

CS639: Data Management for Data Science

Lecture 23: Data Cleaning [based on slides by John Canny]

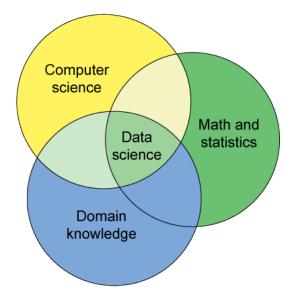
Theodoros Rekatsinas

- The Statistics View:
 - There is a process that produces data
 - We want to model ideal samples of that process, but in practice we have non-ideal samples:
 - **Distortion** some samples are corrupted by a process
 - Selection Bias likelihood of a sample depends on its value
 - Left and right censorship users come and go from our scrutiny
 - Dependence samples are supposed to be independent, but are not (e.g. social networks)
 - You can add new models for each type of imperfection, but you can't model everything.
 - What's the best trade-off between accuracy and simplicity?

- The Database View:
 - I got my hands on this data set
 - Some of the values are missing, corrupted, wrong, duplicated
 - Results are absolute (relational model)
 - You get a better answer by improving the quality of the values in your dataset

- The Domain Expert's View:
 - This Data Doesn't look right
 - This Answer Doesn't look right
 - What happened?
- Domain experts have an implicit model of the data that they can test against...

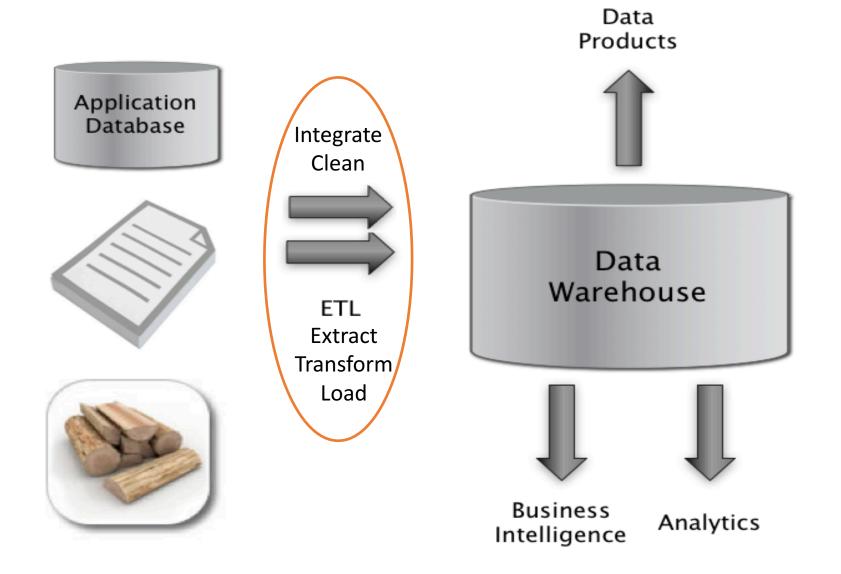
- The Data Scientist's View:
 - Some Combination of all of the above



Data Quality Problems

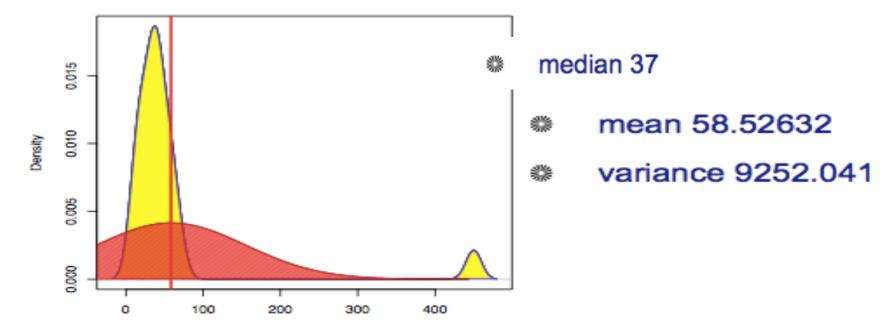
- (Source) Data is dirty on its own.
- Transformations corrupt the data (complexity of software pipelines).
- Data sets are clean but integration (i.e., combining them) screws them up.
- "Rare" errors can become frequent after transformation or integration.
- Data sets are clean but suffer "bit rot"
 - Old data loses its value/accuracy over time
- Any combination of the above

Big Picture: Where can Dirty Data Arise?



