

CS639: Data Management for Data Science

Lecture 17: Evaluating Machine Learning Methods

Theodoros Rekatsinas

Announcements

- 1. You can see your exams during office hours
- 2. Homework will be announced later this week; we will have only two more projects not three

Today

1. Evaluating ML models

How can we get an unbiased estimate of the accuracy of a learned model?

- How can we get an unbiased estimate of the accuracy of a learned model?
- When learning a model, you should pretend that you don't have the test data yet
- If the test-set labels influence the learned model in any way, accuracy estimates will be biased

Learning curves

- How does the accuracy of a learning method change as a function of the training-set size?
 - This can be assessed by learning curves

Learning curves

- Given a training/test set partition
 - For each sample size s on the learning curve
 - (optionally) repeat n times
 - Randomly select s instances from the training set
 - Learn the model
 - Evaluate the model on the test set to determine accuracy a
 - Plot (s,a)

Validation (tuning) sets

• Suppose we want unbiased estimates of accuracy during the learning process (e.g. to choose the best level of decision-tree pruning)?

Partition training data into separate training/validation sets

Limitations of using a single training/test partition

- We may not have enough data to make sufficiently large training and test sets
 - A larger test set gives us more reliable estimates of accuracy (i.e., a lower variance estimate)
 - But... a **larger training set** will be more representative of how much data we actually have for learning process
- A single training set does not tell us how sensitive accuracy is to a particular training sample

Random resampling

• We can address the second issue by repeatedly randomly partitioning the available data into training and set sets.

Stratified sampling

• When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set

Cross validation

partition data into *n* subsamples

iteratively leave one subsample out for the test set, train on the rest

iteration	train on	test on
1	$\mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_4 \ \mathbf{S}_5$	S ₁
2	\mathbf{S}_1 \mathbf{S}_3 \mathbf{S}_4 \mathbf{S}_5	s ₂
3	$\mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_4 \ \mathbf{S}_5$	S ₃
4	$\mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_5$	S ₄
5	s₁ s₂ s₃ s₄	S ₅

Cross validation example

• Suppose we have 100 instances, and we want to estimate accuracy with cross validation

iteration	train on	test on	correct
1	s ₂ s ₃ s ₄ s ₅	s ₁	11 / 20
2	s ₁ s ₃ s ₄ s ₅	s ₂	17 / 20
3	s ₁ s ₂ s ₄ s ₅	s ₃	16 / 20
4	$\mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_5$	S ₄	13 / 20
5	s ₁ s ₂ s ₃ s ₄	S ₅	16 / 20

accuracy = 73/100 = 73%

Cross validation example

- 10-fold cross validation is common, but smaller values of n are often used when learning takes a lot of time
- In *leave-one-out* cross validation, *n*=#instances
- In stratified cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- Note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a learning method as opposed to an individual learned model

Internal cross validation

 Instead of a single validation set, we can use cross-validation within a training set to select a model (e.g. to choose the best level of decision-tree pruning)

Confusion matrices

• How can we understand what types of mistakes a learned model makes?

activity recognition from video

predicted class

Confusion matrix for 2-class problems

Is accuracy an adequate measure of predictive performance?

- accuracy may not be useful measure in cases where
 - · there is a large class skew
 - Is 98% accuracy good if 97% of the instances are negative?
 - there are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong
 - Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
 - we are most interested in a subset of high-confidence predictions

Other accuracy metrics

true positive rate (recall) =
$$\frac{TP}{actual pos}$$
 = $\frac{TP}{TP + FN}$
false positive rate = $\frac{FP}{actual neg}$ = $\frac{FP}{TN + FP}$

ROC curves

A Receiver Operating Characteristic (ROC) curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied

ROC curve example

ROC curves and misclassification costs

Thyroid anomaly detection

Algorithm for creating an ROC curve

- 1. sort test-set predictions according to confidence that each instance is positive
- 2. step through sorted list from high to low confidence
 - i. locate a *threshold* between instances with opposite classes (keeping instances with the same confidence value on the same side of threshold)
 - ii. compute TPR, FPR for instances above threshold
 - iii. output (FPR, TPR) coordinate

Other accuracy metrics

recall (TP rate) =
$$\frac{TP}{actual pos}$$
 = $\frac{TP}{TP + FN}$
precision = $\frac{TP}{predicted pos}$ = $\frac{TP}{TP + FP}$

Precision/recall curves

A *precision/recall curve* plots the precision vs. recall (TP-rate) as a threshold on the confidence of an instance being positive is varied

To Avoid Cross-Validation Pitfalls

- Is my held-aside test data really representative of going out to collect new data?
 - Even if your methodology is fine, someone may have collected features for positive examples differently than for negatives – should be *randomized*
 - Example: samples from cancer processed by different people or on different days than samples for normal controls

To Avoid Cross-Validation Pitfalls

- Did I repeat my entire data processing procedure on every fold of cross-validation, using only the training data for that fold?
 - On each fold of cross-validation, did I ever access in any way the label of a test case?
 - Any preprocessing done over *entire data* set (feature selection, parameter tuning, threshold selection) must *not* use labels

To Avoid Cross-Validation Pitfalls

- 3. Have I modified my algorithm so many times, or tried so many approaches, on this same data set that I (the human) am overfitting it?
 - Have I continually modified my preprocessing or learning algorithm until I got some improvement on this data set?
 - If so, I really need to get some additional data now to at least test on

Ablation Studies

We can gain insight into what contributes to a learning system's performance by removing (lesioning) components of it

The ROC curves here show how performance is affected when various feature types are removed from the learning representation

