

CS639: Data Management for Data Science

Lecture 10: Algorithms in MapReduce (continued)

Theodoros Rekatsinas

Logistics/Announcements

• PA3 out by the end of day

• If you have grading questions or questions for PA1 and PA2 please ask Frank and Huawei

• No class on Monday, we will resume on Wednesday

Today's Lecture

- 1. Recap on MapReduce data and programming model
- 2. More MapReduce Examples

1. Recap on MapReduce data and programming model

Recall: The Map Reduce Abstraction for Distributed Algorithms

Recall: MapReduce's Data Model

- Files!
- A File is a bag of (key, value) pairs
 - A bag is a **multiset**
- A map-reduce program:
 - Input: a bag of (inputkey, value) pairs
 - Output: a bag of (outputkey, value) pairs

Input & Output: each a set of key/value pairs Programmer specifies two functions: map (in key, in value) -> list(out key, intermediate value) Processes input key/value pair Produces set of intermediate pairs reduce (out key, list(intermediate value)) -> (out key, list(out values)) Combines all intermediate values for a particular key Produces a set of merged output values (usually just one)

Example: Word count over a corpus of documents

map(String input_key, String input_value):
 //input_key: document id
 //input_value: document bag of words
 for each word w in input_value:
 EmitIntermediate(w, 1);

```
reduce(String intermediate_key, Iterator intermediate_values):
    //intermediate_key: word
    //intermediate_values: ????
    result = 0;
    for each v in intermediate_values:
        result += v;
    EmitFinal(intermediate_key, result);
```

2. More MapReduce Examples

Employee

Name	SSN
Sue	9999999999
Tony	777777777

Assigned Departments

EmpSSN	DepName
99999999999	Accounts
7777777777	Sales
7777777777	Marketing

Employee $\bowtie_{SSN=EmpSSN}$ Assigned Departments

Name	SSN	EmpSSN	DepName
Sue	99999999999	9999999999	Accounts
Tony	7777777777	777777777	Sales
Tony	7777777777	777777777	Marketing

Employee

Name	SSN
Sue	9999999999
Tony	777777777

Assigned Departments

EmpSSN	DepName
99999999999	Accounts
7777777777	Sales
7777777777	Marketing

Remember the semantics!

join_result = []
for e in Employee:
 for d in Assigned Departments:
 if e.SSN = d.EmpSSN
 r = <e.Name, e.SSN, d.EmpSSN, d.DepName>
 join_result.append(r)
rerun join_result

Employee M_{SSN=EmpSSN} Assigned Departments

Name	SSN	EmpSSN	DepName
Sue	99999999999	9999999999	Accounts
Tony	777777777	777777777	Sales
Tony	777777777	777777777	Marketing

Employee

Name	SSN
Sue	9999999999
Tony	777777777

Assigned Departments

EmpSSN	DepName
99999999999	Accounts
7777777777	Sales
7777777777	Marketing

Employee M_{SSN=EmpSSN} Assigned Departments

Name	SSN	EmpSSN	DepName
Sue	99999999999	9999999999	Accounts
Tony	7777777777	777777777	Sales
Tony	7777777777	777777777	Marketing

Remember the semantics!

join_result = []
for e in Employee:
 for d in Assigned Departments:
 if e.SSN = d.EmpSSN
 r = <e.Name, e.SSN, d.EmpSSN, d.DepName>
 join_result.append(r)
rerun join_result
 Imagine we have a huge number of records!
 Let's use MapReduce!
 We want the *map* phase to process each tuple.
 Is there a problem?

Employee

Name	SSN
Sue	9999999999
Tony	777777777

Assigned Departments

EmpSSN	DepName
99999999999	Accounts
7777777777	Sales
7777777777	Marketing

Employee M_{SSN=EmpSSN} Assigned Departments

Name	SSN	EmpSSN	DepName
Sue	99999999999	9999999999	Accounts
Tony	7777777777	777777777	Sales
Tony	7777777777	777777777	Marketing

Remember the semantics!

join_result = []
for e in Employee:
 for d in Assigned Departments:
 if e.SSN = d.EmpSSN
 r = <e.Name, e.SSN, d.EmpSSN, d.DepName>
 join_result.append(r)
rerun join_result
 Imagine we have a huge number of records!
 Let's use MapReduce!
 We want the *map* phase to process each tuple.
 Is there a problem?

