

CS639: Data Management for Data Science

Lecture 16: Intro to ML and Decision Trees

Theodoros Rekatsinas

(lecture by Ankur Goswami many slides from David Sontag)

Today's Lecture

- 1. Intro to Machine Learning
- 2. Types of Machine Learning
- 3. Decision Trees

1. Intro to Machine Learning

What is Machine Learning?

- "Learning is any process by which a system improves performance from experience" – Herbert Simon
- Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- Improve their performance P
- at some task T
- with experience *E*

A well-defined learning task is given by <*P*, *T*, *E*>.

What is Machine Learning?

Machine Learning is the study of algorithms that

- Improve their performance *P*
- at some task T
- with experience *E*

A well-defined learning task is given by <*P*, *T*, *E*>.

Experience: data-driven task, thus statistics, probability **Example:** use height and weight to predict gender

When do we use machine learning?

ML is used when:

- Human expertise does not exist (navigating on Mars)
- Humans can't explain their expertise (speech recognition)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)



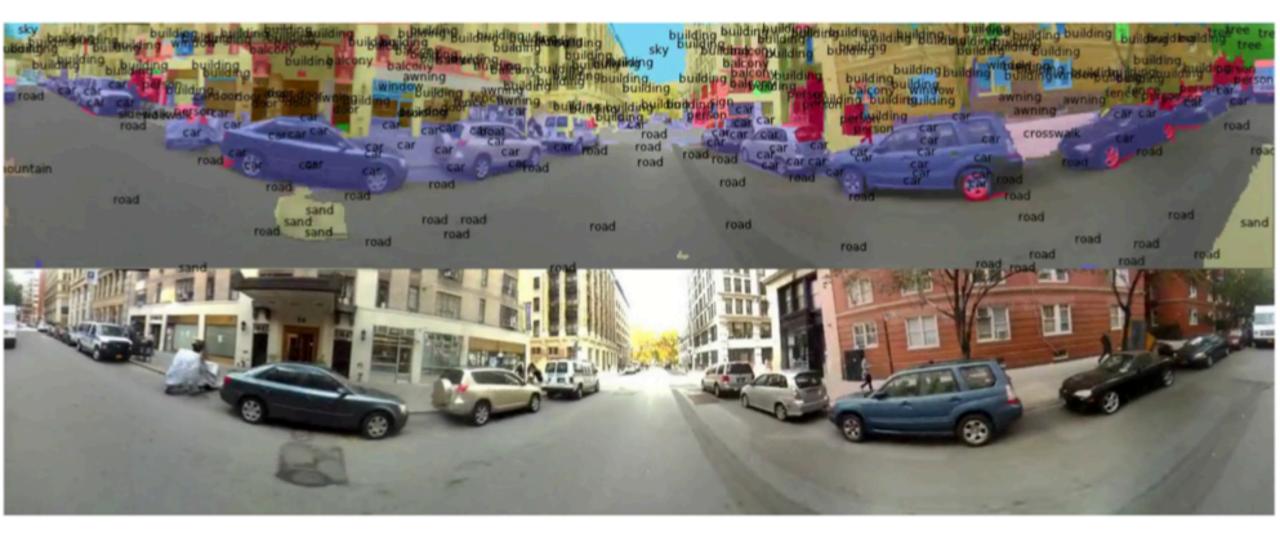
A task that requires machine learning

00011(1112 るえてみる123333 What makes a hand 344445539 drawing be 2? 447773888 888194999