Numeric Outliers

12 13 14 21 22 26 33 35 36 37 39 42 45 47 54 57 61 68 450 ages of employees (US)

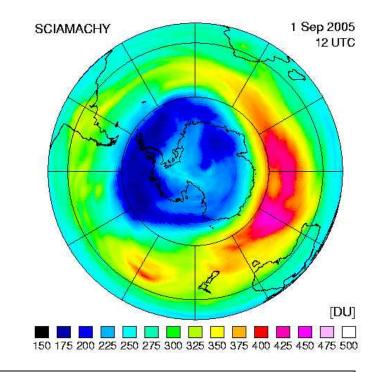


Adapted from Joe Hellerstein's 2012 CS 194 Guest Lecture

Data Cleaning Makes Everything Okay?

The appearance of a hole in the earth's ozone layer over Antarctica, first detected in 1976, was so unexpected that scientists didn't pay attention to what their instruments were telling them; they thought their instruments were malfunctioning.

> National Center for Atmospheric Research



In fact, the data were rejected as unreasonable by data quality control algorithms

Dirty Data Problems

- From Stanford Data Integration Course:
 - 1) parsing text into fields (separator issues)
 - 2) Naming conventions: ER: NYC vs New York
 - 3) Missing required field (e.g. key field)
 - 4) Different representations (2 vs Two)
 - 5) Fields too long (get truncated)
 - 6) Primary key violation (from un- to structured or during integration
 - 7) Redundant Records (exact match or other)
 - 8) Formatting issues especially dates
 - 9) Licensing issues/Privacy/ keep you from using the data as you would like?

Conventional Definition of Data Quality

- Accuracy
 - The data was recorded correctly.
- Completeness
 - All relevant data was recorded.
- Uniqueness
 - Entities are recorded once.
- Timeliness
 - The data is kept up to date.
 - Special problems in federated data: time consistency.
- Consistency
 - The data agrees with itself.

Problems ...

- Unmeasurable
 - Accuracy and completeness are extremely difficult, perhaps impossible to measure.
- Context independent
 - No accounting for what is important. E.g., if you are computing aggregates, you can tolerate a lot of inaccuracy.
- Incomplete
 - What about interpretability, accessibility, metadata, analysis, etc.
- Vague
 - The conventional definitions provide no guidance towards practical improvements of the data.

Adapted from Ted Johnson's SIGMOD 2003 Tutorial

Finding a modern definition

- We need a definition of data quality which
 - Reflects the **use** of the data
 - Leads to improvements in processes
 - Is **measurable** (we can define metrics)

- First, we need a better understanding of how and where data quality problems occur
 - The data quality continuum

Meaning of Data Quality (2)

- There are many types of data, which have different uses and typical quality problems
 - Federated data
 - High dimensional data
 - Descriptive data
 - Longitudinal data
 - Streaming data
 - Web (scraped) data
 - Numeric vs. categorical vs. text data

Meaning of Data Quality (2)

- There are many uses of data
 - Operations
 - Aggregate analysis
 - Customer relations ...
- Data Interpretation : the data is useless if we don't know all of the *rules* behind the data.
- Data Suitability : Can you get the answer from the available data
 - Use of proxy data
 - Relevant data is missing

The Data Quality Continuum

- Data and information is not static, it flows in a data collection and usage process
 - Data gathering
 - Data delivery
 - Data storage
 - Data integration
 - Data retrieval
 - Data mining/analysis

Data Gathering

- How does the data enter the system?
- Sources of problems:
 - Manual entry
 - No uniform standards for content and formats
 - Parallel data entry (duplicates)
 - Approximations, surrogates SW/HW constraints
 - Measurement or sensor errors.

Data Gathering - Solutions

- Potential Solutions:
 - Preemptive:
 - Process architecture (build in integrity checks)
 - Process management (reward accurate data entry, data sharing, data stewards)
 - Retrospective:
 - Cleaning focus (duplicate removal, merge/purge, name & address matching, field value standardization)
 - Diagnostic focus (automated detection of glitches).