The **Relational Join** is a **binary** operation! But **MapReduce** is a **unary** operation: I operate on a single key

Can we approximate the join using MapReduce?

Relational Join in MapReduce: Preprocessing before the Map Phase

Employee

Name	SSN
Sue	9999999999
Tony	777777777

Assigned Departments

EmpSSN	DepName
9999999999	Accounts
777777777	Sales
777777777	Marketing

Key idea: Flatten all tables and combine tuples from different tables in a single dataset

Employee	Sue	99999999999
Employee	Tony	7777777777
Assigned Departments	99999999999	Accounts
Assigned Departments	7777777777	Sales
Assigned Departments	7777777777	Marketing

Relational Join in MapReduce: Preprocessing before the Map Phase

Employee

Name	SSN
Sue	9999999999
Tony	777777777

Assigned Departments

EmpSSN	DepName
9999999999	Accounts
777777777	Sales
777777777	Marketing

Key idea: Flatten all tables and combine tuples from different tables in a single dataset

Employee	Sue	99999999999
Employee	Tony	7777777777
Assigned Departments	99999999999	Accounts
Assigned Departments	7777777777	Sales
Assigned Departments	7777777777	Marketing

We use the table name to keep track of "which table did the tuple come from"

This is a label that we've attached to every tuple so that we can know where that came from. We'll use it later!

Relational Join in MapReduce: Map Phase

Employee	Sue	99999999999
Employee	Tony	7777777777
Assigned Departments	99999999999	Accounts
Assigned Departments	7777777777	Sales
Assigned Departments	7777777777	Marketing

For each tuple in the flattened input we will generate a key value pair!

Relational Join in MapReduce: Map Phase

Employee	Sue	99999999999
Employee	Tony	7777777777
Assigned Departments	99999999999	Accounts
Assigned Departments	7777777777	Sales
Assigned Departments	7777777777	Marketing

Why use this value as the key?

For each tuple in the flattened input we will generate a key value pair!

Relational Join in MapReduce: Map Phase

Employee	Sue	99999999999
Employee	Tony	7777777777
Assigned Departments	99999999999	Accounts
Assigned Departments	7777777777	Sales
Assigned Departments	7777777777	Marketing

Why use this value as the key? We are joining on SSN (for Employee) and EmpSSN (for Assigned Depts)

For each tuple in the flattened input we will generate a key value pair!

Relational Join in MapReduce: Map Phase (Two Tricks so far)

Employee	Sue	99999999999
Employee	Tony	7777777777
Assigned Departments	99999999999	Accounts
Assigned Departments	7777777777	Sales
Assigned Departments	7777777777	Marketing

Trick 1: Flattened and combined tables in a single input file.

Why use this value as the key?

We are joining on SSN (for Employee) and EmpSSN (for Assigned Depts)

For each tuple in the flattened input we will generate a key value pair!

Trick 2: Produce a key value pair where the key is the join attribute.

Input to Reducer 1

key=99999999999, value=[(Employee, Sue, 9999999999), (Assigned Departments, 99999999999, Accounts)]

Input to Reducer 2

key=7777777777, value=[(Employee, Tony, 7777777777), (Assigned Departments, 7777777777, Sales), (Assigned Departments, 7777777777, Marketing)] After the shuffle phase all inputs with the same key will end up in the same reducer!

It does not matter which relation the different tuples came from!

Input to Reducer 1

key=99999999999, value=[(Employee, Sue, 9999999999), (Assigned Departments, 99999999999, Accounts)]

Input to Reducer 2

key=7777777777, value=[(Employee, Tony, 7777777777), (Assigned Departments, 7777777777, Sales), (Assigned Departments, 777777777, Marketing)] We have all the information we need to perform the join for a each key in a single machine.

