CS 564: Database Management System
University of Wisconsin - Madison, Fall 2017
Getting Started with web.py and Jinja2

Before starting Part 4 of your project, your first task is to become familiar with the web.py framework and the Jinja2
templating engine. You’ll be using web.py for request handling and database querying, while Jinja2 will be used for
generating HTML responses. Before jumping in, we recommend at least skimming through the Web.py tutorial, the
Web.py API documentation, and the Jinja2 Template Designer Documentation, to familiarize yourself with the tools
you’ll be using, particularly if you’ve never used web.py or Jinja2 before. If these still aren’t helpful, you can find
additional materials in the Web.py code samples and the Web.py cookbook.

Examining the Sample Code

The provided sample code should serve as a guide for the overall code structure, as well as for implementing key
components of Part 3 of the project, such as querying the database, adding additional URLSs, and correctly handling
parameters from the user. You should feel free to build off this code to complete the assignment.

The first thing to examine is the getTime method in sqlitedb.py. This will give you an example of how to execute
a simple command on a SQLite database in web.py and process the results. In auctionbase.py,the GET method for
the curr_time class also shows how to call this method from your main application.

Next, take a look at getItemById method, also in sqlitedb.py. Here, you’ll notice that the method takes in a
variable, item_id, to specify which item to look for. We pass both the query_string and a Python dictionary that
includes item_id to the method query,which will automatically take care of splicing in the value of item_id into
the query_string. This works because the key in our dictionary, ‘itemID’, matches the variable $itemID in the
query_string.

So, as you extend sqlitedb. py to support different types of queries, it is important that you follow this same template
— otherwise, web.py will not be able to correctly generate the correct query statements for you! In particular, if you
wish to support different input variables in your queries, you should always place these variables in a Python dictionary
that corresponds to your query string.

Warning: Do not directly concatenate or insert different variables into the query string using standard Python
string operations! This will introduce a critical security loophole into your website!

You’ll notice that, for every URL, there is a mapping from the URL to a given Python class in auctionbase.py.(This
mapping is explicitly shown in the urls variable, which is located just above the curr_time class in the sample code.)
Any time you add an additional URL to your web application, you need to provide a mapping in the urls variable
from the URL to a Python class in auctionbase.py. Be sure to update the urls variable to include this mapping —
otherwise, your application will not work.

You’ll also notice that every Python class either has a GET method and/or a POST method included as part of the
class definition. For a URL to be valid in web.py, you need to implement at least one of these methods for a given
class. Inside your GET/POST method, you have access to the parameters passed with the URL to your application; a
simple call to web. input () will provide for you a Python dictionary of those parameters. (See the POST method in
select_time for an example.) Lastly, you must invoke render_template at the end of the method and return its
value. (See the examples in curr_time and select_time.)

http://webpy.org/
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
http://webpy.org/docs/0.3/tutorial
http://webpy.org/docs/0.3/api
http://jinja.pocoo.org/docs/templates/
http://webpy.org/src/
http://webpy.org/cookbook/

The render_template method takes in two arguments: the name of the template file to be rendered, and a dictio-
nary of key-value pairs that will be passed to the template as variables. For example, the GET method in curr_time
returns render_template(‘curr_time.html’, time = current_time). This means that, if a user navigates
to auctionbase.py/currtime, the curr_time.html template will be rendered and returned to the browser. All
of your template files will be located in the templates/ directory; you should find four sample templates al-
ready provided for you: add_bid.html,curr_time.html,select_time.html,and app_base.html.Examine
curr_time.html to familiarize yourself with these templates. Although these template files have .html file ex-
tensions, these are not HTML files. Instead, they are Jinja2 templates, which contain a mixture of HTML and Jinja2, a
templating language that is patterned after Python. (Note: do not confuse the two — although Jinja2 looks like Python,
it is not Python.)

Jinja2 gives you the ability to compose your HTML in a clean but dynamic fashion, using various control structures
(such as for loops and if statements) as well as variables. In curr_time.html, we see the use of variables in the
fifth line:

Current time is: {{ time }}

The double-braces on either side of time denote that Jinja2 will treat time as a Python variable that needs to be
evaluated; the value of that variable will then be inserted into the generated HTML. So, for example, if the variable
time was set to the value “9:00 PM”, then Jinja2 would transform our line of code into “Current time is: 9:00 PM”.

Where does the time variable come from? It comes from our invocation of render_template in auctionbase.py.
We passed in time = current_time as the second argument, which means that the time variable was set to the value
of current_time, the variable we created in auctionbase.py. By doing this, we effectively passed the current time
in our database into our curr_time.html template, so that it can be displayed as HTML in the browser. (Note: you
can pass in any number of variables to render_template; you simply need to delimit each key-value pair with a
comma, e.g. time = current_time, user = ‘‘Joe’’, number_of_users = 1,etc.)