Data Delivery

- Destroying or mutilating information by inappropriate pre-processing
 - Inappropriate aggregation
 - Nulls converted to default values
- Loss of data:
 - Buffer overflows
 - Transmission problems
 - No checks

Data Delivery - Solutions

- Build reliable transmission protocols
 - Use a relay server
- Verification
 - Checksums, verification parser
 - Do the uploaded files fit an expected pattern?
- Relationships
 - Are there dependencies between data streams and processing steps
- Interface agreements
 - Data quality commitment from the data stream supplier.

Data Storage

- You get a data set. What do you do with it?
- Problems in physical storage
 - Can be an issue, but terabytes are cheap.
- Problems in logical storage
 - Poor metadata.
 - Data feeds are often derived from application programs or legacy data sources. What does it mean?
 - Inappropriate data models.
 - Missing timestamps, incorrect normalization, etc.
 - Ad-hoc modifications.
 - Structure the data to fit the GUI.
 - Hardware / software constraints.
 - Data transmission via Excel spreadsheets, Y2K

Data Storage - Solutions

- Metadata
 - Document and publish data specifications.
- Planning
 - Assume that everything bad will happen.
 - Can be very difficult.
- Data exploration
 - Use data browsing and data mining tools to examine the data.
 - Does it meet the specifications you assumed?
 - Has something changed?

Adapted from Ted Johnson's SIGMOD 2003 Tutorial

Data Retrieval

- Exported data sets are often a view of the actual data. Problems occur because:
 - Source data not properly understood.
 - Need for derived data not understood.
 - Just plain mistakes.
 - Inner join vs. outer join
 - Understanding NULL values
- Computational constraints
 - E.g., too expensive to give a full history, we'll supply a snapshot.
- Incompatibility
 - Ebcdic? Unicode?

Data Mining and Analysis

- What are you doing with all this data anyway?
- Problems in the analysis.
 - Scale and performance
 - Confidence bounds?
 - Black boxes and dart boards
 - Attachment to models
 - Insufficient domain expertise
 - Casual empiricism

Retrieval and Mining - Solutions

- Data exploration
 - Determine which models and techniques are appropriate, find data bugs, develop domain expertise.
- Continuous analysis
 - Are the results stable? How do they change?
- Accountability
 - Make the analysis part of the feedback loop.

Data Quality Constraints

- Many data quality problems can be captured by *static* constraints based on the schema.
 - Nulls not allowed, field domains, foreign key constraints, etc.
- Many others are due to problems in workflow, and can be captured by *dynamic* constraints
 - E.g., orders above \$200 are processed by Biller 2
- The constraints follow an 80-20 rule
 - A few constraints capture most cases, thousands of constraints to capture the last few cases.
- Constraints are measurable. Data Quality Metrics?

Data Quality Metrics

- We want a measurable quantity
 - Indicates what is wrong and how to improve
 - Realize that DQ is a messy problem, no set of numbers will be perfect
- Types of metrics
 - Static vs. dynamic constraints
 - Operational vs. diagnostic
- Metrics should be *directionally correct* with an improvement in use of the data.
- A very large number metrics are possible
 - Choose the most important ones.

Examples of Data Quality Metrics

- Conformance to schema
 - Evaluate constraints on a snapshot.
- Conformance to business rules
 - Evaluate constraints on changes in the database.
- Accuracy
 - Perform inventory (expensive), or use proxy (track complaints). Audit samples?
- Accessibility
- Interpretability
- Glitches in analysis
- Successful completion of end-to-end process

Technical Approaches

- We need a multi-disciplinary approach to attack data quality problems
 - No one approach solves all problem
- Process management
 - Ensure proper procedures
- Statistics
 - Focus on analysis: find and repair anomalies in data.
- Database
 - Focus on relationships: ensure consistency.
- Metadata / domain expertise
 - What does it mean? Interpretation

