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What is Entity Resolution?

Problem of identifying and linking/grouping different manifestations of
the same real world object.

Examples of manifestations and objects:

 Different ways of addressing (names, email addresses, FaceBook accounts) the
same person in text.

* Web pages with differing descriptions of the same business.

» Different photos of the same object.



Ironically, Entity Resolution has many duplicate names

Record linkage Duplicate detection

Coreference resolution
Reference reconciliation

Fuzzy match Object consolidation

Object identification
Deduplication
Entity clustering
Approximate match

Identity uncertainty
Merge/purge Household matching

Hardening soft databases
Householding Reference matching

Doubles



ER Motivating Examples

* Linking Census Records

* Public Health

* Web search

 Comparison shopping

* Counter-terrorism

* Knowledge Graph Construction



Motivation: ER and Network Analysis
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Motivation: ER and Network Analysis

* Measuring the topology of the internet ... using traceroute

|Command Prompt
C:\>tracert mediacollege.con

Tracing route to nmediacollege.com [66.246.3.1971
over a maxinmum of 38 hops:

<18 v <18 s 192.168.1.1
248 r 421 78 219-88-164-1.jetstream.xtra.co.nz [219.88.164.11]
s 38 ms 30 ms 210.55.205.123
»* »* Request timed out.
38 202.50.245.197
40 g2-8-3.tkhr3.global-gateway.net.nz [282.37.245.1481]
38 so—-1-2—-1-B.akbhr3.glohal-gatewvay.net.nz [202.50.116.1611]
161 pl-3.sjbrl.global-gatewvay.net.nz [202.50.116.1781
171 so—-1-3-8-B.pabr3.glohal-gatevay.net.nz [202.37.245.2381]
161 paol-hrl-g2-1-181.gnaps.net [198.32.176.1651]
181 lax1-brl-p2-1.gnaps.net [199.232.44.5]
170 lax1i-hrl-ge-B-1-B.gnaps.net [199.232.44.501]
241 nyc—n2B8-ge2-2-B.gnaps.net [199.232.44.211]
251 ash—-n28-gel-B-B.gnaps.net [199.232.131.361
248 9503 .ge-8-0-B.gbrl.ash.nac.net [207.99.39.157]
2608 B.s50-2-2-B.gbr2.nwr.nac.net [209.123.11.291]
268 B.s0-8-3-B.gbhrl.oct.nac.net [209.123.11.2331]
‘ 268 s 209.123.182.243
258 r 268 ms sol.yourhost.co.nz [66.246.3.1971]

Trace complete.

C:i\>




IP Aliasing Problem [willinger et al. 2009]
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Figure 2. The IP alias resolution problem.
Paraphrasing Fig. 4 of [50], traceroute does
not list routers (boxes) along paths but IP
addresses of input interfaces (circles), and
alias resolution refers to the correct mapping
of interfaces to routers to reveal the actual
topology. In the case where interfaces 1 and 2
are aliases, (b) depicts the actual topology
while (a) yields an “inflated” topology with
more routers and links than the real one.




IP Aliasing Problem [willinger et al. 2009]
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Figure 3. The IP alias resolution problem in practice. This is re-produced from [48] and shows a
comparison between the Abilene/Internet2 topology inferred by Rocketfuel (left) and the actual
topology (top right). Rectangles represent routers with interior ovals denoting interfaces. The
histograms of the corresponding node degrees are shown in the bottom right plot. © 2008 ACM




IP Aliasing Problem [willinger et al. 2009]
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Normalization

* Schema normalization
* Schema matching: e.g., contact# vs. phone
* Compound attributes: e.g., addr vs. (street, city, st, zip)

* Nested or set-valued attributes: e.g., properties for rent
with a set of tags, multiple phone numbers

e Data normalization

* Capitalization, white-space normalization

 Correcting typos, replacing abbreviations, variations,
nick names

* Usually done by employing “dictionaries”: e.g., lists of
businesses, postal addresses, etc.
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Matching Features

Give two records, compute a “comparison” vector
of similarity scores for corresponding features

* E.g., to match two bibliographical references,
compute (15-author-match-score, title-match-score,
venue-match-score, year-match-score, ...)

