Midterm Review

CS 564 Midterm Review

The Best Of Collection (Master Tracks), Vol. 1

Midterm Review

Announcements

* Midterm next Wednesday

* In class: roughly 70 minutes
e Come in 10 minutes earlier!

Midterm Review

Midterm

* Format:
* Regular questions. No multiple-choice.
* This implies fewer questions ©
* A couple bonus questions
* Closed book and no aids! We will provide a cheat sheet

* Material: Everything including buffer management
* External sort is not fair game!

* High-lights:
* Simple SQL and Schema Definitions
* Join Semantics
* Function Dependencies and Closures
* Decompositions (BCNF and Properties)
» Buffer Pool and Replacement Policies

Midterm Review > SQL

High-Level: SQL

e Basic terminology:
* relation / table (+ “instance of”), row / tuple, column / attribute, multiset

e Table schemas in SQL

* Single-table queries:
* SFW (selection + projection)
* Basic SQL operators: LIKE, DISTINCT, ORDER BY

* Multi-table queries:
* Foreign keys
* JOINS:
e Basic SQL syntax & semantics of

Midterm Review > SQL

Tables in SQL

A tuple or row is a single entry in the
table having the attributes specified

by the schema

Gizmo $19.99 GizmoWorks
Powergizmo $29.99 GizmoWorks
SingleTouch $149.99 Canon
MultiTouch $203.99

A relation or table is a
multiset of tuples
having the attributes
specified by the schema

A multiset is an
unordered list (or: a set
with multiple duplicate
instances allowed)

An attribute (or column) is a

typed data entry present in
each tuple in the relation

Midterm Review > SQL

Table Schemas

* The schema of a table is the table name, its attributes, and their
types:

* A key is an attribute whose values are unique; we underline a key

Midterm Review > SQL

SQL Query

e Basic form (there are many many more bells and whistles)

<attributes>
<one or more relations>
<conditions>

Call this a SFW query.

Midterm Review > SQL

IKE: Simple String ¥

. Products
Pattern |\/|atch|ng PName LIKE ‘%gizmo%’
DISTINCT: Eliminating DISTINCT Category
Duplicates Product

: PName, Price
ORDER BY: Sorting the Product

Category=‘gizmo’

RESU‘tS ORDER BY Price, PName

Midterm Review > SQL

Joins
Gizmo $19 Gadgets GWorks
Powergizmo | $29 Gadgets GWorks |- GWorks 25 Usa
- anon Japan
SingleTouch {f$149 \Photography | Canon |- | Cano 65 b
| Hitachi 15 apan
MultiTouch N$203 J Household | Hitachi
PName, Price
Product, Company
Manufacturer = CName
AND Country=‘Japan’
AND Price <= 200 SingleTouch $149.99

Midterm Review > SQL

An example of SQL semantics
R.A Output

a-se | T

A
1 A B|C
Cross TRE ﬁ Apply
3 Product 1302 Apply Projection
:> Selections /
B |C 1|31|5 Conditions C
2 13 31213 ;; 4
3 (4 3134 c
315 3/13|5

Midterm Review > Advanced SQL

High-Level: Advanced SQL

Set operators
e INTERSECT, UNION, EXCEPT, [ALL]
* Subtleties of multiset operations

Nested queries
* IN, ANY, ALL, EXISTS
* Correlated queries

Aggregation
* AVG, SUM, COUNT, MIN, MAX, ...

GROUP BY

NULLs & Outer Joins

Midterm Review > Advanced SQL

An Unintuitive Query

R.A
R, S, T
R.A=5.A OR R.A=T.A

But whatif S=¢?

ComputesRN (SUT) Go back to the semantics!

