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Logistics/Announcements

Questions on PA3?



Today’s Lecture

1. MapReduce Implementation

2. Spark



1. MapReduce Implementation



Recall: The Map Reduce Abstraction for Distributed Algorithms
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MapReduce: what happens in between?

-

— Call the user Reduce function per key with the list of values for that key
to aggregate the results

o

(o Map )
— Grab the relevant data from the source (parse into key, value)
— Write it to an intermediate file o
Lz
o)
+ Partition =
— Partitioning: identify which of R reducers will handle which keys ©
— Map partitions data to target it to one of R Reduce workers based on a =
partitioning function (both R and partitioning function user defined)
J
(« Shuffle & Sort A
— Shuffle: Fetch the relevant partition of the output from all mappers j':’
— Sort by keys (different mappers may have sent data with the same key) 5
<
[0)
* Reduce =
— Input is the sorted output of mappers D
e




MapReduce: the complete picture
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Step 1: Split input files into chunks (shards)

» Break up the input data into M pieces (typically 64 MB)

Shard 0 Shard 1 Shard 2 Shard 3 Shard M-1

Input files

Divided into M shards



Step 2: Fork processes

« Start up many copies of the program on a cluster of machines
— One master: scheduler & coordinator
— Lots of workers

* |dle workers are assigned either:
— map tasks (each works on a shard) — there are M map tasks

— reduce tasks (each works on intermediate files) — there are R
* R =# partitions, defined by the user

Remote fork




Step 3: Run Map Tasks

* Reads contents of the input shard assigned to it
« Parses key/value pairs out of the input data

» Passes each pair to a user-defined map function
— Produces intermediate key/value pairs
— These are buffered in memory

read
Map
Shard 2




Step 4: Create intermediate files

 Intermediate key/value pairs produced by the user’s map function
buffered in memory and are periodically written to the local disk

— Partitioned into R regions by a partitioning function

Intermediate file

read Map local write Partition 1
Shard n ik —>
worker Partition 1

Partition R-1




Step 4a: Partitioning

* Map data will be processed by Reduce workers
— User’s Reduce function will be called once per unique key generated by Map.

We first need to sort all the (key, value) data by keys and decide which
Reduce worker processes which keys

— The Reduce worker will do the sorting

Partition function
Decides which of R reduce workers will work on which key

— Default function: hash(key) mod R
— Map worker partitions the data by keys

Each Reduce worker will later read their partition from every Map worker



Step 5: Reduce Task - sorting

» Reduce worker gets notified by the master about the location of intermediate
files for its partition

« Shuffle: Uses RPCs to read the data from the local disks of the map workers

» Sort: When the reduce worker reads intermediate data for its partition
— It sorts the data by the intermediate keys
— All occurrences of the same key are grouped together
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Step 6: Reduce Task - reduce

* The sort phase grouped data with a unique intermediate key

« User’s Reduce function is given the key and the set of intermediate
values for that key

< key, (value1, value2, valued, value4, ...) >

* The output of the Reduce function is appended to an output file

Intermediate
file

remote read write Output
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Step /: Return to user

 When all map and reduce tasks have completed, the
master wakes up the user program

 The MapReduce call in the user program returns and the
program can resume execution.
— Output of MapReduce is available in R output files



MapReduce: the complete picture
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2. Spark



Intro to Spark

 Spark is really a different implementation of the MapReduce
programming model

 What makes Spark different is that it operates on Main Memory

 Spark: we write programs in terms of operations on resilient
distributed datasets (RDDs).

« RDD (simple view): a collection of elements partitioned across the
nudes of a cluster that can be operated on in parallel.

e RDD (complex view): RDD is an interface for data transformation,
RDD refers to the data stored either in persisted store (HDFS) or in
cache (memory, memory+disk, disk only) or in another RDD



RDDs in Spark

| | RDD

<L
RDD: Resilient Distributed | = . RDD
Datzilsets o j ' RDD
* Like a big list: < RDD

= Collections of objects spread _
across a cluster, stored in RAM or Operations

on Disk . Transforma_tions
» Built through parallel (igl-jm;g, filter,
transformations groupiBy

_ _ * Make sure
« Automatically rebuilt on input/output match

failure



MapReduce vs Spark
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RDDs

Partitions are recomputed on failure or cache eviction

Metadata stored for interface:
Partitions — set of data splits associated with this RDD
Dependencies — list of parent RDDs involved in computation

Compute — function to compute partition of the RDD given the parent
partitions from the Dependencies

Preferred Locations — where is the best place to put computations on this
partition (data locality)

Partitioner — how the data is split into partitions



RDDs

Lazy computations model

Transformation cause only metadata change



DAG

 Directed Acyclic Graph — sequence of computations performed on
data

* Node —RDD partition
e Edge — transformation on top of the data
 Acyclic —graph cannot return to the older partition

e Directed — transformation is an action that transitions data
partitions state (from A to B)



Example: Word Count

1ines = sc.textFile(“hamlet.txt”)

counts = lines.flatMap(lambda 1ine: Tine.split(® "))
.map(lambda word: (word, 1))
.reduceByKey(lambda x, y: X + y)
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Spark Architecture
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Spark Components

Worker Nodes

Spark Driver
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Spark Driver

 Entry point of the Spark Shell (Scala, Python, R)

* The place where SparkContext is created

 Translates RDD into the execution graph

e Splits graph into stages

 Schedules tasks and controls their execution

 Stores metadata about all the RDDs and their partitions
 Brings up Spark WebUI with job information



Spark Executor

 Stores the data in cache in JVM heap or on HDDs
 Reads data from external sources

* Writes data to external sources

 Performs all the data processing



Dag Scheduler

« General task
graphs

« Automatically
pipelines
functions

- Data locality
aware

- Partitioning
aware

to avoid shuffles

=RDD (g = cached partition



More RDD Operations

e map

e filter

e groupBy

e sort

e union

e join

e leftOuterloin

« rightouterloin

reduce
count

fold
reduceByKey
groupByKey
cogroup
Cross

Zip

sample

take

first
partitionBy
mapw1ith
pipe

save



Spark’s secret is really the RDD abstraction
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« Automatically rebuilt on input/output match

failure