Slide credit: Geoffrey Hinton

Modern machine learning: Autonomous cars

Modern machine learning: Scene Labeling



Modern machine learning: Speech Recognition

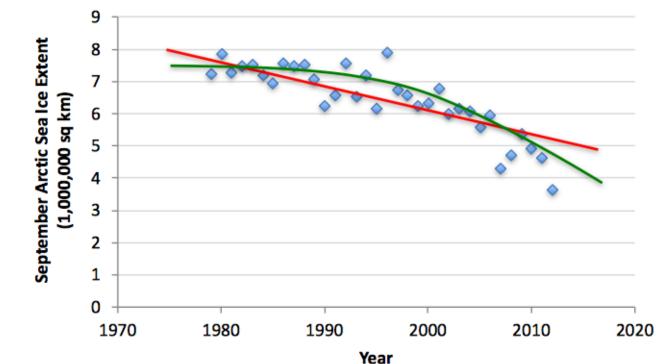
2. Types of Machine Learning

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

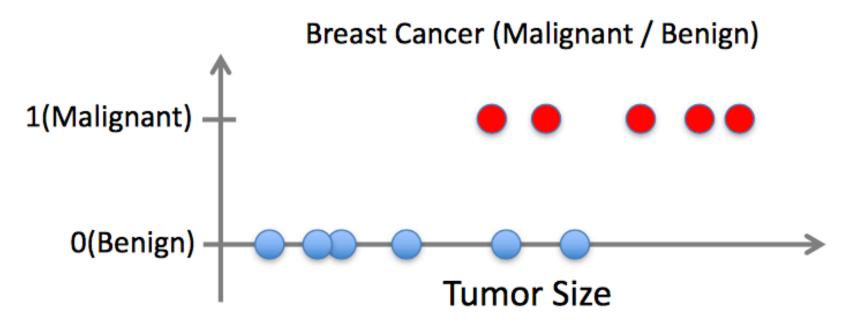
Supervised Learning: Regression

- Given (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)
- Learn a function *f*(*x*) to predict *y* given *x*
 - *y* is real-valued == regression



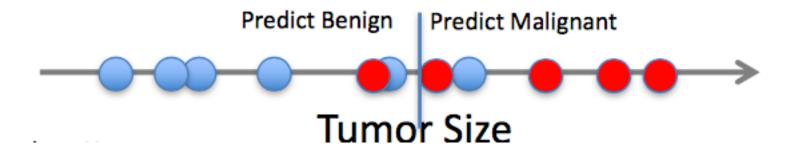
Supervised Learning: Classification

- Given (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)
- Learn a function *f*(*x*) to predict *y* given *x*
 - y is categorical == regression



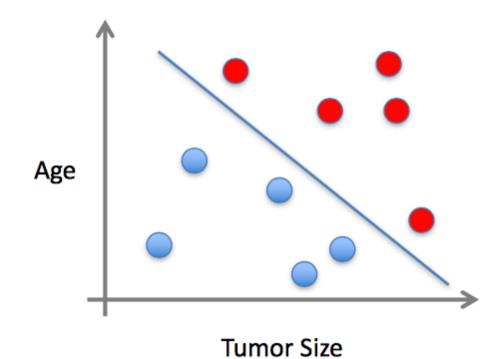
Supervised Learning: Classification

- Given (x_1, y_1), (x_2, y_2), ..., (x_n, y_n)
- Learn a function *f*(*x*) to predict *y* given *x*
 - y is categorical == regression



Supervised Learning

- Value *x* can be multi-dimensional.
 - Each dimension corresponds to an attribute



- Clump Thickness

...

- Uniformity of Cell Size
- Uniformity of Cell Shape

Types of Learning

- Supervised (inductive) learning
 - Given: training data + desired outputs (labels)
- Unsupervised learning
 - Given: training data (without desired outputs)
- Semi-supervised learning
 - Given: training data + a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

We will cover later in the class

3. Decision Trees

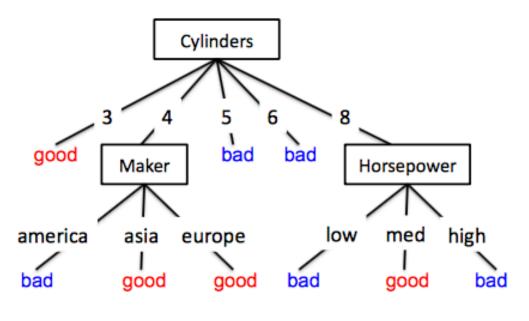
A learning problem: predict fuel efficiency

- 40 data points
- Goal: predict MPG
- Need to find: $f: X \rightarrow Y$
- Discrete data (for now)

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
	;	:	:	;	:	;	:
:	:	-	:	:	:	:	:
:	;	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Hypotheses: decision trees $f: X \rightarrow Y$

- Each internal node tests an attribute x_i
- Each branch assigns an attribute value x_i=v
- Each leaf assigns a class y
- To classify input *x*: traverse the tree from root to leaf, output the labeled *y*

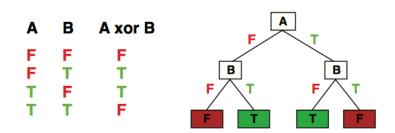


Informal

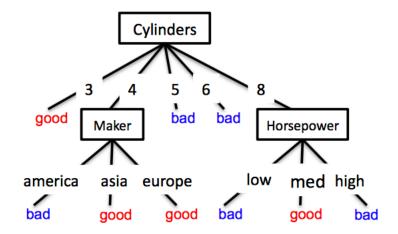
A hypothesis is a certain function that we believe (or hope) is similar to the true function, the *target function* that we want to model.

