CS639: Data Management for Data Science

Lecture 2: Statistical Inference and Exploratory Data Analysis

Theodoros Rekatsinas
Announcements

• **Waiting list**: you receive invitations to register and you have two days to reply.

• **Piazza**: you need to register to engage in discussions and receive announcements

• **Announcements**: update the class website; announcements will be posted there
First assignment (P0)

• Create a GitHub account and clone the github repository of the class.

• Deploy the class VM (instructions in the slides of Lecture 1)
Today’s Lecture

1. Quick Recap: The data science workflow

2. Statistical Inference

3. Exploratory Data Analysis
 • Activity: EDA in Jupyter notebook
1. Quick Recap: The DS Workflow
One definition of data science

Data science is a broad field that refers to the collective processes, theories, concepts, tools and technologies that enable the review, analysis and extraction of valuable knowledge and information from raw data.

Source: Techopedia
Data science workflow

What is wrong here?
Data science is not (only) about hacking!
Your mind-set should be “statistical thinking in the age of big-data”
2. Statistical Inference
What you will learn about in this section

1. Uncertainty and Randomness in Data

2. Modeling Data

3. Samples and Distributions
Uncertainty and Randomness

• Data represents the traces of real-world processes.
 • The collected traces correspond to a sample of those processes.

• There is randomness and uncertainty in the data collection process.

• The process that generates the data is stochastic (random).
 • Example: Let’s toss a coin! What will the outcome be? Heads or tails? There are many factors that make a coin toss a stochastic process.

• The sampling process introduces uncertainty.
 • Example: Errors due to sensor position due to error in GPS, errors due to the angles of laser travel etc.
Models

• Data represents the **traces** of real-world processes.

• Part of the data science process: We need to **model** the real-world.

• A model is a function \(f_\theta(x) \)
 - \(x \): input variables (can be a vector)
 - \(\theta \): model parameters
Modeling Uncertainty and Randomness

• Data represents the *traces* of real-world processes.

• There is *randomness* and *uncertainty* in the data collection process.

• A model is a function $f_\theta(x)$
 • x: input variables (can be a vector)
 • θ: model parameters

• Models should rely on *probability theory* to capture uncertainty and randomness!
Modeling Example
Modeling Example

The model corresponds to a linear function
Population and Samples

• Population is complete set of traces/data points.
 • US population 314 Million, world population is 7 billion for example
 • All voters, all things

• Sample is a subset of the complete set (or population).
 • How we select the sample introduces biases into the data

• Population ➔ sample ➔ mathematical model
Population and Samples

• Example: Emails sent by people in the CS dept. in a year.

• Method 1: 1/10 of all emails over the year randomly chosen

• Method 2: 1/10 of people randomly chosen; all their email over the year

• Both are reasonable sample selection method for analysis.

• However estimations pdfs (probability distribution functions) of the emails sent by a person for the two samples will be different.
Back to Models

• Abstraction of a real world process

• How to build a model?

• Probability distribution functions (pdfs) are building blocks of statistical models.
Probability Distributions

• Normal, uniform, Cauchy, t-, F-, Chi-square, exponential, Weibull, lognormal, etc.

• They are known as continuous density functions

• For a probability density function, if we integrate the function to find the area under the curve it is 1, allowing it to be interpreted as probability.

• Further, joint distributions, conditional distributions and many more.
Fitting a Model

• Fitting a model means estimating the parameters of the model.
 • What distribution, what are the values of min, max, mean, stddev, etc.

• It involves algorithms such as maximum likelihood estimation (MLE) and optimization methods.

• Example: \(y = \beta_1 + \beta_2 \times x \) \(\Rightarrow y = 7.2 + 4.5 \times x \)
3. Exploratory Data Analysis
What you will learn about in this section

1. Intro to Exploratory Data Analysis (EDA)

2. Activity: EDA in Jupyter
Activity

• Notebook link provided on website.