This is how we scale.

Desired output of reduce function

Input to Reducer 1 key=9999999999, value=[(Employee, Sue, 9999999999), (Assigned Departments, 99999999999, Accounts)]

Input to Reducer 2

key=7777777777, value=[(Employee, Tony, 7777777777), (Assigned Departments, 7777777777, Sales), (Assigned Departments, 7777777777, Marketing)] Output of Reduce Function (Reducer 1) Sue, 9999999999, 9999999999, Accounts

Output of Reduce Function (Reducer 2) Tony, 777777777, 777777777, Sales Tony, 777777777, 777777777, Marketing

Desired output of reduce function

Input to Reducer 1 key=9999999999, value=[(Employee, Sue, 9999999999), (Assigned Departments, 99999999999, Accounts)]

Input to Reducer 2

key=7777777777, value=[(Employee, Tony, 7777777777), (Assigned Departments, 7777777777, Sales), (Assigned Departments, 7777777777, Marketing)] Output of Reduce Function (Reducer 1) Sue, 999999999, 999999999, Accounts

Output of Reduce Function (Reducer 2) Tony, 777777777, 777777777, Sales Tony, 777777777, 777777777, Marketing

This part came from the Employees table This part came from the Assigned Departments table

What is the reduce function implementation?

Relational Join in MapReduce: Reduce Phase Implementation

Input to Reducer 1 (Assigned Departments, 9999999999, Accounts)]

Input to Reducer 2

key=77777777777, value=[(Employee, Tony, 777777777), (Assigned Departments, 777777777, Sales), (Assigned Departments, 777777777, Marketing)]

Simple Pseudo-code for Reduce

reduce(String key, Iterator tuples): //intermediate key: join key //intermediate_values: tuples with the same join key join result = []; for t1 in tuples: for t2 in tuples: if t1[0] <> t2[0]: output tuple = (t1[1:], t2[1:])join_result.append(t) rerun (key, join_result)

This is a cross-product operation! **Relational algebra is everywhere!** Notice that we need to keep track of where each tuple came from.

Desired output of reduce function

Output of Reduce Function (Reducer 1) Sue, 9999999999, 9999999999, Accounts

Output of Reduce Function (Reducer 2) Tony, 777777777, 777777777, Sales Tony, 777777777, 777777777, Marketing

Social Network Analysis: Count Friends

Input

Jim	Sue
Sue	Jim
Lin	Joe
Joe	Lin
Jim	Каі
Kai	Jim
Jim	Lin
Lin	Jim

Desired Output

Jim, 3 Lin, 2 Sue, 1 Kai, 1 Joe, 1

Symmetric friendship edges

Social Network Analysis: Count Friends

Input

Jim	Sue						Desired Output
Sue	Jim		key, value Jim, 1	2			
Lin	Joe		Sue, 1		Jim, (1, 1, 1)		Jim, 3
Joe	Lin		Lin, 1		Sue, 1		Lin, 2
Jim	Каі	MAP	Joe, 1 Jim, 1	SHUFFLE	Lin, (1,1) Joe, 1	REDUCE	Sue, 1 Kai, 1
Каі	Jim		Kai, 1		Kai, 1		Joe, 1
Jim	Lin		Jim, 1 Lip 1				
Lin	Jim		LIII, L				

Symmetric friendship edges

Emit one for each left-hand value

Matrix Multiply in MapReduce

- C = A x B
- A dimensions m x n, B dimensions n x l
- In the map phase:
 - for each element (i,j) of A, emit ((i,,k),A[i,j]) for k in **1...**
 - Key = (i,k) and value = A[i,j]
 - for each element (i,j) of B, emit ((i,k),B[i,j]) for k in 1...m
 - Key = (i,k) and value = B[i,j]
- In the reduce phase, emit
 - key = (i,k)
 - Value = Sum_j (A[i,j] * B[j,k])

We have one reducer per output cell Each reducer computes Sum_i (A[i,j] * B[j,k])