Midterm Review > Advanced SQL

INTERSECT

UNION

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FrROM R, T
WHERE R.A=T.A

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION

SELECT R.A
FrROM R, T
WHERE R.A=T.A

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT

SELECT R.A
FrROM R, T
WHERE R.A=T.A

_

(QZ
13

Midterm Review > Advanced SQL

Nested queries: Sub-gueries Returning

Relations
c.city
Company cC
c.name IN (

pr.maker

Purchase p, Product pr

p.product = pr.name
AND p.buyer = ‘Joe Blow')

“Cities where one
can find
companies that
manufacture
products bought
by Joe Blow”

Midterm Review > Advanced SQL

Nested Queries: Operator Semantics

ALL

name

Product

price > ALL(
price
Product
maker = ‘G')

Find products that are
more expensive than all
products produced by “G”

Find products that are
more expensive than any
one product produced by
{IGII

ANY EXISTS
name name
Product Product pl
price > ANY/(EXISTS (
price *
Product Product p2
maker = ‘G’) p2.maker = ‘G’

AND pl.price =
p2.price)

Find products where there
exists some product with
the same price produced
by “G”

Midterm Review > Advanced SQL

Nested Queries: Operator Semantics

ALL

ANY

name
Product
price > ALL(X)

name
Product
price > ANY(X)

Price must be > gll entries
in multiset X

Price must be > at least
one entry in multiset X

EXISTS
name
Product pl
EXISTS (X)

X must be non-empty

*Note that p1 can be
referenced in X (correlated

query!)

Midterm Review > Advanced SQL

Correlated Queries

Movie(title, year, director, length)

SELECT DISTINCT title

FROM (Movie AS m]

WHERE year <> ANY(
SELECT year
FROM [Movie|
WHERE title = [m.title)

Find movies whose
title appears more
than once.

Note the scoping
of the variables!

Note also: this can still be expressed as single SFW query...

17

Midterm Review > Advanced SQL

Simple Aggregations

bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10

bagel 10/25 1.50 20

Purchase

SUM(price * quantity)

product = ‘bagel’

Midterm Review > Advanced SQL

Grouping & Aggregations: GROUP BY

product, SUM(pricexquantity)
Purchase
date > ‘10/1/2005’
product
HAVING SUM(quantity) > 10

HAVING clauses contains conditions on aggregates

Whereas WHERE clauses condition on individual tuples...

Find total sales after
10/1/2005, only for
products that have
more than

10 total units sold

Midterm Review > Advanced SQL

GROUP BY: (1) Compute

Purchase

date > ‘10/1/2005'

=

Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana | 10/10 10
Craisins 11/1 2 5
Craisins 11/3 2.5 3

Midterm Review > Advanced SQL

GROUP BY: (2) Aggregate by the

GROUP BY product

Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana | 10/10 10
Craisins 11/1 2 5
Craisins 11/3 2.5 3

GROUP BY

=

10/21 | 20
Bagel
10/25 1.50 20
10/3 0.5 10
Banana
10/10 10
o 11/1 2 5
Craisins
11/3 2.5 3

Midterm Review > Advanced SQL

GROUP BY: (3) Filter by the

HAVING SUM(quantity) > 30

10/21 1 20
Bagel
10/25 1.50 20
10/3 0.5 10
Banana
10/10 10
o 11/1 2 5
Craisins
11/3 2.5 3

HAVING

=

clause
10/21 1 20
Bagel
10/25 1.50 20
10/3 0.5 10
Banana
10/10 1 10

Midterm Review > Advanced SQL

GROUP BY: (3) clause

product, SUM(pricexquantity) AS TotalSales

Bagel

10/21 1 20
10/25 1.50 20

Banana

Bagel

50

10/3 0.5 10

10/10 1 10

Banana

15

Midterm Review > Advanced SQL

General form of Grouping and Aggregation

S
Ry, R,
Cy
Ay -y A
G,
Evaluation steps:
1. Evaluate : apply condition C, on the
attributes in R,,...,R,
2. the attributes a,...,a,

3. Apply HAVING condition C, to each group (may have
aggregates)

4. Compute aggregates in , S, and return the result

Midterm Review > Advanced SQL

Null Values

* For numerical operations, NULL -> NULL:
e If x = NULL then 4*(3-x)/7 is still NULL

* For boolean operations, in SQL there are three values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

e |f x= NULL then x=“Joe” is UNKNOWN

Midterm Review > Advanced SQL

Null Values

« C1 AND C2 = min(C1, C2)

«Cl1 OR C2 = max(C1, C2)

* NOT C1 =1-C1
X Won’t return e.g.
Person (age=20
(age < 25) height=NULL

AND (height > 6 AND weight > 190) weight=200)!