What functions can Decision Trees represent?

- Decision trees can represent any function of the input attributes!
- For Boolean functions, path to leaf gives truth table row
- But, could require exponentially many nodes...



(Figure from Stuart Russell)

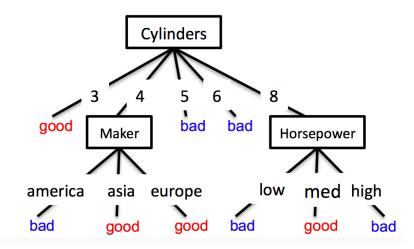


cyl=3 v (cyl=4 ^ (maker=asia v maker=europe)) v ...

Space of possible decision trees

- How will we choose the best one?
- Lets first look at how to split nodes, then consider how to find the best tree

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6		medium	medium	medium	70to74	america
	-						
bad	4		medium	medium	low	75to78	europe
bad	8		high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

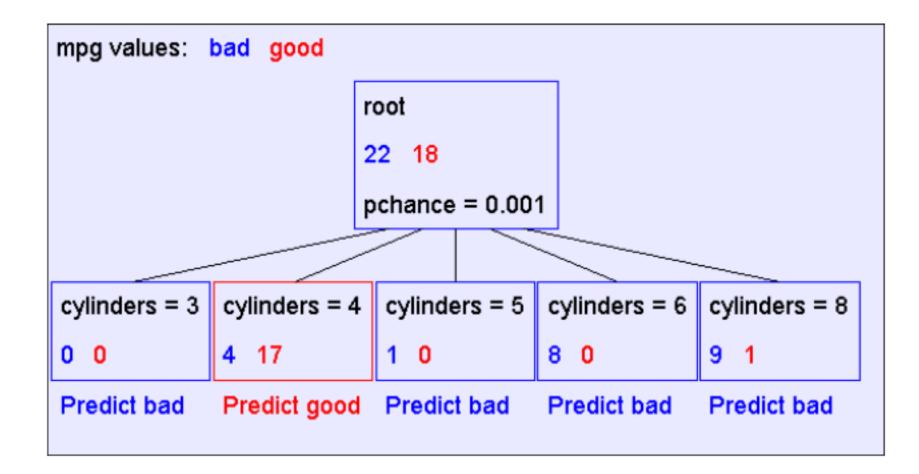


What is the simplest tree?

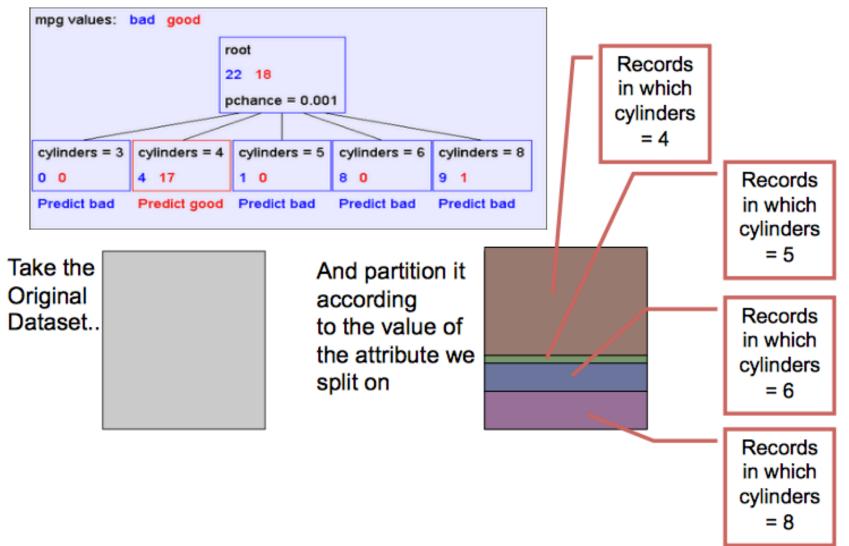
- Always predict mpg = bad
 - We just take the majority class
- Is this a good tree?
 - We need to evaluate its performance
- Performance: We are correct on 22
 examples and incorrect on 18 examples

