruning
Visualizations

Queries (100s)

Optimizer

Sharing

Pruning

DBMS

Middleware Layer
More on automated visualizations

Desiderata for automation:
- **Expressive** – specify what you want
- **Interactive** – interact with results, cater to non-programmers
- **Scalable** – get interesting results quickly

Drawing from

- DB
- DM
- HCI

Enter Zenvisage:
(zen + envisage: to effortlessly visualize)
ZQL: a viz exploration language

- Inspired from QBE & VizQL / Grammar of Graphics
- Captures four key operations on viz collections
 - Compose Filter Compare Sort
- Incorporates data mining primitives
- Powerful; formally demonstrated “completeness”
Intelligent query optimizer

Graph Cons. → Optimizer → Process Computation

ZQL Query

Sequencial:
- (99.99%) Grouped
- (45%) Parallel
- (20%) Speculation
- (20%) SmartFu

NP-Hard!
Summary

Human in the loop analytics are here to stay!