Rule in SQL: include only tuples that yield TRUE / 1.0

Midterm Review > Advanced SQL

Null Values

Unexpected behavior:

” *
Person D> 23252”25
age < 25 OR age >= 25
OR age >= 25 OR age IS NULL

Some Persons are not included ! —
Now it includes all Persons!

Can test for NULL explicitly:
* x ISNULL
* x ISNOT NULL

Midterm Review > Advanced SQL

RECAP: Inner Joins

By default, joins in SQL are “inner joins”:

JOIN

Product.name, Purchase.store
Product
Purchase ON Product.name = Purchase.prodName

Product.name, Purchase.store
Product, Purchase
Product.name = Purchase.prodName

Both equivalent:
Both INNER JOINS!

Midterm Review > Advanced SQL

INNER JOIN:

Gizmo gadget
Camera Photo
OneClick Photo

Product.name, Purchase.store
Product

INNER JOIN Purchase
ON Product.name = Purchase.prodName

Note: another equivalent way to write an
INNER JOIN!

Gizmo Wiz

Camera Ritz

Camera Wiz
Gizmo Wiz
Camera Ritz
Camera Wiz

Midterm Review > Advanced SQL

LEFT OUTER JOIN:

Gizmo gadget
Camera Photo
OneClick Photo

Product

ON Product.name

Product.name, Purchase.store

LEFT OUTER JOIN Purchase

= Purchase.prodName

Gizmo Wiz
Camera Ritz
Camera Wiz
Gizmo Wiz
Camera Ritz
Camera Wiz
OneClick NULL

Midterm Review > Advanced SQL

General clarification: Sets vs. Multisets

* In theory, and in any more formal material, by definition all relations
are sets of tuples

* In SQL, relations (i.e. tables) are multisets, meaning you can have
duplicate tuples

* We need this because intermediate results in SQL don’t eliminate duplicates

* If you get confused: just state your assumptions & we’ll be forgiving!

High-Level: ER Diagrams

* ER diagrams!
* Entities (vs. Entity Sets)
* Relationships
* Multiplicity
* Constraints: Keys, single-value, referential, participation, etc...

Midterm Review > ER Diagrams

Entities vs. Entity Sets

Entities are not explicitly

Product

Example: . .
P represented in E/R diagrams!
Entity

=
| o]

Name: Xbox .

Category: Total Name: My Little Pony Doll - E ntlty /
Multimedia System Category: Toy <= Attribute
Price: $250 Price: S25
Product

33

Midterm Review > ER Diagrams

What is a Relationship?

e

Product

Company

*

A relationship between entity sets P and C is a
subset of all possible pairs of entities in P and C,
with tuples uniquely identified by P and C’s keys

34

Midterm Review > ER Diagrams

What is a Relationship?

GizmoWorks Gizmo Electronics $9.99 GizmoWorks Gizmo Electronics $9.99
GadgetCorp Gizmolite Electronics $7.50 GizmoWorks Gizmolite Electronics §7.50
Gadget Toys $5.50 GizmoWorks Gadget Toys $5.50
GadgetCorp Gizmo Electronics $9.99
GadgetCorp Gizmolite Electronics §7.50
GadgetCorp Gadget Toys $5.50
Crome) aregry
Cprice)
%ProductCompany
A relationship between entity sets P and Cis a GizmoWorks Gizmo
subset of all possible pairs of entities in P and C, GizmoWorks Gizmolite
with tuples uniquely identified by P and C’s keys GadgetCorp Gadget

35

Midterm Review > ER Diagrams

Multiplicity of E/R Relationships

One-to-one: e‘ﬂ _,"7

Many-to-one:

[/
LD

One-to-many:

¢

Many-to-many:

XY
cERss

Indicated using
arrows

X ->Y means
there exists a
function mapping
from Xto Y (recall
the definition of a

function)

36

Midterm Review > ER Diagrams

Constraints in E/R Diagrams

* Finding constraints is part of the E/R modeling process. Commonly used
constraints are:

* Keys: Implicit constraints on uniqueness of entities
 Ex: An SSN uniquely identifies a person

e Single-value constraints:
 Ex: aperson can have only one father

e Referential integrity constraints: Referenced entities must exist Recall
* Ex:if you work for a company, it must exist in the database FOREIGN
KEYs!

e Other constraints:
* Ex: peoples’ ages are between 0 and 150 37

Midterm Review > ER Diagrams

RECALL: Mathematical def. of Relationship

* A mathematical definition:

B=

* Let A, B be sets A= L / |
« A={1,2,3} B={a,b,cd} ’) | ’ b

* Ax B (the cross-product) is the set of all pairs (a,b) 3 / \ ¢
* AxB={(1,0),(1,b), (1,c), (1,d), (2,a), (2,b), (2,¢), (2,d), d

(31 a) / (31 b) /7 (3/ C) 7’ (31 d) }

 We define a relationship to be a subset of A x B
* R={(1,a), (2,c), (2,d), (3,b)}

38

Midterm Review > ER Diagrams

RECALL: Mathematical def. of Relationship

* A mathematical definition:
* Let A, B be sets
* A X B (the cross-product) is the set of all pairs
* Arelationship is a subset of A x B

* Makes is relationship- it is a subset of
Product x Company:

Company
Product

Midterm Review > ER Diagrams

RECALL: Mathematical def. of Relationship

* There can only be one relationship for every This follows from our

unique combination of entities mathematical
definition of a
relationship- it’s a SET!

* This also means that the relationship is uniquely
determined by the keys of its entities

KeyMakes. = KeyProduct U KeyCompany

 Example: the key for Makes (to right) is

{Product.name, Company.name} Coame) Greeor) G
I < Viakes™

Product Company

Why does this make sense?
40

Midterm Review > DB Design

High-Level: DB Design
* Redundancy & data anomalies

* Functional dependencies
* For database schema design
* Given set of FDs, find others implied- using Armstrong’s rules

e Closures

e Basic algorithm
* To find all FDs

* Keys & Superkeys

Midterm Review > DB Design

Constraints Prevent (some)
Anomalies in the Data

A poorly designed database causes anomalies:

Similarly, we can’t f .
reserve a room Student | Course | Room elverv course Is in
without students Mary CS145 | BO1 onty ‘?“e room,
— an insert contains redundant
Joe CS145 |BO1 information!
anomaly |
Sam CS145
| | . If we update the
| CS229 [C12 room number for
one tuple, we get
If everyone drops the class, we lose what inconsistent data =

room the class is in! = a delete anomaly an update anomaly

Midterm Review > DB Design

Constraints Prevent (some)
Anomalies in the Data

Student | Course
Mary CS145
Joe CS145
Sam CS145

Course | Room
CS145 |BO1
CS229 |(C12

Is this form better?

 Redundancy?

* Update anomaly?
* Delete anomaly?
* [nsert anomaly?

Midterm Review > DB Design

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A.,} and
B={B,...B,}InR,

A1 Am Bl Bn
| The functional dependency A= B on
b R holds if for any t,t; in R:
b if t[A;] = t[A,] AND t[A,]=t;[A,] AND
} \ } . AND t[A] = t[A,]
If t1,t2 agree here.. ..they also agree here! then ti[Bl] = tj[Bl] AND ti[Bz]:tj[Bz]

AND ... AND t[B,] = t[B]

Midterm Review > DB Design

FDs for Relational Schema Design

* High-level idea: why do we care about FDs?
1. Start with some relational schema
2. Find out its functional dependencies (FDs) This part can be tricky!

3. Use these to design a better schema
1. One which minimizes possibility of anomalies

Midterm Review > DB Design

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, F = {f,,...f }, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s
Rules.

1. Split/Combine,

2. Reduction, and

3. Transitivity... ideas by picture

Midterm Review > DB Design

Closure of a set of Attributes

Given a set of attributes A4, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A,, ..., A.} 2> B

Example: F= |{name} > {color}
{category} = {department}
{color, category} = {pricey}

Example {name}* = {name, color}

Closures: iname, category}* =

{name, category, color, dept, price}
{color}* = {color}

47

Midterm Review > DB Design

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.

Repeat until X doesn’t change; do:

if {B,,...,B.,} =2 CisinFand{B,,
., B.JEX:
then add C to X.
Return X as X*

{name} > {color}
{category} => {dept}

icolor, category} =
{price}

{name, category}* =
{name, category, color, dept,
price}

48

Midterm Review > DB Design

Keys and Superkeys

A superkey is a set of attributes A,, ..., A, s.t. . all attributes are
for any other attribute B in R, functionally determined
we have {A,, .., A} 2> B by a superkey

Meaning that no subset of

A key is a minimal superkey 2 ey e aloo @ supEr ey

Midterm Review > DB Design

CALCULATING Keys and Superkeys

* Superkey?
* Compute the closure of A

e See if it = the full set of
attributes

e Key?
e Confirm that A is superkey

* Make sure that no subset of A
is a superkey

* Only need to check one ‘level’
down!