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad		medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	-	medium	medium	medium	medium	70to74	america
	-						
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

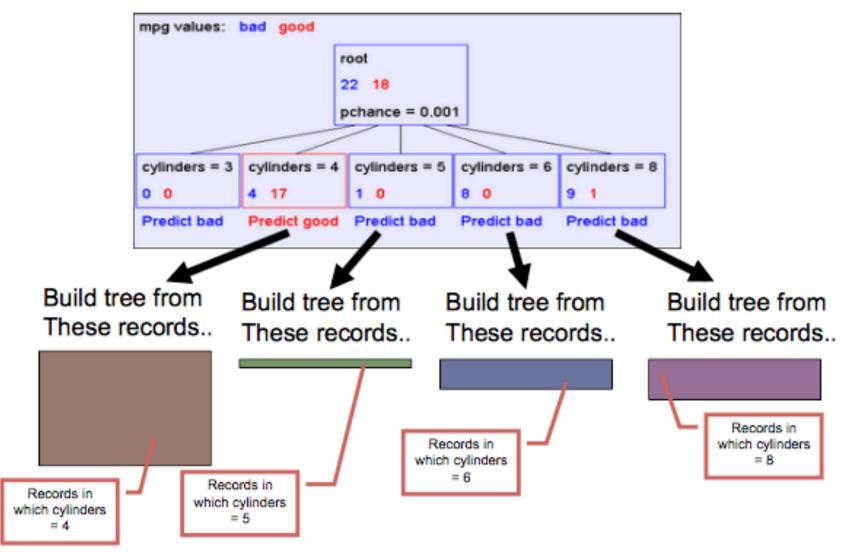
A decision stump



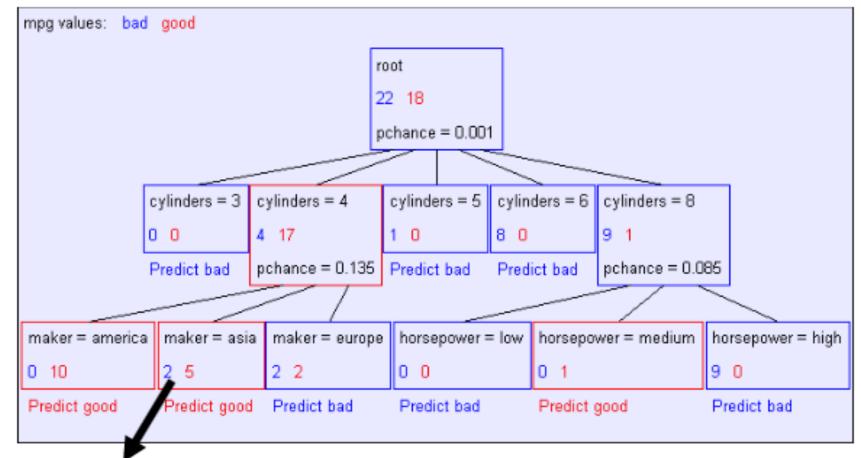
Recursive step



Recursive step

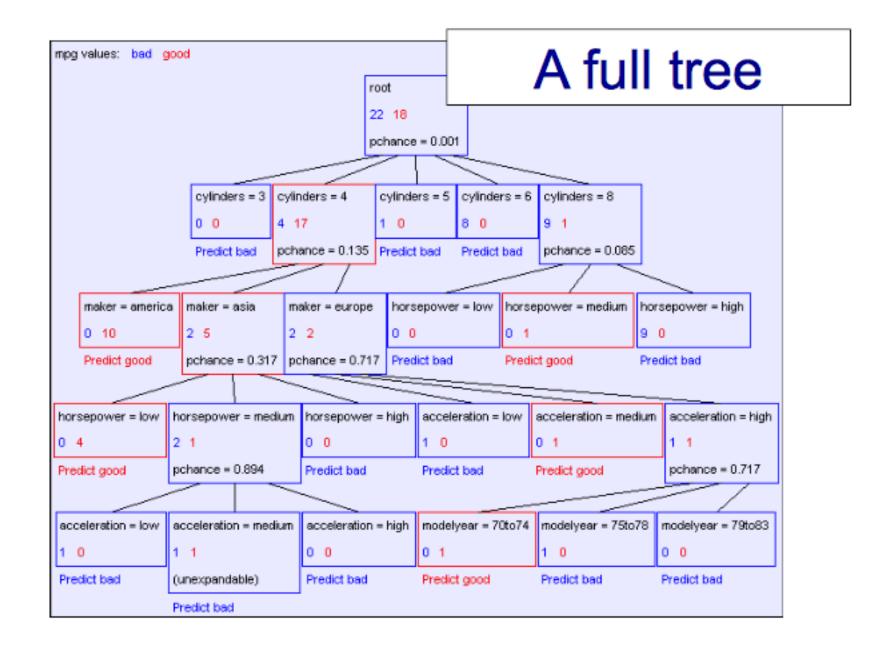


Second level of tree



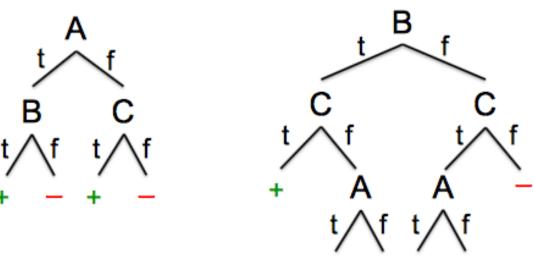
Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)



Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 - e.g., $\phi = (A \land B) \lor (\neg A \land C) ((A and B) or (not A and C))$



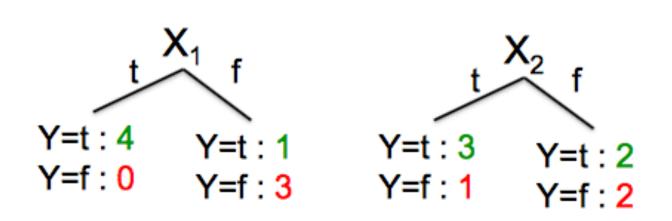
• Which tree do we prefer?

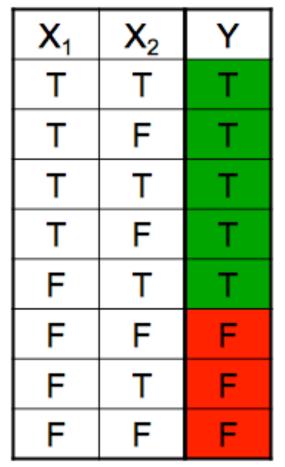
Learning decision trees is hard

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Splitting: choosing a good attribute