Jinja2 offers a great deal of additional functionality, most of which you will not need for this project. However, here
are some features that are likely to come in handy:

e for loops and if statements: Pay close attention to the for-else example (the second-to-last example in the
“For” section) as well as the table of special variables that are made available inside for loops.

e String concatenation: Jinja2 does not support string concatenation with the ‘+’ character — instead, use the
‘~” operator. This operator will also convert non-string variables (such as floats or ints) into strings before
concatenation.

e Variable definition: Checking to see whether or not a variable is defined in your template will almost certainly
be useful when addressing various edge cases in your application.

Lastly, you will need to understand the concept of base and child templates in Jinja2. You can see two lines at the top
of curr_time.html

{% extends "app_base.html" %}
{% block content %}

and one line at the bottom
{% endblock %}

that aren’t directly related to the HTML output of the template. These three lines are necessary because they spec-
ify that curr_time.html is actually a child template of app_base.html, which is a base template. Essentially,
curr_time.html is responsible for generating only part of the HTML response for the /currtime URL - the
app-base.html template also generates part of the HTML response, too. If you look at the contents of app_base . html,
you’ll see that it’s mostly a “skeleton” template — it contains boilerplate HTML, along with a simple navigation bar
that appears at the top of the webpage.

http://jinja.pocoo.org/docs/templates/#for
http://jinja.pocoo.org/docs/templates/#if
http://jinja.pocoo.org/docs/templates/#other-operators
http://jinja.pocoo.org/docs/templates/#defined

Using app-base.html as our base template allows us to reuse it in powerful ways. For example, if we open
select_time.html, you’ll notice that it, too, contains the same three lines at the top and bottom — it also inher-
its from app_base.html. Now, if we navigate to the /selecttime URL from our browser, the same navigation bar
should also appear at the top of the page.

This base-child template model allows us to modularize our templates so that we can reuse common components
throughout our web application. While it’s not required that you adhere to this design pattern, we do recommend that
you continue using it as you add additional templates for any new URLs you include in your application. Specifically,
you should always include

{% extends "app_base.html" %}
{% block content %}

at the very beginning of your template, as well as
{% endblock %}

at the very end. (For more information on template inheritance in Jinja2, see the documentation here.)

Performing transactions in web.py
Here is an example of how you might structure your code in auctionbase. py to use database transactions:

t = sqlitedb.transaction()
try:
sqlitedb.query (¢ [FIRST QUERY STATEMENT]’)
sqlitedb.query(‘ [SECOND QUERY STATEMENT]’)
except Exception as e:
t.rollback()
print str(e)
else:
t.commit ()

The first line is responsible for initiating the transaction. Then, we begin our queries on the database, but we do so
within a try/except block. That way, if our query violates a constraint in the database, we can catch the resulting
error thrown by web.py and handle it appropriately. Here, we call t.rollback() to abort the transaction, and then
call print str(e) to print the error message generated by our SQLite database (which most likely explains which
constraint we violated) to the console. If no errors occur, we enter into our else branch and commit our transaction.

Debugging web.py locally

If you start to come across errors in your application — and you undoubtedly will — it may be helpful to run your
application locally. You can do this by executing the following from your shell:

python auctionbase.py [OPTIONAL: port_number]

This command will start the web application and loop indefinitely, printing out a thorough debug log of the activities
your application is performing, including all SQL queries it executes. Any additional print statements you add to your
code will also appear here, enabling you to diagnose any problems that may arise.

There is, however, an important caveat: your application will only be accessible from the local machine. You will only
be able to access the web application from a browser that also runs on your local machine. Now, whenever you visit a

http://jinja.pocoo.org/docs/templates/#template-inheritance

page via localhost, you'll get a steady stream of debugging information in your shell. Once you’re done debugging,
you can quit the local web application by typing Ctr1-C.

One last important point: as is indicated above, you can pass an optional port_number argument when you execute
python auctionbase.py. This argument specifies which port the webserver will run on. (By default, the port is
8080.) This can be helpful because, occasionally, the default 8080 port is already occupied by another process. If
that’s the case, you’ll most likely receive a “socket.error: No socket could be created” error message; you
can easily fix this by explicitly providing a port number when you execute the command, like so:

python auctionbase.py 8081

Debugging web.py with print statements

We certainly encourage to use print statements to debug your web.py application. However, it’s important to note
that any print statements you include in your application will interfere with the rendering of your webpages. In
particular, the web.py server will include your print statements as part of the HTML response it sends to the browser
— this will often mean that a particular URL request that triggers a print statement (or set of print statements) will not
work.

Most importantly, be sure to remove all print statements from your web.py application before you submit!
Please don’t forget to do this!

Configuring Your Database and Views

Let’s go ahead and make the first change to the starter code: configuring your SQLite database to work with your
web application. In particular, let’s modify the sqlitedb.py file so that it uses the correct filename of you SQLite
database. For instance, if your SQLite database is named auctions.db, you should update the existing code at the
top of the file to be:

db = web.database(dbn=‘sqlite’, db=‘auctions.db’)

Be careful: If auctions.db does not exist in your directory, web.py will automatically create a new empty SQLite
database called auctions.db for you!