Also see Lecture-5.ipynb!!!

Let A be a set of attributes, R set
of all attributes, F set of FDs:

IsSuperkey(A, R, F):
A* = ComputeClosure(A, F)
Return (A*==R)?

IsKey(A, R, F):
If not /sSuperkey(A, R, F):
return False
For B in SubsetsOf(A, size=len(A)-1):
if IsSuperkey(B, R, F):
return False
return True

Midterm Review > Decompositions

High-Level: Decompositions
* Conceptual design

* Boyce-Codd Normal Form (BCNF)
* Definition
e Algorithm

* Decompositions

* Lossless vs. Lossy
* A problem with BCNF

Midterm Review > Decompositions

Back to Conceptual Design

Now that we know how to find FDs, it’s a straight-forward process:
1. Search for “bad” FDs

2. If there are any, then keep decomposing the table into sub-tables
until no more bad FDs

3. When done, the database schema is normalized

Recall: there are several normal forms...

Midterm Review > Decompositions

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is in BCNF if:

if {Ay, ..., A,} =2 Bis a non-trivial FD in R

then {A,, ..., A} is a superkey for R

Equivalently: V sets of attributes X, either (X* = X) or (X* = all attributes)

In other words: there are no “bad” FDs

Midterm Review > Decompositions

Example

{SSN} -> {Name,City}

Fred 123-45-6789 | 206-555-1234 | Seattle

Fred 123-45-6789 |206-555-6543 | Seattle

Joe 987-65-4321 |908-555-2121 | Westtield

Joe 987-65-4321 | 908-555-1234 | Westtield
— Not in BCNF

This FD is bad
because it is not a
superkey

What is the key?
{SSN, PhoneNumber}

Midterm Review > Decompositions

Example

Fred |123-45-6789

Seattle

Joe 087-65-4321

Madison

123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Now in BCNF!

{SSN} => {Name,City}

This FD is now
good because it is
the key

Let’s check anomalies:
e Redundancy ?
e Update ?
e Delete ?

Midterm Review > Decompositions

BCNF Decomposition Algorithm

BCNFDecomp(R):

56

Midterm Review > Decompositions

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X" #

lall attributes]

Find a set of attributes X
which has non-trivial
“bad” FDs, i.e. is not a
superkey, using closures

57

Midterm Review > Decompositions

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X" #

lall attributes] _
If no “bad” FDs found, in

|
if (not found) then Return R BLIFL

58

Midterm Review > Decompositions

BCNF Decomposition Algorithm

BCNFDecomp(R):

Find a set of attributes X s.t.: X* # X and X" #
lall attributes]

if (not found) then Return R

letY =X*-X, Z=(X*C

Let Y be the attributes that
X functionally determines
(+ that are not in X)

And let Z be the other
attributes that it doesn’t

59

Midterm Review > Decompositions

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X" #
lall attributes]

if (not found) then Return R

letY=X"-X Z=(X)C
decompose R into R((X U Y) and R,(X U Z)

Split into one relation (table)
with X plus the attributes
that X determines (Y)...

60

Midterm Review > Decompositions

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X" #
lall attributes]

if (not found) then Return R

letY=X"-X Z=(X)C
decompose R into R((X U Y) and R,(X U Z)

And one relation with X plus
the attributes it does not
determine (2)

61

Midterm Review > Decompositions

BCNF Decomposition Algorithm

BCNFDecomp(R):
Find a set of attributes X s.t.: X* # X and X" #
lall attributes]

if (not found) then Return R

letY=X"-X, Z=(X*)C
decompose R into R;(X U Y) and R, (X U Z)

Proceed recursively until no
more “bad” FDs!