Would we prefer to split on X_1 or X_2 ?





Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

Measuring uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad
 - What about distributions in between?

P(Y=A) = 1/2	P(Y=B) = 1/4	P(Y=C) = 1/8	P(Y=D) = 1/8

P(Y=A) = 1/4	P(Y=B) = 1/4	P(Y=C) = 1/4	P(Y=D) = 1/4
--------------	--------------	--------------	--------------

Entropy

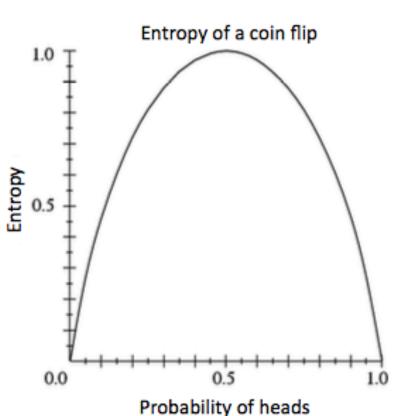
Entropy H(Y) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

Entropy of a coin fl

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)



High, Low Entropy

- "High Entropy"
 - Y is from a uniform like distribution
 - Flat histogram
 - Values sampled from it are less predictable
- "Low Entropy"
 - Y is from a varied (peaks and valleys) distribution
 - Histogram has many lows and highs
 - Values sampled from it are more predictable