* Score can be Boolean (match, or mismatch), or
reals (based on some distance function)

11



Examples of matching features

Difference between numeric values
Domain-specific, like Jaro (for names)

Edit distance: good for typos in strings
* Levenshtein, Smith-Waterman, affine gap

Phonetic-based
 Soundex

Translation-based

Set similarity
e Jaccard, Dice
* For text fields (set of words) or relational features (e.g., set of
authors of a paper)
Vector-based
* Cosine similarity, TF/IDF (good for text)
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Jaro

Specifically designed for names by U.S. Census

* Given sand t, cis commonifs; = t; = ¢ and
.., _ min(|s|,|t])
i —Jjl = —
* ¢, and ¢, are a transposition if ¢; and ¢, are

common but appear in different ordersinsand t

. . . 1/m m m-—Xx

* Jaro similarity = = (— +—+ ), where m = #

3 \|s]| It | 2m

commons and x = some measure of #
transpositions

* Jaro-Winkler further weighs errors early in the
strings more heavily

13



Levenshtein

* Distance between strings s and t = shortest
sequence of edit commands that transformstot
* Copy character froms over to t
* Delete a characterins (cost 1)
* Insert a characterin t (cost 1)
* Substitute one character for another (cost 1)
s L L

LT AW

t L L L C OH ON

oo ¢ C C Cl CCCCCZCUZCSsSLCc

cost o o oo0o1 11 1 1 1 1 1 2 2
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Computing Levenshtein

D(i,j) = score of best alignment between s; 5, -+ s;

and t1t2 t]

Di—1,j—1)+ d(si, tj) sub/copy
= min D(i—-1,j)+1 delete
D(i,j—1)+1 insert
where d(s;, t;) = 1[s; # t;],
andletD(0,0) =0,D(i,0) =i,and D(0,j) =j

* Can then normalize using lengths of s and t:
1 —D(Isl, [t])/ max(|s], |¢])
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Set similarity

Giventwo sets A and B

. |ANB|

e Jaccard distance: 1 AUB]
. . 2|ANB
* Dice distance: 1 | |
|A|+|B|

* Not a distance metric (triangle inequality doesn’t hold)

* Note the connection to the F1 measure, which is the
harmonic mean of
* Precision: TP/(TP+FP)
* Recall: TP/(TP+FN)
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Cosine similarity and TF/IDF

e Let U = {x4, X5, ..., X,, } be the universe of all
elements (e.g., possible words in English)

* Amultiset D with elements drawn from U (e.g., a
document) can be represented as an n-dim vector

(Wq, Wo, ., W)
* Each w; can be as simple as c(D, x;), count of x; in D

* Cosine similarity between D, and D, is

Dy-D . .
|D1”D2 , where |-| is the L, (Euclidean) normal
1 2
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TF/IDF

Alternatively, if you have a corpus D of D’s, define

* Term frequency TF(D,x) = log10(1 + c(D,x)),
where c(D, x) is x’s number of occurrences in D

* Inverse document frequency IDF (D, x) =

D .
log;, (DF(D’X)), where DF (D, x) is the number of

D’s in D containing x
e Letw; =TF(D,x;) - IDF(D, x;)

* ldea: elements that don’t serve to distinguish a D within
D (e.g., stop words) are weighed down
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Tokening and shingling

What are the “elements” in text?

Do we lose the sequencing information by treating
text as a bag of elements?

* Simply split by non-alphanumeric characters?

* How about “San Francisco’”?

