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Announcements

* We will release grades of Midterm by the end of day today.



Today — Bayesian Methods

 Motivation and Introduction
* Bayes Theorem

e Bayesian inference



Motivation

e Statistical inference: Drawing conclusions based on data that is
subject to random variation (observational errors and sampling
variation)

* So far we saw the “frequentists” point of view.

e Bayesian inference provides a different way to draw conclusions from
data.



Basic ldea

* Leverage prior information and update prior information with new
data to create a posterior probability distribution.

* Three steps:
* Form prior (a probability model)
* Condition on observed data (new data from your sample)
* Evaluate the posterior distribution



Basic ldea

* “The central feature of Bayesian inference [is] the direct
quantification of uncertainty” (Gelman et al. 2014, 4).

* Less emphasis on p-value hypothesis testing. More emphasis on the
confidence and probability intervals.

* Many researchers actually interpret ‘frequentist’ confidence
intervals as if they were Bayesian probability intervals.



Uncertainty in Freq. and Bayesian Approaches

* Both involve the estimation of unknown quantities of interest
* The estimates they produce have different interpretations.

* Frequentist: 95% Confidence interval: Repeated samples will contain
the true parameter within the interval 95% of the time.

» Bayesian: 95% Probability (credible) interval: There is a
95% probability that the unknown parameter is actually in the
interval.



Random Variables

 Arandom variable is some aspect of the world about
which we (may) have uncertainty
— R =lsit raining?
— D = How long will it take to drive to work?
— L =Where am I?

 We denote random variables with capital letters

« Random variables have domains
— Rin {true, false} (sometimes write as {+r, —-r})
— Din [0, )
— L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

Discrete random variables have distributions

P(T) P(W)
T P W P
warm | 0.5 sun 0.6
cold | 0.5 rain 0.1
fog 0.3
meteor 0.0

A discrete distribution is a TABLE of probabilities of values
The probability of a state (lower case) is a single number

P(W = rain) = 0.1 P(rain) = 0.1

Must have:
Ve P(xz) >0 Y P(z)=1
I



Joint Distributions

« Ajoint distribution over a set of random variables: X1, X2, ..

specifies a real number for each assignment:

P(X1=x1,Xo=29,... X5, = xn)

P(xz1,zo2,...2n)

— How many assignments if n variables with domain sizes d?|

— Must obey:
d P(wl,wg,...xn)zo

> P(x1,22,...20n) = 1
(z1,22,..-Tn)

. Xn
P(T,W)

T W P
hot sun | 0.4
hot rain | 0.1

cold | sun | 0.2
cold | rain | 0.3

For all but the smallest distributions, impractical to write out or estimate

— Instead, we make additional assumptions about the distribution




Marginal Distributions

« Marginal distributions are sub-tables which eliminate variables
« Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T,W) T P
h .
T [ W [ P | ey |0
hot | sun 04| P(t)=) P(tw) = '
hot | rain 0.1 v P(W)
cold sSun 0.2 — W P
cold | rain 03| Pw)=) P(tuw) sun 06
¢
rain 04




Conditional Probabilities

 Asimple relation between joint and conditional probabilities
— In fact, this is taken as the definition of a conditional probability

P(a,b)
P b
P(alb) = (a,b)
P(b)
P(T, W) P(a) P(b)
T w P
hot | sun 0.4 P(W =r|T =c) =777
hot rain 0.1
cold sun 0.2
cold rain 0.3




Conditional Probabilities

« Conditional distributions are probability distributions over
some variables given fixed values of others

P(W|T)

Conditional Distributions

Joint Distribution

- P(W|T = hot)
w P
sun 0.8
rain 0.2

P(W|T = cold)

P(T,W)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

W P
sun 04
rain 0.6




The Product Rule

« Sometimes have conditional distributions but want the joint

 Example:

P(xly) =

P(W)

) P(z,y) = P(zly)P(y)

W

P

sun

0.8

rain

0.2

P(x,y)
P(y)
P(D|W)
D w P
wet sun | 0.1
dry sun | 0.9
wet rain | 0.7
dry rain | 0.3

=)

P(D,W)
D W P
wet sun | 0.08
dry sun | 0.72
wet rain | 0.14
dry rain | 0.06




Bayes’ Rule

* Two ways to factor a joint distribution over two variables:

P(xz,y) = P(z|y)P(y) = P(y|z)P(x)

* Dividing, we get:

 Why is this at all helpful?
— Let’s us build one conditional from its reverse
— Often one conditional is tricky but the other one is simple
— Foundation of many practical systems (e.g. ASR, MT)



Bayes’ Theorem

Before we get to inference: Bayes' Theorem is a result in
conditional probability, stating that for two events A and B...

