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Today’s Lecture

1. Linear classifiers
2. The Perceptron Algorithm

3. Support Vector Machines



Linear classifier

e Let’s simplify life by assuming:
* Every instance is a vector of real numbers, x=(x,,...,x,). (Notation: boldface x is a
vector.)

* There are only two classes, y=(+1) and y=(-1)

e A linear classifier is vector w of the same dimension as x that is used to
make this prediction:

y =sign(w,x, + w,x, +...+w x, ) =sign(w-X)
+1 ifx>0

sign(x) =+ -
=110 if<o




Example: Linear classifier

* Imagine 3 features (spam is “positive” class):
1. free (number of occurrences of “free”)
2. money (occurrences of “money”) w - f(x)
3. BIAS (intercept, always has value 1) ) w; - f;(z)
1

v /() W (1)(-3)
BIAS : 1 BIAS : -3 (1)(4)
« . free : 1 free : 4 1)(2
free money money : 1 money : 2 ( )( )
=3

w.f(x) > 0 =» SPAM!!!



The Perceptron Algorithm to learn a Linear Classifier

—

» Start with weight vector = ()
» For each training instance (x,y;*):
— Classify with current weights

41 if w- f(x) o
+1 it w- f(z) >0 |
I <\—1 if w- f(z)<0 J)

Wt4-1
— If correct (i.e., y=y;*), no change!
— If wrong: update

w=w+y" f(x)



Definition: Linearly separable data

Jw such that Vit yr(w-x¢) > v >0
t

Called the margin
Equivalently, for y,= +1,
H B w - Ty =Y

and for y, = -1,

w-Te < =




Does the perceptron algorithm work?

* Assume the data set D is linearly separable
with margin vy, i.e.,

Jw*, [w*|y = 1, Vt, yix, w* >

« Assume |X¢|o < R,V

e Theorem: The maximum number of

mistakes made by the perceptron algorithm
is bounded by R?/+?

[Rong Jin]



Properties of the perceptron algorithm

» Separability: some parameters get Separable
the training set perfectly correct
*
« Convergence: if the training is - T+
linearly separable, perceptron will -
eventually converge =

Non-Separable

+ %
T o+



Problems with the perceptron algorithm

Noise: if the data isn’t linearly
separable, no guarantees of
convergence or accuracy

Frequently the training data is linearly
separable! Why?

training
— When the number of features is much )
larger than the number of data points, 539
there is lots of flexibility O test
© held-out
— As a result, Perceptron can significantly
overfit the data [We will see next week] iterations

Averaged perceptron is an algorithmic
modification that helps with both issues

— Averages the weight vectors across all
iterations




Linear separators
= Which of these linear separators is optimal?




Support Vector Machines

= SVMs (Vapnik, 1990’s) choose the linear separator with the
largest margin

Robust to
outliers!

N

V. Vapnik

» Good according to intuition, theory, practice

« SVM became famous when, using images as input, it gave
accuracy comparable to neural-network with hand-designed

features in a handwriting recognition task



Normal to a plane

\"Y
[w]| unit vector parallel to w
L )_Cj -- projection of x; onto
= the plane
W
Ti — i — \——
= T T ]

M\ is the length of the vector, i.e.

A
Tw HHwH—A

|z — ;|| =




Scale invariance

Any other ways of writing
the same dividing line?

e wX+b=0
= * 2WX+2b=0
¢ 1000w.x +1000b =0




Scale invariance

A )
+ o
I

—

h During learning, we set the scale by
asking that, for all f,

P fory,=+1, w-x; +0>1

andfory,=-1, w-x; +b < —1

That is, we want to satisfy all of the
linear constraints

ye (w-x¢ +b) >1 Vi




What is y as a function of w?

w-x1+b=1
w-xo+b=0

We also know that:
w

" T T )

Final result: can maximize margin by minimizing ||w||,!!!