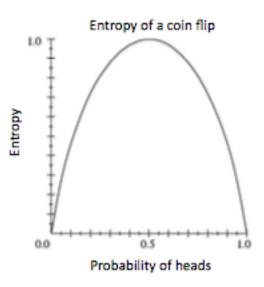
Entropy Example

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

P(Y=t) = 5/6P(Y=f) = 1/6

$$H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$$

= 0.65

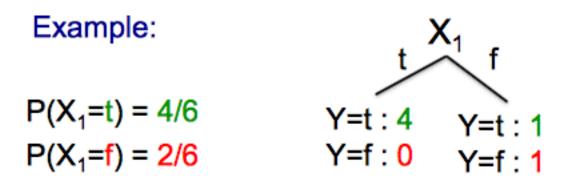


X ₁	X ₂	Υ
Т	Н	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

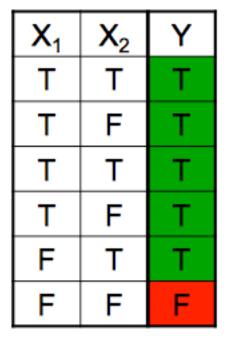
Conditional Entropy

Conditional Entropy H(Y|X) of a random variable Y conditioned on a random variable X

 $H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$



 $H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$ - 2/6 (1/2 log₂ 1/2 + 1/2 log₂ 1/2) = 2/6



Information gain

Decrease in entropy (uncertainty) after splitting

$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1)$$

= 0.65 - 0.33

 $IG(X_1) > 0 \rightarrow$ we prefer the split!

X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Learning decision trees

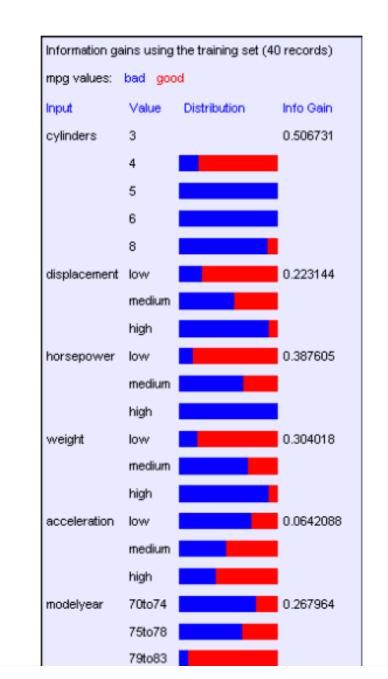
- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

 $\arg\max_i IG(X_i) = \arg\max_i H(Y) - H(Y \mid X_i)$

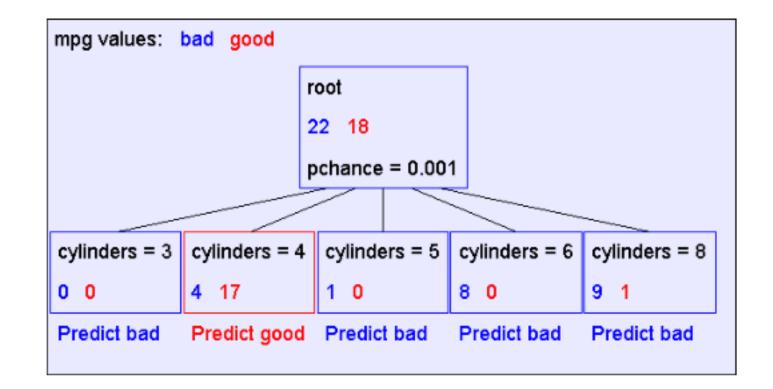
Recurse

Suppose we want to predict MPG

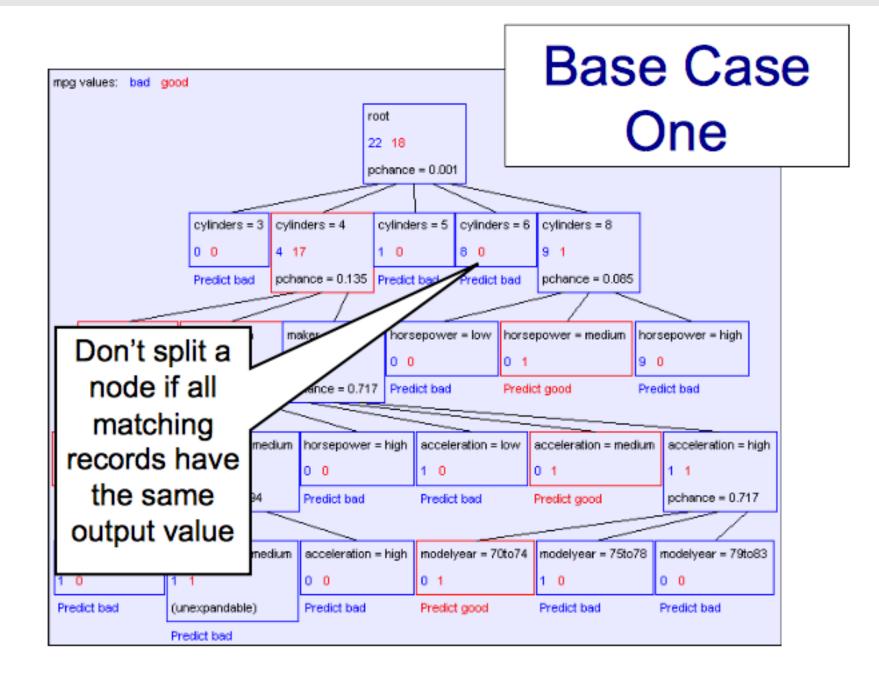
Look at all the information gains...

