WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

CS639:
Data Management for
Data Science

Lecture 12: NoSql and KeyValue stores
Theodoros Rekatsinas

Slides borrowed by Kathleen Durant

Today’s Lecture

1. Intro to NoSQL
2. NoSQL Assumptions and the CAP Theorem
3. Strengths and weaknesses of NoSQL

4. Example: MongoDB

1. Intro to NoSQL

Taxonomy of NoSQL
* Key-value

& redis sriak

*® Neoyj *
- Graph database Lk O e B

. 0 A ol
* Document-oriented OGO C‘ hDB
ouc

- Column family S T

Cassandra HBASE

Typical NoSQL architecture

Hashing
function maps
each key to a
server (node)

2. NoSQL Assumptions and the
CAP Theorem

CAP theorem for NoSQL

* What the CAP theorem really says: If you cannot limit the number of
faults and requests can be directed to any server and you insist on serving
every request you receive then you cannot possibly be consistent

* How itis interpreted: You must always give something up: consistency,
availability or tolerance to failure and reconfiguration

CAP theorem for NoSQL

GIVEN:
* Many nodes

* Nodes contain replicas of partitions
of the data

* Consistency

All replicas contain the same version
of data

Client always has the same view of
the data (no matter what node)

* Availability
System remains operational on failing
nodes
All clients can always read and write

» Partition tolerance

multiple entry points

System remains operationalon
system split (communication
malfunction)

System works well across physical
network partitions

A P

CAP Theorem:
satisfying all three at the
same time is impossible

Visual Guide to NoSQL Systems

rea A Available, Partition- Data Models _v Oclantads?
Tolerant (AP) Systems Document-Oriented

achieve "eventual
consistency” through
replication and

verification
S ["p‘icDBH
CouchDB
Riak
Consistont Pick Two
Available (CA)
Systems have
tmﬂe with Consistent, Partition-Tolerant (CP)
P:d ons | Systems have trouble with availability
\r:i < zpv:"e; ly while keeping data consistent across
repiication (: partitioned nodes

Consistency CP Partition Tolerance:

BigTa MongoDB
lypertable Terrastore

Sharding of data

» Distributes a single logical database system across a cluster of
machines

* Uses range-based partitioning to distribute documents based
on a specific shard key

» Automatically balances the data associated with each shard

» Can be turned on and off per collection (table)

Replica Sets

* Redundancy and Failover

» Zero downtime for

upgrades and
maintenance

» Master-slave replication
Strong Consistency
Delayed Consistency

* Geospatial features

Host1:10000
Host2:10001
Host3:10002

replical

3. Strengths and weaknesses of
NoSQL

How does NoSQL vary from RDBMS?

* Looser schema definition

- Applications written to deal with specific documents/ data
Applications aware of the schema definition as opposed to the data

* Designed to handle distributed, large databases

» Trade offs:

No strong support for ad hoc queries but designed for speed and
growth of database
Query languagethrough the API

Relaxation of the ACID properties

Benefits of NoSQL

Elastic Scaling Big Data
RDBMS scale up — bigger Huge increase in data
load , bigger server RDMS: capacity and
NO SQL scale out — constraints of data
distribute data across volumes at its limits
multiple hosts NoSQL designed for big
seamlessly data

DBA Specialists

RDMS require highly
trained expert to
monitor DB

NoSQL require less
management, automatic
repair and simpler data
models

Benefits of NoSQL

Flexible data models Economics

Change management to RDMS rely on expensive

schema for RDMS have proprietary servers to

to be carefully managed manage data

NoSQL databases more No SQL: clusters of

relaxed in structure of cheap commodity

data servers to manage the
Database schema data and transaction
changes do not have to volumes

be managed as one
complicated change unit

Application already
written to address an
amorphous schema

Cost per gigabyte or
transaction/second for
NoSQL can be lower
than the cost for a
RDBMS

Drawbacks of NoSQL
* Support

RDBMS vendors

provide a high level of
support to clients

Stellar reputation

NoSQL - are open
source projects with
startups supporting
them

Reputation not yet
established

* Maturity

RDMS mature
product: means stable
and dependable

Also means old no
longer cutting edge nor
interesting

NoSQL are still
implementing their
basic feature set

Drawbacks of NoSQL

* Administration
RDMS administrator well

* Analytics and Business
Intelligence

defined role

No SQLl’s goal: no
administrator necessary
however NO SQL still
requires effort to
maintain

* Lack of Expertise

Whole workforce of
trained and seasoned
RDMS developers

Still recruiting
developers to the NoSQL
camp

RDMS designed to
address this niche

NoSQL designed to meet
the needs of an Web 2.0
application - not
designed for ad hoc
query of the data

Tools are being

developed to address
this need

ACID or BASE

Atomicity Basically

Consistency Available (CP)

Isolation Soft-state

(State of system may change
over time)

Durability Eventually
consistent

(Asynchronous propagation)

Pritchett, D.: BASE: An AcidAlternative (queue.acm.org/detail.cfm?id=1394128)

4. MongoDB

What is MongoDB?

