

CS639: Data Management for Data Science

Lecture 17: Linear Classifiers and Support Vector Machines

Theodoros Rekatsinas

(lecture by Ankur Goswami many slides from David Sontag)

Today's Lecture

- 1. Linear classifiers
- 2. The Perceptron Algorithm
- 3. Support Vector Machines

Linear classifier

- Let's simplify life by assuming:
 - Every instance is a vector of real numbers, x=(x1,...,xn). (Notation: boldface x is a vector.)
 - There are only two classes, y=(+1) and y=(-1)
- A <u>linear classifier</u> is vector **w** of the same dimension as **x** that is used to make this prediction:

$$\hat{y} = \operatorname{sign}(w_1 x_1 + w_2 x_2 + \dots + w_n x_n) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x})$$
$$\operatorname{sign}(x) = \begin{cases} +1 & \text{if } x \ge 0\\ -1 & \text{if } < 0 \end{cases}$$

Example: Linear classifier

- Imagine 3 features (spam is "positive" class):
 - 1. free (number of occurrences of "free")
 - 2. money (occurrences of "money")
 - 3. BIAS (intercept, always has value 1)

$$w \cdot f(x)$$

 $\sum_{i} w_i \cdot f_i(x)$

w.f(x) > 0 → SPAM!!!

The Perceptron Algorithm to learn a Linear Classifier

- Start with weight vector = $\vec{0}$
- For each training instance (x_i,y_i*):
 - Classify with current weights

$$y_{\mathbf{i}} = \begin{cases} +1 & \text{if } w \cdot f(x_{\mathbf{i}}) \ge 0\\ -1 & \text{if } w \cdot f(x_{\mathbf{i}}) < 0 \end{cases}$$

- If correct (i.e., y=y^{*}_i), no change!
- If wrong: update

$$w = w + y_{\scriptscriptstyle i}^* f(x_{\scriptscriptstyle i})$$

Definition: Linearly separable data

 $\exists \mathbf{w} \text{ such that } \forall t$

Equivalently, for \mathbf{y}_{t} = +1, $w\cdot x_t \geq \gamma$

and for \mathbf{y}_{t} = -1, $w\cdot x_t \leq -\gamma$

Does the perceptron algorithm work?

Assume the data set *D* is linearly separable with margin γ, i.e.,

$$\exists \mathbf{w}^*, |\mathbf{w}^*|_2 = 1, \ \forall t, y_t \mathbf{x}_t^\top \mathbf{w}^* \ge \gamma$$

- Assume $|\mathbf{x}_t|_2 \leq R, \forall t$
- <u>Theorem</u>: The maximum number of mistakes made by the perceptron algorithm is bounded by R^2/γ^2

Properties of the perceptron algorithm

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is linearly separable, perceptron will eventually converge

Separable

Non-Separable

Problems with the perceptron algorithm

- **Noise**: if the data isn't linearly separable, no guarantees of convergence or accuracy
- Frequently the training data *is* linearly separable! Why?
 - When the number of features is much larger than the number of data points, there is lots of flexibility
 - As a result, Perceptron can significantly overfit the data [We will see next week]
- Averaged perceptron is an algorithmic modification that helps with both issues
 - Averages the weight vectors across all iterations

Linear separators

Which of these linear separators is optimal?

Support Vector Machines

 SVMs (Vapnik, 1990's) choose the linear separator with the largest margin

- Good according to intuition, theory, practice
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task

Normal to a plane

Scale invariance

Any other ways of writing the same dividing line?

- **w.x** + b = 0
- 2**w.x** + 2b = 0
- 1000**w.x** + 1000b = 0

Scale invariance

During learning, we set the scale by asking that, for all *t*,

for
$$y_t = +1$$
, $w \cdot x_t + b \ge 1$
and for $y_t = -1$, $w \cdot x_t + b \le -1$

That is, we want to satisfy all of the **linear** constraints

 $y_t (w \cdot x_t + b) \ge 1 \quad \forall t$

What is γ as a function of **w**?