P[A and B] P[A]
PlAIB] = = = PIBIAI
P[A] = 5/10
PIEIS 2/10 In this example;
e P[A|B] = éf—ig =1/3
P[A & not B] o P[B|A]=i¥—}8_1/5
g e And 1/3=1/5x 3,15 ()

P[not A & not B] = 3/10

In words: the conditional probability of A given B is the
conditional probability of B given A scaled by the relative
probability of A compared to B.



Bayes’ Theorem

Why does it matter? If 1% of a population have cancer, for a
screening test with 80% sensitivity and 95% specificity;

Have Test Positive ]P’[Test +ve|Cancer] — 80%
Cancer P[T@St +Ve] .
= b.75
P[ Cancer]

P[ Cancer|Test +ve] =~ 14%

i.e. most positive results
are actually false alarms

Mixing up P[A|B] with P[B|A] is the Prosecutor’s Fallacy; a
small probability of evidence given innocence need NOT mean a
small probability of innocence given evidence.



Bayesian Approach

How to update knowledge, as data is obtained? We use;

e Prior distribution: what you know about parameter S,
excluding the information in the data — denoted = (B)

e Likelihood: based on modeling assumptions, how [relatively]
likely the data Y are if the truth is 8 — denoted f(Y|B8)

So how to get a posterior distribution: stating what we know
about B, combining the prior with the data — denoted p(B8|Y)?
Bayes Theorem used for inference tells us to multiply;

p(BlY) o f(Y|B) x 7(B)
Posterior o« Likelihood x Prior.
. and that's it! (essentially!)

e NoO replications — e.g. no replicate plane searches

e Given modeling assumptions & prior, process is automatic

e Keep adding data, and updating knowledge, as data becomes
available... knowledge will concentrate around true B



Bayesian Learning

o Prior
e Use Bayes’ rule! Data Likelihood P \}
J o Lo
P(D | 60)P(60
 pipy = P@1OPO)
1 osterior / P(D)
Lo ™~~~ Normalization

* Orequivalently: P(0| D) < P(D|0)P(0)
* For uniform priors, this reduces to

maximum likelihood estimation!

P(®) x1 P(0|D)xP(D|0)



Where do priors come from?

Priors come from all data ex- Uncertain Eliciting and
ternal to the current study, Judgements Analyzing

i e. eve rythl n g e |Se ) Eliciting Experts’ Probabilities Expel’l Jlldgment
A Practical Guide

‘Boiling down' what subject-
matter experts know/think
is known as eliciting a prior.

o

It's not easy (see right) but
here are some simple tips;

e Discuss parameters experts understand — e.g. code variables
SO intercept is mean outcome in people with average covari-
ates, not with age=height=IQ=0

e Avoid leading questions (just as in survey design)

e T he ‘language’ of probability is unfamiliar; help users express
their uncertainty



When don’t prior matter (much)?

When the data provide a lot more information than the prior,
this happens; (recall the stained glass color-scheme)

[] likelihood

—— prior #1
posterior #1

- = prior #2

- — posterior #2

Probability Density

Parameter

These priors (& many more) are dominated by the likelihood, and
they give very similar posteriors — i.e. everyone agrees. (Phew!)



When don’t prior matter (much)?

Back to having very informative data — now zoomed in;

Probability Density

[] likelihood
_— prior
—— posterior

A A\ A
B —1.96 x stderr fs B +1.96 x stderr
Parameter

The likelihood alone
(yellow) gives the clas-
sic 95% confidence in-
terval. But, to a good
approximation, it goes
from 2.5% to 97.5%
points of Bayesian pos-
terior (red) — a 95%
credible interval.

e With large samples*, sane frequentist confidence intervals
and sane Bayesian credible intervals are essentially identical

e With large samples*,
interpretations to 95% ClIs,

it's actually okay to give Bayesian

to say we have ~95%

posterior belief that the true g lies within that range

* and some regularity conditions



Summary
Bayesian statistics:

e Is useful in many settings, and you should know about it

e Is often not very different in practice from frequentist
statistics; it is often helpful to think about analyses from
both Bayesian and non-Bayesian points of view

e Is not reserved for hard-core mathematicians, or computer
scientists, or philosophers. If you find it helpful, use it.



