
CS	564	Midterm	Review
The	Best	Of	Collection	(Master	Tracks),	Vol.	1

Midterm	Review

Announcements

• Midterm	next	Wednesday

• In	class:	roughly	70	minutes
• Come	in	10	minutes	earlier!

Midterm	Review

Midterm

• Format:	
• Regular	questions.	Nomultiple-choice.
• This	implies	fewer	questions	J
• A	couple	bonus	questions	
• Closed	book	and	no	aids!	We	will	provide	a	cheat	sheet

• Material:	Everything	including	buffer	management
• External	sort	is	not	fair	game!

• High-lights:	
• Simple	SQL	and	Schema	Definitions
• Join	Semantics
• Function	Dependencies	and	Closures
• Decompositions	(BCNF	and	Properties)
• Buffer	Pool	and	Replacement	Policies

Midterm	Review

High-Level:	SQL

• Basic	terminology:	
• relation	/	table	(+	“instance	of”),	row	/	tuple,	column	/	attribute,	multiset

• Table	schemas	in	SQL

• Single-table	queries:
• SFW	(selection	+	projection)
• Basic	SQL	operators:	LIKE,	DISTINCT,	ORDER	BY

• Multi-table	queries:
• Foreign	keys
• JOINS:

• Basic	SQL	syntax	&	semantics	of

Midterm	Review		>		SQL

5

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A	relation or	table is	a	
multiset of	tuples	
having	the	attributes	
specified	by	the	schema

A	multiset is	an	
unordered	list	(or:	a	set	
with	multiple	duplicate	
instances	allowed)

An	attribute (or	column)	is	a	
typed	data	entry	present	in	
each	tuple	in	the	relation

A	tuple or	row is	a	single	entry	in	the	
table	having	the	attributes	specified	
by	the	schema

Midterm	Review		>		SQL

6

Table	Schemas

• The	schema of	a	table	is	the	table	name,	its	attributes,	and	their	
types:

• A	key is	an	attribute	whose	values	are	unique;	we	underline	a	key

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Midterm	Review		>		SQL

7

SQL	Query

• Basic	form	(there	are	many	many	more	bells	and	whistles)

Call	this	a	SFW query.

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

Midterm	Review		>		SQL

8

LIKE:	Simple	String	
Pattern	Matching

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

DISTINCT:	Eliminating	
Duplicates

SELECT DISTINCT Category
FROM Product

ORDER	BY:	Sorting	the	
Results

SELECT PName, Price
FROM Product
WHERE Category=‘gizmo’
ORDER BY Price, PName

Midterm	Review		>		SQL

9

Joins

PName Price Category Manuf
Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country
GWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price
SingleTouch $149.99

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

Midterm	Review		>		SQL

An	example	of	SQL	semantics

10

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross	
Product

A B C
3 3 4
3 3 5

A
3
3

Apply	
ProjectionApply	

Selections	/	
Conditions

Output

Midterm	Review		>		SQL

High-Level:	Advanced	SQL

• Set	operators
• INTERSECT,	UNION,	EXCEPT,	[ALL]
• Subtleties	of	multiset operations

• Nested	queries
• IN,	ANY,	ALL,	EXISTS
• Correlated	queries

• Aggregation
• AVG,	SUM,	COUNT,	MIN,	MAX,	…

• GROUP	BY

• NULLs	&	Outer	Joins

Midterm	Review		>		Advanced	SQL

12

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

Computes	R	Ç (S	È T)

But	what	if	S	=	f?

S T

R

Go	back	to	the	semantics!

Midterm	Review		>		Advanced	SQL

INTERSECT

13

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2 Q1 Q2

UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Midterm	Review		>		Advanced	SQL

14

Nested	queries:	Sub-queries	Returning	
Relations

SELECT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name
AND p.buyer = ‘Joe Blow‘)

“Cities	where	one	
can	find	
companies	that	
manufacture	
products	bought	
by	Joe	Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

Midterm	Review		>		Advanced	SQL

Nested	Queries:	Operator	Semantics

SELECT name
FROM Product
WHERE price > ALL(
SELECT price
FROM Product
WHERE maker = ‘G’)

Product(name, price, category, maker)

Find	products	that	are	
more	expensive	than	all	
products produced	by	“G”

ALL
SELECT name
FROM Product
WHERE price > ANY(
SELECT price
FROM Product
WHERE maker = ‘G’)

ANY
SELECT name
FROM Product p1
WHERE EXISTS (
SELECT *
FROM Product p2
WHERE p2.maker = ‘G’
AND p1.price =

p2.price)

EXISTS

Find	products	that	are	
more	expensive	than	any	
one	product produced	by	
“G”

Find	products	where	there	
exists	some product	with	
the	same	price	produced	
by	“G”

Midterm	Review		>		Advanced	SQL

Nested	Queries:	Operator	Semantics

SELECT name
FROM Product
WHERE price > ALL(X)

Product(name, price, category, maker)

Price	must	be	>	all entries	
in	multiset X

ALL
SELECT name
FROM Product
WHERE price > ANY(X)

ANY
SELECT name
FROM Product p1
WHERE EXISTS (X)

EXISTS

Price	must	be	>	at	least	
one entry	in	multiset X

X	must	be	non-empty

*Note	that	p1	can	be	
referenced	in	X	(correlated	
query!)

Midterm	Review		>		Advanced	SQL

17

Correlated	Queries

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title = m.title)

Movie(title, year, director, length)

Note	also:	this	can	still	be	expressed	as	single	SFW	query…

Find	movies	whose	
title	appears	more	
than	once.

Note	the	scoping	
of	the	variables!