Support Vector Machines (SVMs)

~—
+

e minimizey ;, wW.w

]

Q
. 3 (wx;j+b)y; > 1, Vj
.:'l"‘: =
« Example of a convex optimization problem
._JL":. =
T 4 — A quadratic program
- — Polynomial-time algorithms to solve!
iy « Hyperplane defined by support vectors
c
— Could use them as a lower-dimension
basis to write down line, although we
haven’t seen how yet
argin 2y « More on these later
Non-support Vectors:
» moving them will * data points on the
not change w canonical lines




What if the data is not separable?

minimizew,b W.W + C #(mistakes)
(W.Xj —I— b) Y; 2 1 ,V]

= * First Idea: Jointly minimize w.w and
& number of training mistakes

— How to tradeoff two criteria?
— Pick C using held-out data

- = * Tradeoff #(mistakes) and w.w
= 5 — 0/1 loss
T — Not QP anymore

— Also doesn'’t distinguish near misses
and really bad mistakes

— NP hard to find optimal solution!!!



Allowing for slack: “Soft margin” SVM

MIiNIMIZey ;, W.W+CX &

= (WXJ + b) Y > 1- éj , Vg &>0
0

“slack variables”

= Slack penalty C > 0:

= *C=00 - have to separate the data!
*C=0 - ignores the data entirely!

For each data point:
If margin 2 1, don’t care
If margin < 1, pay linear penalty



Allowing for slack: “Soft margin” SVM

MiNiMizey ;, W.W+CZX§

= (WX] + b) Y > 1- Cij , Vg7 &>0
¢

“slack variables”

= What is the (optimal) value of  as a function
of wand b?

If (w-z;+0b)y; > 1, theng= 0

If (w-z;+0)y; <1,theng= 1— (w-z; +b)y;

Sometimes written as ‘l'
(1—(w-x.¢+b)yj)+ € ¢ =max (0,1 — (w-z; +0)y;)



Equivalent Hinge Loss Formulation

MiNiMIizey ;, W.W+CX &
(W.Xj <+ b) Y > ]-_&j , V7 &0

Substituting ¢; = max (0,1 — (w - x; + b)y;) into the objective, we get:

min ||w]|? +CZmaX(O,1 —(w-x; +b)y;)
J

The hinge loss is defined as L(y, ) = max (O, 1 — ?)y)

: 2
min [w]|3 +C Y L(y;, w - z; +b)

/‘ j
This is called regularization; This part is empirical risk minimization,
used to prevent overfitting! using the hinge loss




Hinge Loss vs O-1 Loss

Hinge loss:
L(y, §) = max (0,1~ gy)

/

0-1 Loss:—
L(y,y) = 1§ # y]

Uy

Hinge loss upper bounds 0/1 loss!



Multiclass SVM




One versus all classification

Learn 3 classifiers:
- vs {0,+}, weights w_
*+ vs {0,-}, weights w,
*0 vs {+,-}, weights w,

Predict label using:

(?j(—argmkax Wy - x + by

Any problems?

Could we learn this dataset? -

EREEN
00000
o



Multiclass SVM

Simultaneously learn 3 sets
of weights:

How do we guarantee the
correct labels?

*Need new constraints!

The “score” of the correct
class must be better than the
“score” of wrong classes:

wi) . zi+ b\¥i) < 1w . z; + b)Y, oy £ Y



Multiclass SVM

As for the SVM, we introduce slack variables and maximize margin:

minimizey, Zyw(y) W(y)—I—CZ §j
(yJ)x +b(yj)>w(y)x _|_b(y)_|_1_§], ‘v’y * vy, Vi

j =0, V)
To predict, we use: ,--\ /.|
) <— * b =| :\\ I,: :I
R = Q7 N !
= o T |
Now can we learn it? - | = ™ i Lo |
| ¢
: ;

N

v’-—-—-

“-—- -
\
\
\
\
\
\



What you need to know

Perceptron mistake bound

Maximizing margin

Derivation of SVM formulation

Relationship between SVMs and empirical risk
minimization

— 0/1 loss versus hinge loss

Tackling multiple class

— One against All

— Multiclass SVMs



