
Project 3: B+ Tree Index Manager
Due on 11/22/17

INTRODUCTION

As we discussed in class, relations are stored in files. Each file has a particular or-
ganization. Each organization lends itself to efficient evaluation of some (not all) of the
following operations: scan, equality search, range search, insertion, and deletion. When
it is important to access a relation quickly in more than one way, a good solution is to
use an index. For this assignment, the index will store data entries in the form <key,
rid> pair. These data entries in the index will be stored in a file that is separate from the
data file. In other words, the index file “points to” the data file where the actual records
are stored. Two primary kinds of indexes are hash-based and tree-based, and the most
commonly implemented tree-based index is the B+ Tree.

For the third part of your project, you need to implement a B+ Tree index. To help get
you started, we will provide you with an implementation of few new classes: PageFile,
BlobFile, and FileScan.

The PageFile and BlobFile classes are derived from the File class. These classes
implement a file interface in two different ways. The PageFile class implements the file
interface for the File class, as was done in your last buffer manager assignment. Hence,
we use the PageFile class to store all the relations as we did in the buffer manager
assignment.

The BlobFile class implements the file interface for a file organization in which the
pages in the file are not linked by prevPage/nextPage links, as they are in the case of
the PageFile class. When reading/writing pages, the BlobFile class treats the pages
as blobs of 8KB size and hence does not require these pages to be valid objects of the
Page class. We will use the BlobFile class to store the B+ index file, where every page
in the file is a node from the B+ Tree. Since no other class requires BlobFile pages to
be valid objects of the Page class, we can modify these pages as we wish without wor-
rying that these pages will not be valid after their arbitrary modification. Inside the file
btree.cpp you will treat the pages from a BlobFile as your B+ Tree index nodes, and
the BlobFile class will read/write pages for you from disk without modifying/using
them in any way. BufMgr class has also been changed so that it does not use page objects
to find out their page numbers.

1

THE FILESCAN CLASS

The FileScan class is used to scan records in a file. We will use this class for the base
relation, and not for the index file. The file main.cpp file contains code which shows
how to use this class. The public member functions of this class are described below.

• FileScan (const std::string &relationName, BufMgr *bufMgr);
The constructor takes the relationName and buffer manager instance as parameters.
The methods described below are then used to scan the relation.

• ~FileScan()
Shuts down the scan and unpins any pinned pages.

• void scanNext(RecordId& outRid);
Returns (via the outRid parameter) the RecordId of the next record from the rela-
tion being scanned. It throws EndOfFileException() when the end of relation
is reached.

• std::string getRecord();
Returns the record identified by rid. The rid is obtained by a preceding scanNext()
call.

• void markDirty()
Marks the current page being scanned as dirty, in case the page was being modified.
(You don’t need this for this assignment, but the method is here for completeness).

2

B+ TREE INDEX

Your assignment is to implement a B+ Tree index. This B+ Tree will be simplified in
certain ways:

1. You can assume that all records in a file have the same length (so for a given attribute
its offset in the record is always the same).

2. The B+ Tree only needs to support single-attribute indexing (not composite attribute).

3. The indexed attribute may be only one data type: integer.

4. You may assume that we never insert two data entries into the index with the same
key value. The last part simplifies the B+ Tree implementation (think about why,
and put that in your report).

The index will be built directly on top of the I/O Layer (the BlobFile and the Page
classes). An index will need to store its data in a file on disk, and the file will need a name
(so that the DB class can identify it). The convention for naming an index file is specified
below. To create a disk image of the index file, you simply use the BlobFile constructor
with the name of the index file. The file that you create is a “raw” file, i.e., it has no page
structure on top of it. You will need to implement a structure on top of the pages that you
get from the I/O Layer to implement the nodes of the B+ Tree. Note the PageFile class
that we provide superimposes a page structure on the “raw” page. Just as the File class
uses the first page as a header page to store the metadata for that file, you will dedicate a
header page for the B+ Tree file too for storing metadata of the index.