Final result: can maximize margin by minimizing $||w||_2!!!$

Support Vector Machines (SVMs)

 $\begin{array}{ll} \text{minimize}_{\mathbf{w},b} \quad \mathbf{w}.\mathbf{w} \\ \left(\mathbf{w}.\mathbf{x}_{j}+b\right)y_{j} \geq \mathbf{1}, \ \forall j \end{array}$

- Example of a **convex optimization** problem
 - A quadratic program
 - Polynomial-time algorithms to solve!
- Hyperplane defined by support vectors
 - Could use them as a lower-dimension basis to write down line, although we haven't seen how yet
 - More on these later

What if the data is not separable?

 $\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} + \texttt{C} \ \texttt{\textit{#(mistakes)}} \\ \left(\mathbf{w}.\mathbf{x}_j + b\right) y_j \geq 1 & , \forall j \end{array}$

- First Idea: Jointly minimize w.w and number of training mistakes
 - How to tradeoff two criteria?
 - Pick C using held-out data
- Tradeoff #(mistakes) and w.w
 - 0/1 loss
 - Not QP anymore
 - Also doesn't distinguish near misses and really bad mistakes
 - NP hard to find optimal solution!!!

Allowing for slack: "Soft margin" SVM

- For each data point:
- •If margin \geq 1, don't care
- •If margin < 1, pay linear penalty

Allowing for slack: "Soft margin" SVM

Equivalent Hinge Loss Formulation

$$\begin{array}{ll} \text{minimize}_{\mathbf{w},b} & \mathbf{w}.\mathbf{w} + C \Sigma_{j} \xi_{j} \\ \left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j} &, \forall j \xi_{j} \geq 0 \end{array}$$

Substituting $\xi_j = \max(0, 1 - (w \cdot x_j + b) y_j)$ into the objective, we get:

$$\min ||w||^2 + C \sum_j \max (0, 1 - (w \cdot x_j + b) y_j)$$

The hinge loss is defined as $L(y, \hat{y}) = \max\left(0, 1 - \hat{y}y\right)$

$$\min_{w,b} ||w||_2^2 + C \sum_j L(y_j, \mathbf{w} \cdot x_j + b)$$

This is called **regularization**; used to prevent overfitting!

This part is empirical risk minimization, using the hinge loss

Hinge loss upper bounds 0/1 loss!

Multiclass SVM

One versus all classification

Learn 3 classifiers:
- vs {o,+}, weights w_
+ vs {o,-}, weights w₊
o vs {+,-}, weights w_o

Predict label using:

$$\hat{y} \leftarrow \arg\max_k w_k \cdot x + b_k$$

Multiclass SVM

Simultaneously learn 3 sets of weights:

- •How do we guarantee the correct labels?
- •Need new constraints!

The "score" of the correct class must be better than the "score" of wrong classes:

$$w^{(y_j)} \cdot x_j + b^{(y_j)} > w^{(y)} \cdot x_j + b^{(y)} \quad \forall j, \ y \neq y_j$$

Multiclass SVM

As for the SVM, we introduce slack variables and maximize margin:

$$\begin{array}{l} \text{minimize}_{\mathbf{w},b} \quad \sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \xi_{j} \\ \mathbf{w}^{(y_{j})} \cdot \mathbf{x}_{j} + b^{(y_{j})} \geq \mathbf{w}^{(y')} \cdot \mathbf{x}_{j} + b^{(y')} + 1 - \xi_{j}, \ \forall y' \neq y_{j}, \ \forall j \\ \xi_{j} \geq 0, \ \forall j \end{array}$$

To predict, we use:
$$\hat{y} \leftarrow \arg \max_{k} w_k \cdot x + b_k$$

Now can we learn it? \rightarrow

What you need to know

- Perceptron mistake bound
- Maximizing margin
- Derivation of SVM formulation
- Relationship between SVMs and empirical risk minimization
 - 0/1 loss versus hinge loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs