
CS639:	
Data	Management	for	

Data	Science
Lecture	10:	Algorithms	in	MapReduce	(continued)

Theodoros	Rekatsinas

1



Logistics/Announcements

2

• PA3	out	by	the	end	of	day

• If	you	have	grading	questions	or	questions	for	PA1	
and	PA2	please	ask	Frank	and	Huawei

• No	class	on	Monday,	we	will	resume	on	Wednesday



Today’s	Lecture

1. Recap	on	MapReduce	data	and	programming	model

2. More	MapReduce	Examples

3



1. Recap	on	MapReduce	data	and	
programming	model

4



Recall:	The	Map	Reduce	Abstraction	for	Distributed	Algorithms

Distributed	
Data	Storage

Map

Reduce

(Shuffle)

map map map map map map

reduce reduce reduce reduce



Recall:	MapReduce’s	Data	Model

• Files!	

• A	File	is	a	bag	of		(key,	value) pairs
• A	bag	is	a	multiset

• A	map-reduce	program:
• Input:	a	bag	of	(inputkey,	value)	pairs
• Output:	a	bag	of	(outputkey,	value)	pairs



MapReduce	Programming	Model

Input	&	Output:	each	a	set	of	key/value	pairs
Programmer	specifies	two	functions:
map	(in_key,	in_value)	->	list(out_key,	intermediate_value)

Processes	input	key/value	pair
Produces	set	of	intermediate	pairs

reduce	(out_key,	list(intermediate_value))	->	(out_key,	list(out_values))
Combines	all	intermediate	values	for	a	particular	key
Produces	a	set	of	merged	output	values	(usually	just	one)



Example:	Word	count	over	a	corpus	of	documents

map(String	input_key,	String	input_value):
//input_key:	document	id
//input_value:	document	bag	of	words
for	each	word	w	in	input_value:
EmitIntermediate(w,	1);

reduce(String	intermediate_key,	Iterator	intermediate_values):
//intermediate_key:	word
//intermediate_values:	????
result	=	0;
for	each	v	in	intermediate_values:
result	+=	v;
EmitFinal(intermediate_key,	result);



2.	More	MapReduce	Examples

9



Relational	Join

Name SSN

Sue 9999999999

Tony 7777777777

EmpSSN DepName

9999999999 Accounts

7777777777 Sales

7777777777 Marketing

Employee
Assigned	Departments

Employee	⨝SSN=EmpSSN Assigned	Departments	

Name SSN EmpSSN DepName

Sue 9999999999 9999999999 Accounts

Tony 7777777777 7777777777 Sales

Tony 7777777777 7777777777 Marketing



Relational	Join

Name SSN

Sue 9999999999

Tony 7777777777

EmpSSN DepName

9999999999 Accounts

7777777777 Sales

7777777777 Marketing

Employee
Assigned	Departments

Employee	⨝SSN=EmpSSN Assigned	Departments	

Name SSN EmpSSN DepName

Sue 9999999999 9999999999 Accounts

Tony 7777777777 7777777777 Sales

Tony 7777777777 7777777777 Marketing

Remember	the	semantics!

join_result =	[]
for	e	in	Employee:
for	d	in	Assigned	Departments:
if	e.SSN =	d.EmpSSN
r	=	<e.Name,	e.SSN,	d.EmpSSN,	d.DepName>
join_result.append(r)

rerun	join_result



Relational	Join

Name SSN

Sue 9999999999

Tony 7777777777

EmpSSN DepName

9999999999 Accounts

7777777777 Sales

7777777777 Marketing

Employee
Assigned	Departments

Employee	⨝SSN=EmpSSN Assigned	Departments	

Name SSN EmpSSN DepName

Sue 9999999999 9999999999 Accounts

Tony 7777777777 7777777777 Sales

Tony 7777777777 7777777777 Marketing

Remember	the	semantics!

join_result =	[]
for	e	in	Employee:
for	d	in	Assigned	Departments:
if	e.SSN =	d.EmpSSN
r	=	<e.Name,	e.SSN,	d.EmpSSN,	d.DepName>
join_result.append(r)

rerun	join_result
Imagine	we	have	a	huge	number	of	records!
Let’s	use	MapReduce!	
We	want	the	map	phase	to	process	each	tuple.
Is	there	a	problem?



Relational	Join

Name SSN

Sue 9999999999

Tony 7777777777

EmpSSN DepName

9999999999 Accounts

7777777777 Sales

7777777777 Marketing

Employee
Assigned	Departments

Employee	⨝SSN=EmpSSN Assigned	Departments	

Name SSN EmpSSN DepName

Sue 9999999999 9999999999 Accounts

Tony 7777777777 7777777777 Sales

Tony 7777777777 7777777777 Marketing

Remember	the	semantics!

join_result =	[]
for	e	in	Employee:
for	d	in	Assigned	Departments:
if	e.SSN =	d.EmpSSN
r	=	<e.Name,	e.SSN,	d.EmpSSN,	d.DepName>
join_result.append(r)

rerun	join_result
Imagine	we	have	a	huge	number	of	records!
Let’s	use	MapReduce!	
We	want	the	map	phase	to	process	each	tuple.
Is	there	a	problem?

The	Relational	Join is	a	binary operation!
But	MapReduce is	a	unary operation:
I	operate	on	a	single	key

Can	we	approximate	the	join	using	MapReduce?



Relational	Join	in	MapReduce:	Preprocessing	before	the	Map	Phase

Name SSN

Sue 9999999999

Tony 7777777777

EmpSSN DepName

9999999999 Accounts

7777777777 Sales

7777777777 Marketing

Employee

Assigned	Departments

Key	idea:	Flatten	all	tables	and	combine	tuples	
from	different	tables	in	a	single	dataset

Employee Sue 9999999999

Employee Tony 7777777777

Assigned	
Departments

9999999999 Accounts

Assigned	
Departments

7777777777 Sales

Assigned	
Departments

7777777777 Marketing



Relational	Join	in	MapReduce:	Preprocessing	before	the	Map	Phase

Name SSN

Sue 9999999999

Tony 7777777777

EmpSSN DepName

9999999999 Accounts

7777777777 Sales

7777777777 Marketing

Employee

Assigned	Departments

Key	idea:	Flatten	all	tables	and	combine	tuples	
from	different	tables	in	a	single	dataset

Employee Sue 9999999999

Employee Tony 7777777777

Assigned	
Departments

9999999999 Accounts

Assigned	
Departments

7777777777 Sales

Assigned	
Departments

7777777777 Marketing

We	use	the	table	name	to	keep	track	of	
“which	table	did	the	tuple	come	from”

This	is	a	label	that	we've	attached	to	every	tuple	so that	
we	can	know	where	that	came	from. We'll	use	it	later!



Relational	Join	in	MapReduce:	Map	Phase
Employee Sue 9999999999

Employee Tony 7777777777

Assigned	
Departments

9999999999 Accounts

Assigned	
Departments

7777777777 Sales

Assigned	
Departments

7777777777 Marketing

For	each	tuple	in	the	flattened	input	
we	will	generate	a	key	value	pair!

key=9999999999,	value=(Employee,	Sue,	9999999999)
key=7777777777,	value=(Employee,	Tony,	7777777777)
key=9999999999,	value=(Assigned	Departments,	9999999999,	Accounts)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Sales)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Marketing)



Relational	Join	in	MapReduce:	Map	Phase
Employee Sue 9999999999

Employee Tony 7777777777

Assigned	
Departments

9999999999 Accounts

Assigned	
Departments

7777777777 Sales

Assigned	
Departments

7777777777 Marketing

For	each	tuple	in	the	flattened	input	
we	will	generate	a	key	value	pair!

key=9999999999,	value=(Employee,	Sue,	9999999999)
key=7777777777,	value=(Employee,	Tony,	7777777777)
key=9999999999,	value=(Assigned	Departments,	9999999999,	Accounts)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Sales)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Marketing)

Why	use	this	value	as	the	key?



Relational	Join	in	MapReduce:	Map	Phase
Employee Sue 9999999999

Employee Tony 7777777777

Assigned	
Departments

9999999999 Accounts

Assigned	
Departments

7777777777 Sales

Assigned	
Departments

7777777777 Marketing

For	each	tuple	in	the	flattened	input	
we	will	generate	a	key	value	pair!

key=9999999999,	value=(Employee,	Sue,	9999999999)
key=7777777777,	value=(Employee,	Tony,	7777777777)
key=9999999999,	value=(Assigned	Departments,	9999999999,	Accounts)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Sales)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Marketing)

Why	use	this	value	as	the	key?
We	are	joining	on	SSN	(for	Employee)	
and	EmpSSN (for	Assigned	Depts)



Relational	Join	in	MapReduce:	Map	Phase	(Two	Tricks	so	far)
Employee Sue 9999999999

Employee Tony 7777777777

Assigned	
Departments

9999999999 Accounts

Assigned	
Departments

7777777777 Sales

Assigned	
Departments

7777777777 Marketing

For	each	tuple	in	the	flattened	input	
we	will	generate	a	key	value	pair!

key=9999999999,	value=(Employee,	Sue,	9999999999)
key=7777777777,	value=(Employee,	Tony,	7777777777)
key=9999999999,	value=(Assigned	Departments,	9999999999,	Accounts)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Sales)
key=7777777777,	value=(Assigned	Departments,	7777777777,	Marketing)

Why	use	this	value	as	the	key?
We	are	joining	on	SSN	(for	Employee)	
and	EmpSSN (for	Assigned	Depts)

Trick	1:	Flattened	and	combined	
tables	in	a	single	input	file.

Trick	2:	Produce	a	key	value	pair	
where	the	key	is	the	join	attribute.



Relational	Join	in	MapReduce:	Reduce	Phase	(after	the	magic	Shuffle)

After	the	shuffle	phase	all	inputs	
with	the	same	key	will	end	up	in	the	
same	reducer!

It	does	not	matter	which	relation	the	
different	tuples	came	from!

Input	to	Reducer	1
key=9999999999,	value=[(Employee,	Sue,	9999999999),

(Assigned	Departments,	9999999999,	Accounts)]	

Input	to	Reducer	2
key=7777777777,	value=[(Employee,	Tony,	7777777777),

(Assigned	Departments,	7777777777,	Sales),
(Assigned	Departments,	7777777777,	Marketing)]



Relational	Join	in	MapReduce:	Reduce	Phase	(after	the	magic	Shuffle)

We	have	all	the	information	we	need	
to	perform	the	join	for	a	each	key	in	
a	single	machine.

This	is	how	we	scale.

Input	to	Reducer	1
key=9999999999,	value=[(Employee,	Sue,	9999999999),

(Assigned	Departments,	9999999999,	Accounts)]	

Input	to	Reducer	2
key=7777777777,	value=[(Employee,	Tony,	7777777777),

(Assigned	Departments,	7777777777,	Sales),
(Assigned	Departments,	7777777777,	Marketing)]



Relational	Join	in	MapReduce:	Reduce	Phase	(after	the	magic	Shuffle)

Desired	output	of	reduce	function

Input	to	Reducer	1
key=9999999999,	value=[(Employee,	Sue,	9999999999),

(Assigned	Departments,	9999999999,	Accounts)]	

Input	to	Reducer	2
key=7777777777,	value=[(Employee,	Tony,	7777777777),

(Assigned	Departments,	7777777777,	Sales),
(Assigned	Departments,	7777777777,	Marketing)]

Output	of	Reduce	Function	(Reducer	1)
Sue,	9999999999,	9999999999,	Accounts	

Output	of	Reduce	Function	(Reducer	2)
Tony,	7777777777,	7777777777,	Sales
Tony,	7777777777,	7777777777,	Marketing



Relational	Join	in	MapReduce:	Reduce	Phase	(after	the	magic	Shuffle)

Desired	output	of	reduce	function

Input	to	Reducer	1
key=9999999999,	value=[(Employee,	Sue,	9999999999),

(Assigned	Departments,	9999999999,	Accounts)]	

Input	to	Reducer	2
key=7777777777,	value=[(Employee,	Tony,	7777777777),

(Assigned	Departments,	7777777777,	Sales),
(Assigned	Departments,	7777777777,	Marketing)]

Output	of	Reduce	Function	(Reducer	1)
Sue,	9999999999,	9999999999,	Accounts

Output	of	Reduce	Function	(Reducer	2)
Tony,	7777777777,	7777777777,	Sales
Tony,	7777777777,	7777777777,	Marketing

This	part	came	from	the	Employees	table
This	part	came	from	the	Assigned	Departments	table

What	is	the	reduce	function	implementation?



Relational	Join	in	MapReduce:	Reduce	Phase	Implementation
Desired	output	of	reduce	functionInput	to	Reducer	1

key=9999999999,	value=[(Employee,	Sue,	9999999999),
(Assigned	Departments,	9999999999,	Accounts)]	

Input	to	Reducer	2
key=7777777777,	value=[(Employee,	Tony,	7777777777),

(Assigned	Departments,	7777777777,	Sales),
(Assigned	Departments,	7777777777,	Marketing)]

Output	of	Reduce	Function	(Reducer	1)
Sue,	9999999999,	9999999999,	Accounts

Output	of	Reduce	Function	(Reducer	2)
Tony,	7777777777,	7777777777,	Sales
Tony,	7777777777,	7777777777,	Marketing

Simple	Pseudo-code	for	Reduce
reduce(String	key,	Iterator	tuples):
//intermediate_key:	join	key
//intermediate_values:	tuples	with	the	same	join	key
join_result =	[];
for	t1	in	tuples:
for	t2	in	tuples:

if	t1[0]	<>	t2[0]:
output	tuple	=	(t1[1:],	t2[1:])
join_result.append(t)

rerun	(key,	join_result)

This	is	a	cross-product	operation!	
Relational	algebra	is	everywhere!
Notice	that	we	need	to	keep	track	of	

where	each	tuple	came	from.



Social	Network	Analysis:	Count	Friends

Jim Sue

Sue Jim

Lin Joe

Joe Lin

Jim Kai

Kai Jim

Jim Lin

Lin Jim

Input

Desired	Output

Jim,	3
Lin,	2
Sue,	1
Kai,	1
Joe,	1

Symmetric	friendship	edges



Social	Network	Analysis:	Count	Friends

Jim Sue

Sue Jim

Lin Joe

Joe Lin

Jim Kai

Kai Jim

Jim Lin

Lin Jim

Input

Desired	Output

Jim,	3
Lin,	2
Sue,	1
Kai,	1
Joe,	1

MAP

key,	value
Jim,	1
Sue,	1
Lin,	1
Joe,	1
Jim,	1
Kai,	1
Jim,	1
Lin,	1

Jim,	(1,	1,	1)
Sue,	1
Lin,	(1,1)
Joe,	1
Kai,	1

SHUFFLE REDUCE

Symmetric	friendship	edges Emit	one	for	each	
left-hand	value



Matrix	Multiply	in	MapReduce

• C	=	A	x	B
• A	dimensions	m	x	n,	B	dimensions	n	x	l
• In	the	map	phase:
• for	each	element	(i,j)	of	A,	emit	((i,,k),A[i,j])	for	k	in	1..l

• Key	=	(i,k)	and	value	=	A[i,j]
• for	each	element	(i,j)	of	B,	emit	((i,k),B[i,j])	for	k	in	1..m

• Key	=	(i,k)	and	value	=	B[i,j]

• In	the	reduce	phase,	emit
• key	=	(i,k)
• Value	=	Sumj (A[i,j]	*	B[j,k])



Matrix	Multiply	in	MapReduce:	Illustrated

x =

We	have	one	reducer	per	output	cell
Each	reducer	computes	Sumj (A[i,j]	*	B[j,k])