* Developed by 10gen
Founded in 2007
* A document-oriented, NoSQL database

Hash-based, schema-less database
No Data Definition Language

In practice, this means you can store hashes with any keys and values
that you choose
* Keys are a basic data type but in reality stored as strings

* Document Identifiers (_id) will be created for each document, field name
reserved by system

Application tracksthe schema and mapping
Uses BSON format
* Based on JSON — B stands for Binary

* Written in C++

» Supports APIs (drivers) in many computer languages

JavaScript, Python, Ruby, Perl, Java, Java Scala, C#, C++, Haskell,
Erlang

Functionality of MongoDB

* Dynamic schema
No DDL
* Document-based database
* Secondary indexes
* Query language via an AP|

* Atomic writes and fully-consistent reads
If system configured that way

» Master-slave replication with automated failover (replica sets)

» Built-in horizontal scaling via automated range-based
partitioning of data (sharding)

* No joins nor transactions

Why use MongoDB?

» Simple queries

* Functionality provided applicable to most web applications
» Easy and fast integration of data
No ERD diagram

* Not well suited for heavy and complex transactions systems

MongoDB: CAP approach

Focus on Consistency
and Partition tolerance

* Consistency

all replicas contain the same
version of the data

* Availability
system remains operational on
failingnodes

» Partition tolarence
multiple entry points

system remains operational on
system split

C

74

2

O
L %
5,

A P

CAP Theorem:
satisfying all three at the same time is
impossible

MongoDB Data model: Hierarchical Objects

* A MongoDB instance 0 or more Databases
may have zero or more 0 or more
‘databases’ Collections

* A database may have 0 or more
Zero or more Documents

‘collections’.

* A collection may have
zero or more
‘documents’.

* A document may have
one or more ‘fields’.

* MongoDB ‘Indexes’
function much like their
RDBMS counterparts.

Oor
more
Fields

Schema Free

* MongoDB does not need any pre-defined data schema

* Every document in a collection could have different data
* Addresses NULL data fields

name: : name:
eyes: - aliases
birthplace:

aliases

loc:

boss:

mongo DB

MongoDB Features

* Document-Oriented storage

* Full Index Support
* Replication & High
Availability

* Auto-Sharding

* Querying

» Fast In-Place Updates Scalable
* Map/Reduce functionality

Index Functionality

* B+ tree indexes

* An index is automatically created on the _id field (the primary
key)

» Users can create other indexes to improve query performance
or to enforce Unique values for a particular field

» Supports single field index as well as Compound index
Like SQL order of the fields in a compound index matters

If you index a field that holds an array value, MongoDB creates
separate index entries for every element of the array
* Sparse property of an index ensures that the index only
contain entries for documents that have the indexed field. (so
ignore records that do not have the field defined)

* If an index is both unique and sparse —then the system will
reject records that have a duplicate key value but allow
records that do not have the indexed field defined

CRUD operations

Create

db.collection.insert(<document>)

db.collection.save(<document>)

db.collection.update(<query>, <update>, { upsert: true })
Read

db.collection.find(<query>, <projection>)

db.collection.findOne(<query>, <projection>)
Update

db.collection.update(<query>, <update>, <options>)
Delete

db.collection.remove(<query>, <justOne>)

Query operations

m Description

Seq
Sgt, Sgte

Slt, Slte
Sne

Sin
Snin
Sor
Sand
Snot
Snor

Sexists

Matches value that are equal to a specified value

Matches values that are greater than (or equal to a specified value
Matches values less than or (equal to) a specified value

Matches values that are not equal to a specified value

Matches any of the values specified in an array

Matches none of the values specified in an array

Joins query clauses with a logical OR returns all

Join query clauses with a loginal AND

Inverts the effect of a query expression

Join query clauses with a logical NOR

Matches documents that have a specified field

Aggregated functionality

Aggregation framework provides SQL-like aggregation
functionality
Pipeline documents from a collection pass through an

aggregation pipeline, which transforms these objects as they pass
through

Expressions produce output documents based on calculations
performed on input documents

Example db.parts.aggregate ({Sgroup : { id: type, totalguantity
: {Ssum: quanity}} })

Map reduce functionality

» Performs complex aggregator functions given a collection of
keys, value pairs

* Must provide at least a map function, reduction function and a
name of the result set

» db.collection.mapReduce(<mapfunction>, <reducefunction>,
{ out: <collection>, query: <document>, sort: <document>,
limit: <number>, finalize: <function>, scope: <document>,
jsMode: <boolean>, verbose: <boolean> })

* More description of map reduce next lecture

summary

* NoSQL built to address a distributed database system

Sharding
Replica sets of data
* CAP Theorem: consistency, availability and partition tolerant

* MongoDB

Document oriented data, schema-less database, supports
secondary indexes, provides a query language, consistent reads

on primary sets
Lacks transactions, joins