Data cleaning for structured data

Detect and repair errors in a structured dataset

University of Chicago, Cicago, IL

Data cleaning for structured data

Detect and repair errors in a structured dataset

University of Chicago, Cicago, IL

1. Detect University of Chicago, Cicago, IL

Data cleaning for structured data

Detect and repair errors in a structured dataset

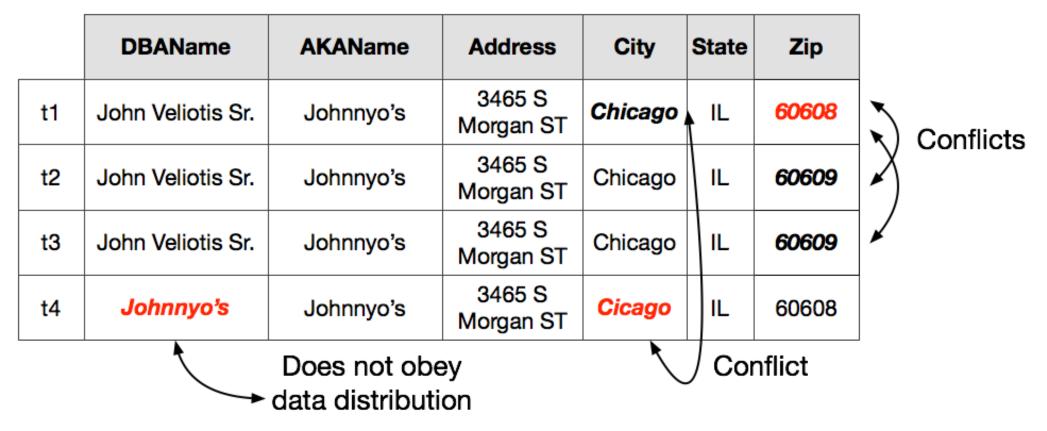
University of Chicago, Cicago, IL

1. Detect University of Chicago, *Cicago*, IL

2. Repair University of Chicago, *Chicago*, IL

A simple example

Chicago's food inspection dataset



Detect and **repair** errors in a structured dataset

Constraints and minimality

c1: DBAName \rightarrow Zip

Functional dependencies

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	<u>60608</u>
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Bohannon et al., 2005, 2007; Kolahi and Lakshmanan , 2005; Bertossi et al., 2011; Chu et al., 2013; 2015 Fagin et al., 2015

Constraints and minimality

c1: DBAName \rightarrow Zip

Functional dependencies

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Action: Fewer erroneous than correct cells; perform minimum number of changes to satisfy all constraints

Constraints and minimality

c1: DBAName \rightarrow Zip

Functional dependencies

c2: Zip \rightarrow City, State

c3: City, State, Address \rightarrow Zip

	DBAName	AKAName	Address	City	State	Zip	
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	Error;
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609	correct z code is
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608	60608

Does not fix errors and introduces new ones.

External information

Matching dependencies

- m1: $Zip = Ext_Zip \rightarrow City = Ext_City$
- m2: $Zip = Ext_Zip \rightarrow State = Ext_State$
- m3: City = Ext_City \land State = Ext_State \land
 - $\wedge \, \mathrm{Address} = \mathrm{Ext}_{-} \mathrm{Address} \to \mathrm{Zip} = \mathrm{Ext}_{-} \mathrm{Zip}$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Fan et al., 2009; Bertossi et al., 2010; Chu et al., 2015

External information

Matching	dependencies
----------	--------------

- m1: $Zip = Ext_Zip \rightarrow City = Ext_City$
- m2: $Zip = Ext_Zip \rightarrow State = Ext_State$
- m3: City = $Ext_City \land State = Ext_State \land$

 $\land Address = Ext_Address \rightarrow Zip = Ext_Zip$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Action: Map external information to input dataset using matching dependencies and repair disagreements

External information

Matching dependencies

- m1: $Zip = Ext_Zip \rightarrow City = Ext_City$
- m2: $Zip = Ext_Zip \rightarrow State = Ext_State$
- m3: City = Ext_City \land State = Ext_State \land

 $\wedge \operatorname{Address} = \operatorname{Ext}\nolimits\operatorname{-}\!\operatorname{Address} \to \operatorname{Zip} = \operatorname{Ext}\nolimits\operatorname{-}\!\operatorname{Zip}$

External list of addresses

Ext_Address	Ext_City	Ext_State	Ext_Zip
3465 S Morgan ST	Chicago	IL	60608
1208 N Wells ST	Chicago	IL	60610

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

External dictionaries may have limited coverage or not exist altogether

Quantitative statistics

Reason about co-occurrence of values across cells in a tuple

Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

Example: Chicago co-occurs with IL

Hellerstein, 2008; Mayfield et al., 2010; Yakout et al., 2013

Quantitative statistics

Reason about co-occurrence of values across cells in a tuple

Estimate the distribution governing each attribute

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Again, fails to repair the wrong zip code