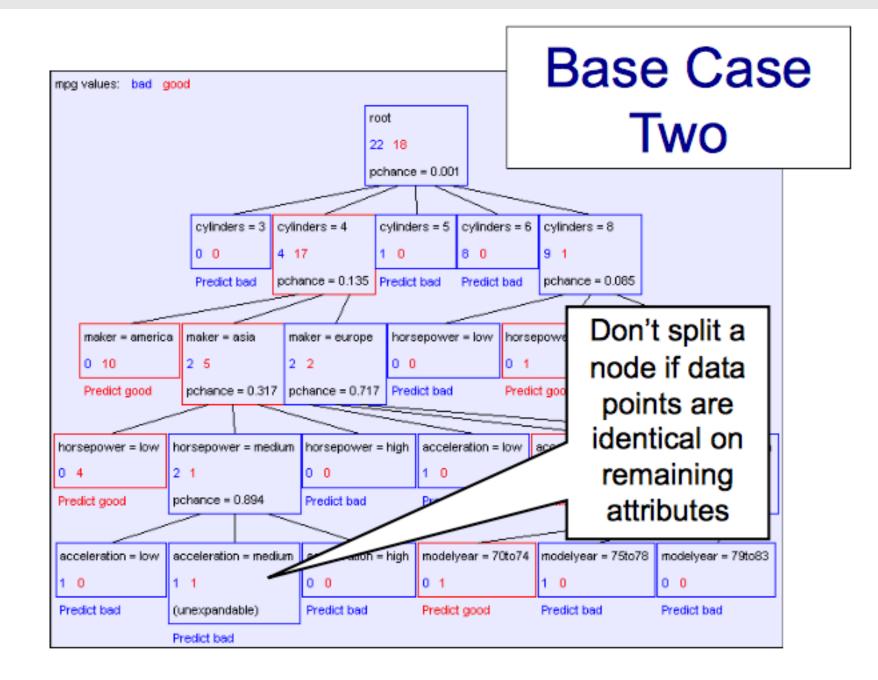


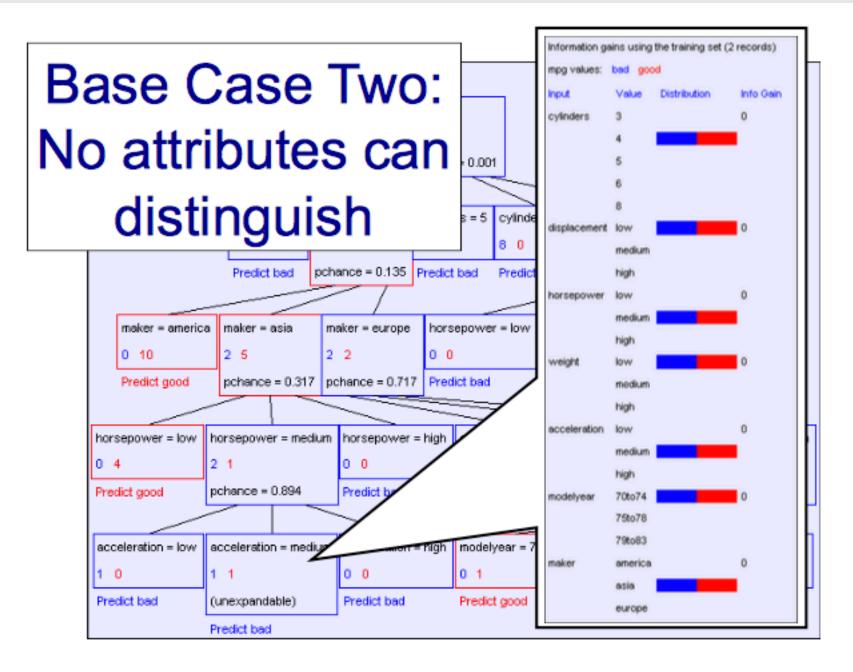
A decision stump



First split looks good! But, when do we stop?