Return BCNFDecomp(R,), BCNFDecomp(R,)

62

Midterm Review > Decompositions

Example

BCNFDecomp(R):
Find a set of attributes X s.t.: X" # X and X" #
[all attributes]

if (not found) then Return R

letY=X"-X, Z= (X
decompose R into R{(X U Y) and R,(X U Z)

Return BCNFDecomp(R;), BCNFDecomp(R,)

{A} > {B,C}
{C} > {b}

Midterm Review > Decompositions

Example

R(A,B,C,D,E)
{A} = {A,B,C,D} # {A,B,C,D,E}

Rl(A) B;

C,D)
{C}*={C,D}#{A,B,C,D}

R.(A,B,C)

R(A,B,C,D,E)

{A} > {B,C}
{C} > {Db}

64

Midterm Review > Decompositions

Lossless Decompositions

R(Asy«esyAnsBiyees,BusCiyurs,Cp)

N

Ri(Ary«vesAyyByyen,By) | [Ra(Ay, vy AyCoyenn,yCp)

If {A, ..., A}=2{B .. B.} Note: don’t need
Then the decomposition is lossless. {A, ..., A}=2{C, .., Col
{A,, ..., A }is a key for one of R1 or R2

BCNF decomposition is always lossless. Why?

65

Midterm Review > Decompositions

A Problem with BCNF

Unit | Company

Product

/

N\

{Unit} = {Company}
{Company, Product} = {Unit}

Unit Company

Unit

Product

{Unit} = {Company}

We do a BCNF decomposition

on a “bad” FD:
{Unit}* = {Unit, Company}

We lose the FD {Company, Product} > {Unit}!!

66

Midterm Review > Storage and Buffers

High-Level: Storage and Buffers

* Our model of the computer: Disk vs. RAM
 Buffer Pool

* Replacement Policies

Midterm Review > Storage and Buffers

High-level: Disk vs. Main Memory

Arm asse

Disk: Random Access Memory (RAM) or Main Memory:

. * Fast: Random access, byte addressable
e Slow: Sequentlal aCCess * ~10x faster for sequential access

* (although fast sequential reads) + ~100,000x faster for random access!

* Volatile: Data can be lost if e.g. crash occurs, power goes out,

* Durable: We will assume that once on disk, data is etcl

safel

* Expensive: For 5100, get 16GB of RAM vs. 2TB of disk!
* Cheap 68

Midterm Review > Storage and Buffers

The Buffer (Pool)

* A buffer is a region of physical memory
used to store temporary data

* In this lecture: a region in main
memory used to store intermediate
data between disk and processes

* Key idea: Reading / writing to disk is slow-
need to cache data!

Main Memory

<;:> Buffer (Pool)

Midterm Review > Storage and Buffers

Buffer Manager

* Memory divided into buffer frames: slots for holding disk pages
* Bookkeeping per frame:
* Pin count : # users of the page in the frame
. Indicate that the page is in use
* Unpinning : Release the page, and also indicate if the
page is dirtied
* Dirty bit : Indicates if changes must be propagated to disk

Midterm Review > Storage and Buffers

Buffer Manager

* When a Page is requested:
* In buffer pool -> return a handle to the frame. Done!
* Increment the pin count
* Not in the buffer pool:
- Choose a frame for
(Only replace pages with pin count == 0)
- |If frame is dirty, write it to disk
- Read requested page into chosen frame

- Pin the page and return its address

Midterm Review > Storage and Buffers

Buffer Manager

* When a Page is requested:
* In buffer pool -> return a handle to the frame. Done!
* Increment the pin count
* Not in the buffer pool:
- Choose a frame for
(Only replace pages with pin count == 0)
- |If frame is dirty, write it to disk
- Read requested page into chosen frame

- Pin the page and return its address

Midterm Review > Storage and Buffers

Buffer replacement policy

* How do we choose a frame for replacement?
- LRU (Least Recently Used)
. Clock
- MRU (Most Recently Used)
« FIFO, random, ...

* The replacement policy has big impact on # of 1/O’s
(depends on the access pattern)

Midterm Review > Storage and Buffers

LRU

- uses a queue of pointers to frames that have pin count =0
- a page request uses frames only from the head of the queue

- when a the pin count of a frame goes to O, it is added to the end of
the queue

Midterm Review > Storage and Buffers

MRU

- uses a stack of pointers to frames that have pin count =0
- a page request uses frames only from the top of the stack

- when a the pin count of a frame goes to O, it is added to the top of
the stack