We’ll start you off with an interface for a class, BTreeIndex. You will need to imple-
ment the methods of this interface as described below. You may add new public methods
to this class if required, but you should not modify the interfaces that are described here:

• BTreeIndex
The constructor first checks if the specified index file exists. And index file name
is constructed by concatenating the relational name with the offset of the attribute
over which the index is built. The general form of the index file name is as follows:
relName.attrOffset. The code for constructing an index name is shown below:

std : : os t r ings t ream i d x S t r ;
i d x S t r << relationName << ’ . ’ << a t t r B y t e O f f s e t ;
s td : : s t r i n g indexName = i d x S t r . s t r () ; // indexName i s the name of the

index f i l e

If the index file exists, the file is opened. Else, a new index file is created.

Input to this constructor function:

3

const string&
relationName

The name of the relation on which to build the in-
dex. The constructor should scan this relation (us-
ing FileScan) and insert entries for all the tuples in
this relation into the index. You can insert an entry
one-by-one, i.e., don’t worry about implementing a
bottom-up bulkloading index construction mecha-
nism.

String& outIndexName The name of the index file; determine this name
in the constructor as shown above, and return the
name.

BufMgr *bufMgrIn The instance of the global buffer manager.
const int
attrByteOffset

The byte offset of the attribute in the tuple on which
to build the index. For instance, if we are storing the
following structure as a record in the original rela-
tion:

s t r u c t RECORD {
i n t i ;
double d ;
char s [6 4] ;
} ;

And, we are building the index over the double
d, then the attrByteOffset value is 0 +
offsetof (RECORD, i), where offsetof is the
offset position provided by the standard C++ library
“offsetoff”.

const Datatype
attrType

The data type of the attribute we are indexing.
Note that the Datatype enumeration INTEGER,
DOUBLE, STRING is defined in btree.h.

• ~BTreeIndex
The destructor. Perform any cleanup that may be necessary, including clearing up
any state variables, unpinning any B+ Tree pages that are pinned, and flushing the
index file (by calling bufMgr->flushFile()). Note that this method does not
delete the index file! But, deletion of the file object is required, which will call the
destructor of File class causing the index file to be closed.

• insertEntry
This method inserts a new entry into the index using the pair <key, rid>.

Input to this function:
const void* key A pointer to the value (integer) we want to insert.
const RecordId& rid The corresponding record id of the tuple in the base

relation.

4

• startScan
This method is used to begin a “filtered scan” of the index. For example, if the
method is called using arguments (1,GT,100,LTE), then the scan should seek all
entries greater than 1 and less than or equal to 100.

Input to this function:

const void* lowValue The low value to be tested.
const Operator lowOp The operation to be used in testing the low range.

You should only support GT and GTE here; any-
thing else should throw BadOpcodesException.
Note that the Operator enumeration is defined in
btree.h.

const void*
highValue

The high value to be tested.

const Operator
highOp

The operation to be used in testing the high range.
You should only support LT and LTE here; anything
else should throw BadOpcodesException.

Both the high and low values are in a binary form, i.e., for integer keys, these point
to the address of an integer.

If lowValue > highValue, throw the exception BadScanrangeException.

• scanNext
This method fetches the record id of the next tuple that matches the scan crite-
ria. If the scan has reached the end, then it should throw the following excep-
tion: IndexScanCompletedException. For instance, if there are two data en-
tries that need to be returned in a scan, then the third call to scanNext must throw
IndexScanCompletedException. A leaf page that has been read into the buffer
pool for the purpose of scanning, should not be unpinned from buffer pool unless
all records from it are read or the scan has reached its end. Use the right sibling
page number value from the current leaf to move on to the next leaf which holds
successive key values for the scan.

Input to this function:

RecordId& outRid An output value; this is the record id of the next en-
try that matches the scan filter set in startScan.

• endScan
This method terminates the current scan and unpins all the pages that have been
pinned for the purpose of the scan. It throws ScanNotInitializedException
when called before a successful startScan call.

5

ADDITIONAL NOTES

1. When you implement these methods, you will need to call upon the buffer pool to
read/write pages. Make sure you don’t keep the pages pinned in the buffer pool
unless you need to. If you keep some pages pinned, make sure you have a good
reason that you justify in your design report.

2. For the scan methods, you will need to remember the “state” of the scan specified
during the startScan call. Use appropriate member variables in the BTreeIndex
class to remember this state. Make sure you reset these state variables in the endScan
and the destructor.

3. The insert algorithm does not need to redistribute entries, i.e., always prefer splits
over key redistribution during inserts. (It is easier to implement inserts this way
too).