Let's combine everything

Constraints and minimality

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608

External data

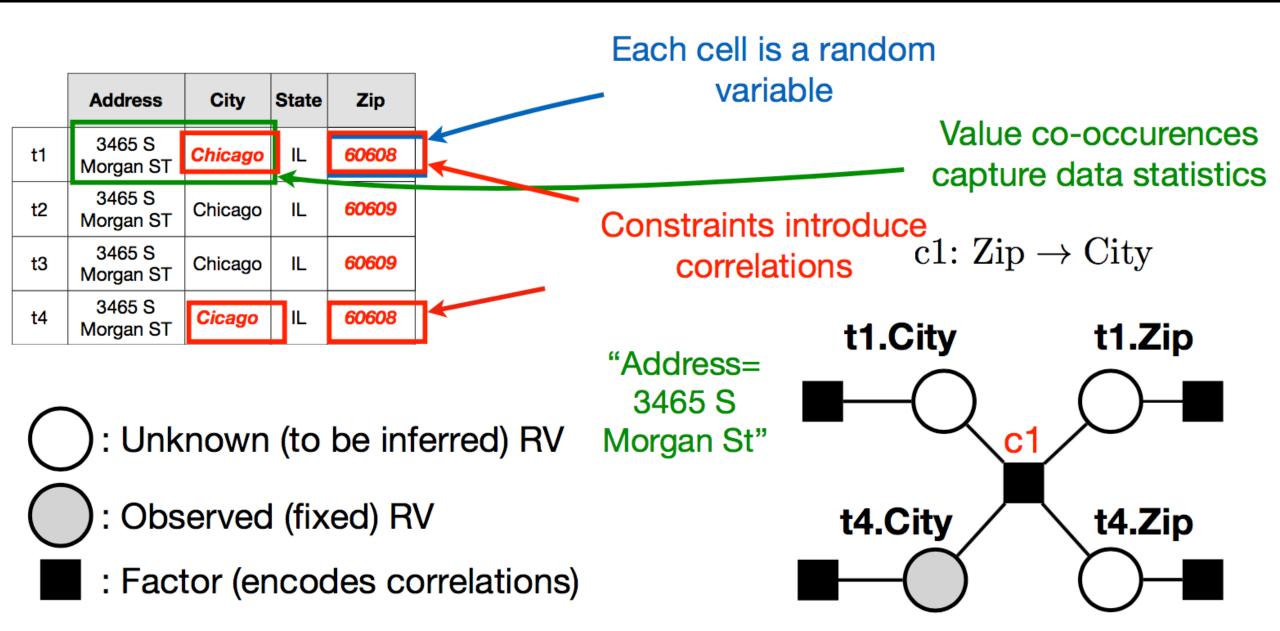
		DBAName	AKAName	Address	City	State	Zip
	t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
000000	t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
000000	t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	L	60608
	+4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

Quantitative statistics

	DBAName	AKAName	Address	City	State	Zip
t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609
t4	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608

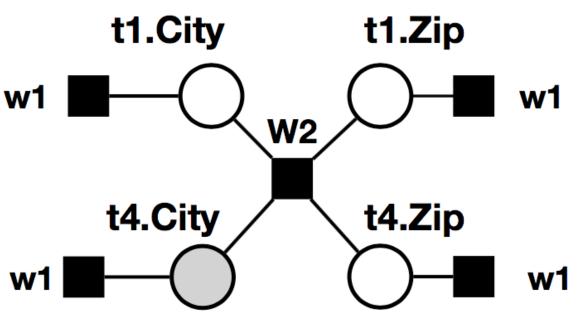
Different solutions suggest different repairs

A probabilistic model for data repairs



Learning the model

Factor Graph



Exponential family (canonical form) $\mathbf{w} = (w_1, w_2, \dots, w_s)^T$ $P(x|w) = \exp\left(\sum_{i=1}^s w_i T_i(x) - A(\mathbf{w})\right)$ HoloClean automatically generates a factor graph that captures:

- Co-occurences
- Correlations due to constraints
- Evidence due to external data

Repairing is a learning and inference problem: Learn parameters w (use SGD) and infer the marginal distribution for unknown variables (use Gibbs sampling)