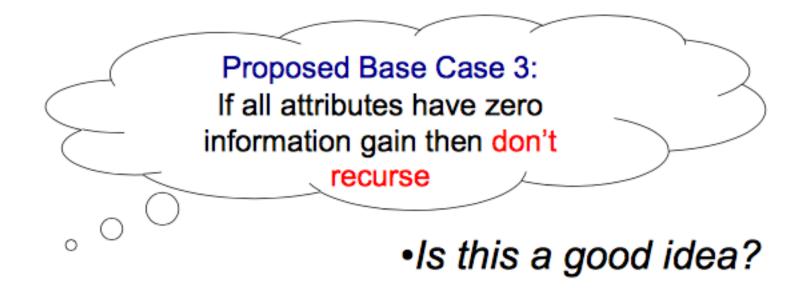






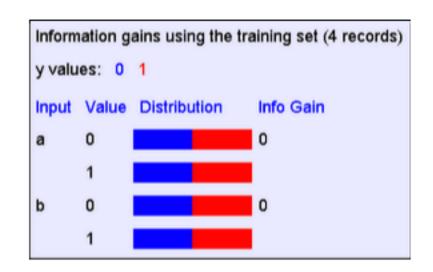
Base Cases: An Idea

- Base Case One: If all records in current data subset have the same output then do not recurse
- Base Case Two: If all records have exactly the same set of input attributes then do not recurse



The problem with Base Case 3

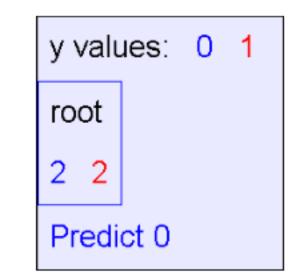
The information gains:



The resulting decision tree:

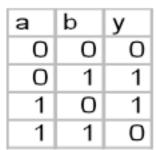
У

b



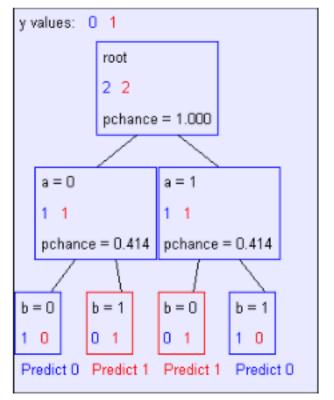
If we omit Base Case 3

y = a XOR b



Is it OK to omit Base Case 3?

The resulting decision tree:



Summary: Building Decision Trees

BuildTree(DataSet,Output)

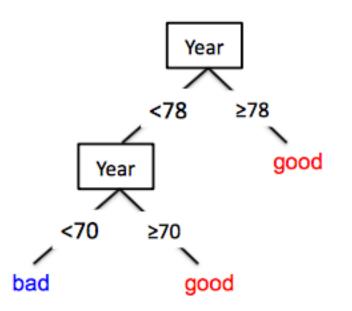
- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_x distinct values (i.e. X has arity n_x).
 - Create a non-leaf node with n_{χ} children.
 - The i'th child should be built by calling

BuildTree(DS,Output)

Where DS_i contains the records in DataSet where X = ith value of X.

From categorical to real-valued attributes

- Binary tree: split on attribute X at value t
 - One branch: X < t</p>
 - Other branch: $X \ge t$
- Requires small change
 - Allow repeated splits on same variable
 - How does this compare to "branch on each value" approach?



What you need to know about decision trees

- Decision trees are one of the most popular ML tools
 - Easy to understand, implement, and use
 - Computationally cheap (to solve heuristically)
- Information gain to select attributes
- Presented for classification but can be used for regression and density estimation too
- Decision trees will overfit!!!
 - We will see the definition of overfitting and related concepts later in class.