4. At the leaf level, you do not need to store pointers to both siblings. The leaf nodes
only point to the “next” (the right) sibling.

5. The constructor and destructor should not throw any exceptions.

6. In real B+ Tree implementations, when an error occurs, special care is taken to make
sure that the index does not end up in an inconsistent state. As you will quickly
realize handling errors can be hard in some cases. For example, if you have split
the leaf page and are propagating the split upwards, and then encounter a buffer
manager error, exiting the method without cleaning up could corrupt the B+ Tree
structure. To keep the assignment simple, don’t worry about this type of cleanup,
simply return the error code. Make sure you don’t artificially create such prob-
lems by incorrectly using the other components of BadgerDB. For example, if you
keep pages pinned in memory unnecessarily, you will quickly encounter a buffer
exceeded exception. We will not test your implementation with very small buffer
pool sizes (such as 1 or 2 pages). If it makes your implementation easier, you may
assume that you have enough free buffer pages to hold 1-2 pages from each level of
the index. But UNPIN THE PAGES as soon as you can.

6

GETTING STARTED

Start by copying the files from the following URL:

https:
//thodrek.github.io/cs564-fall17/project/part3/Btree.tar.gz.

In the zipped folder, you will find the files listed below. Follow these instructions to
complete your assignment. This directory contains the following files that are relevant to
this part of the project (in addition to other files which were created while developing the
lower layers):

• btree.h: Add your own methods and structures as you see fit but don’t modify
the public methods that we have specified.

• btree.cpp: Implement the methods we specified and any others you choose to
add.

• file.h(cpp): Implements the PageFile and BlobFile classes.

• main.cpp: Use to test your implementation. Add your own tests here or in a sep-
arate file. This file has code to show how to use the FileScan and BTreeIdnex
classes.

• page.h(cpp): Implements the Page class.

• buffer.h(cpp), bufHashTbl.h(cpp): Implementation of the buffer manager.

• Exceptions/* : Implementation of exception classes that you might need.

• Makefile : Makefile for this project.

Please do not create any additional files.

In addition to the B+ Tree source files, you must also turn in

1. New test cases that you wrote to test your B+ Tree index.

2. Design report describing your tests and design choices.

DELIVERABLES

To submit your work, please go to Canvas at Project 3 to upload your files. Your
submission should include the source code, new test cases and the design report. Submit-
ting btree.cpp is mandatory. If you have also modified the header file, submit btree.h
as well. Your new test case can be written in main.cpp, or in separate file. Clearly indi-
cate what your new test case and design report files are called, for example by putting in

7

https://thodrek.github.io/cs564-fall17/project/part3/Btree.tar.gz
https://thodrek.github.io/cs564-fall17/project/part3/Btree.tar.gz

a outline.txt file that describes your test and design report file locations (these must
be uploaded to Dropbox too). Your files must be uploaded by the deadline stated on the
first page.

GRADING

The breakup of the grading for this assignment is as follows:

1. Correctness: 75%. The correctness part of the grade will be based on the tests that
we have provided, and additional (more rigorous) tests that we will run on your
submitted projects.

2. Programming Style: 5%. For your style points, we will check your code for read-
ability (how easy is it to read and understand the code), and for the code organi-
zation (do you repeat code over and over again, do you use unnecessary globals,
etc.).

3. Test design: 5%. Designing tests cases that test various code paths rigorously. This
will not only get you the test points, but will most likely also get you the correctness
points.

4. Design report: 15%. Your design report must describe the following design choices
that you make:

• Any implementation choices that you make. How often do you keep pages
pinned? How efficient is your implementation? We are not going to run a
speed test, but will look at the code to check if you are performing operations
that are inefficient, such as unnecessarily traversing the tree up and down mul-
tiple times during range searches

• Please use your report to justify any additional design choices that you make.

• Finally, your design report must also explain how your design/implementa-
tion would change if you were to allow duplicate keys in the B+ Tree, i.e., allow
multiple data entries with the same key value.

A FINAL NOTE OF CAUTION

There are number of design choices that you need to make, and you probably need to
reserve a big chunk of time for testing and debugging. So, start working on this assign-
ment early – you are unlikely to finish this project if you start just a week or so before the
deadline.

8