* Can use a language model to find sequences of words
that appear “more than random”

* Or additionally treat n-grams (all subsequences of
length n) as your “elements” (shingling)

19



Pairwise-ER

Given a vector of component-wise similarity scores
for records x and y, compute P(x and y match)

Possible solutions
* Check the weighed sum of component-wise scores

against a threshold to determine match/non-match
* E.g., 0.5X15%-author-match-score + 0.2Xvenue-match-score
+ 0.3 Xtitle-match-score = 0.8
* Formulate rules about what constitutes a match

* E.g., (1*"-author-match-score > 0.7 AND
venue-match-score > 0.8) OR (title-match-score > 0.9
AND venue-match-score > 0.9)

Hard to come up with weights, thresholds, and rules!
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Fellegi and Sunter

* Given record pair r = (x, y) to match, with y as the
score vector
e Let M denote matches and U non-matches

* Decision rule:

° Ply|reM)
~ P(y|revu
* Non-matchif R < t;, matchif t;, < R, uncertain

otherwise

* Naive Bayes assumption:
P(y|lreM)=1II;P(y; |r € M)

21



Supervised ML for pairwise ER

* Naive Bayes, decision trees (Cochinwala et al., IS 2001),
SUppOFt vector machines (Bilenko & Mooney, KDD 2003;
Christen KDD 2008), ensembles of classifiers (chenetal,

SIGMOD 2009), Conditional Random Fields (Gupta &
Sarawagi, VLDB 2009), etc.

* Imbalanced classes: typically many more negatives
(0(|R|%)) than positives (O(|R]))

* Pairs/matches are not i.i.d.
* E.g., (x,y) € Mand (y,z) € M implies (x,z) € M

* Constructing a training set is hard

* Most pairs are “easy non-matches”

» Some pairs are inherently ambiguous (e.g., is Paris Hilton
person or business?); others have missing attributes

(e.g., Starbucks, Durham, NC) 2



Active learning

* Focus labeling efforts to reduce the “confusion
region” of classifiers

* To assess uncertainty, use the classifier’s output
(e.g., posterior probabilities of a Bayesian
classifier), or votes by a “committee” (multiple
weak classifiers)

* Again, beware of evaluation metric—o0-1loss is no
good; need maximize recall with acceptable
precision

23



Constraints under deduplication

* Deduplication: given a database containing
potential duplicate mentions of the same entities,
partition mentions into equivalence classes

* Transitivity constraint:
* If (x,y) € M and (y,z) € M, we must have (x,z) € M
* Pairwise ER may or may not give us (x, z) in this case

* A quick fix—compute transitive closure on the
inferred match relationships? . o

o ®
* Bad idea in some cases: graphs e ° y
resulting from pairwise ER can |
have diameter > 20 (Rastogi et
al. Corr 2012) 24



Clustering-based ER

* Resolution decisions are not made independently
for each pair of records—good

* Unsupervised—good, although often still needs
pairwise similarity as input
* Existing clustering algorithms may be used, but

e Number of clusters not known in advance

* Many, many small (possibly singleton) clusters—not
what most existing clustering algorithms expect

25



Possible clustering approaches

* Hierarchical clustering
* Bilenko et al. ICDM 2005

* Nearest-neighbor-based methods
e Chaudhuri et al., ICDE 2005

* Soon et al. CL 2001, Ng et al. ACL 2002, Bansal et al. ML
2004, Elsner et al. ACL 2008, Ailon et al. JACM 2008, etc.
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Correlation clustering

* Key advantage: no need to give the number of
clusters; find the optimal number automatically

* Key idea: maximize the sum of

e Similarities between nodes within the same clusters
e Disimilarities between nodes in different clusters
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Summary

Growing omnipresence of massive linked data, and the need
for creating knowledge bases from text and unstructured
data motivate a number of challenges in ER

Especially interesting challenges and opportunities for ER and
social media/user generated data

As data, noise, and knowledge grows, greater needs &
opportunities for intelligent reasoning about entity resolution

Many other challenges
— Large scale identity management
— Understanding theoretical potentials & limits of ER
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