Midterm	Review		>		Advanced	SQL

18

Simple	Aggregations
Purchase
Product Date Price Quantity
bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10
bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50		(=	1*20	+	1.50*20)

Midterm	Review		>		Advanced	SQL

19

Grouping	&	Aggregations:	GROUP	BY

Find	total	sales	after	
10/1/2005,	only	for	
products	that	have	
more	than
10	total	units	sold

HAVING	clauses	contains	conditions	on	aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 10

Whereas	WHERE	clauses	condition	on	individual	tuples…

Midterm	Review		>		Advanced	SQL

20

GROUP	BY:	(1)	Compute	FROM-WHERE

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10
Craisins 11/1 2 5
Craisins 11/3 2.5 3

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 10

FROM
WHERE

Midterm	Review		>		Advanced	SQL

21

GROUP	BY:	(2)	Aggregate	by	the	GROUP	BY
SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 10

GROUP BY
Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10
Craisins 11/1 2 5
Craisins 11/3 2.5 3

Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

Craisins
11/1 2 5
11/3 2.5 3

Midterm	Review		>		Advanced	SQL

22

GROUP	BY:	(3)	Filter	by	the	HAVING clause

HAVING

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 30

Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

Craisins
11/1 2 5
11/3 2.5 3

Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

Midterm	Review		>		Advanced	SQL

23

GROUP	BY:	(3)	SELECT clause

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

Midterm	Review		>		Advanced	SQL

24

General	form	of	Grouping	and	Aggregation
SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation	steps:
1. Evaluate	FROM-WHERE:	apply	condition	C1 on	the		

attributes	in	R1,…,Rn
2. GROUP	BY	the	attributes	a1,…,ak
3. Apply	HAVING	condition	C2 to	each	group	(may	have	

aggregates)
4. Compute	aggregates	in	SELECT,	S,	and	return	the	result

Midterm	Review		>		Advanced	SQL

25

Null	Values

• For	numerical	operations,	NULL	->	NULL:
• If	x	=	NULL	then	4*(3-x)/7	is	still	NULL

• For	boolean operations,	in	SQL	there	are	three	values:

FALSE													=	 0
UNKNOWN				=	 0.5
TRUE															=	 1

• If	x=	NULL	then	x=“Joe”	is	UNKNOWN

Midterm	Review		>		Advanced	SQL

26

Null	Values

• C1	AND	C2			=		min(C1,	C2)
• C1		OR		 C2			=		max(C1,	C2)
• NOT	C1									=		1	– C1

SELECT *
FROM Person
WHERE (age < 25)

AND (height > 6 AND weight > 190)

Won’t	return	e.g.
(age=20
height=NULL
weight=200)!

Rule	in	SQL:	include	only	tuples	that	yield	TRUE	/	1.0

Midterm	Review		>		Advanced	SQL

27

Null	Values

Unexpected	behavior:

SELECT *
FROM Person
WHERE age < 25

OR age >= 25

Some	Persons	are	not	included	!

Midterm	Review		>		Advanced	SQL

SELECT *
FROM Person
WHERE age < 25

OR age >= 25
OR age IS NULL

Now	it	includes	all	Persons!

Can	test	for	NULL	explicitly:
• x	IS	NULL
• x	IS	NOT	NULL

28

RECAP:	Inner	Joins
By default,	joins	in	SQL	are	“inner	joins”:

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both	equivalent:
Both	INNER	JOINS!

Midterm	Review		>		Advanced	SQL

29

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER	JOIN:

SELECT Product.name, Purchase.store
FROM Product

INNER JOIN Purchase
ON Product.name = Purchase.prodName

Note:	another	equivalent	way	to	write	an	
INNER	JOIN!

Midterm	Review		>		Advanced	SQL

30

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT	OUTER	JOIN:

SELECT Product.name, Purchase.store
FROM Product

LEFT OUTER JOIN Purchase
ON Product.name = Purchase.prodName

Midterm	Review		>		Advanced	SQL

General	clarification:	Sets	vs.	Multisets

• In	theory,	and	in	any	more	formal	material,	by	definition all	relations	
are	sets of	tuples

• In	SQL,	relations	(i.e.	tables)	are	multisets,	meaning	you	can	have	
duplicate	tuples

• We	need	this	because	intermediate	results	in	SQL	don’t	eliminate	duplicates

• If	you	get	confused:	just	state	your	assumptions	&	we’ll	be	forgiving!

Midterm	Review		>		Advanced	SQL

High-Level:	ER	Diagrams

• ER	diagrams!
• Entities	(vs.	Entity	Sets)
• Relationships
• Multiplicity
• Constraints:	Keys,	single-value,	referential,	participation,	etc…	

Midterm	Review		>		ER	Diagrams

Entities	vs.	Entity	Sets

Example:

33

Product

name category

price

Entity	Set

Product

Name:	Xbox
Category:	Total	

Multimedia	System
Price:	$250

Name:	My	Little	Pony	Doll
Category:	Toy
Price:	$25

Entity

Entity	
Attribute

Entities	are	not explicitly	
represented	in	E/R	diagrams!

Midterm	Review		>		ER	Diagrams

What	is	a	Relationship?

34

MakesProduct

name category

price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys

Midterm	Review		>		ER	Diagrams

What	is	a	Relationship?

35

name category price

Gizmo Electronics $9.99

GizmoLite Electronics $7.50

Gadget Toys $5.50

name

GizmoWorks

GadgetCorp

ProductCompany
C.name P.name P.category P.price

GizmoWorks Gizmo Electronics $9.99

GizmoWorks GizmoLite Electronics $7.50

GizmoWorks Gadget Toys $5.50

GadgetCorp Gizmo Electronics $9.99

GadgetCorp GizmoLite Electronics $7.50

GadgetCorp Gadget Toys $5.50

Company	C		×		Product	P

C.name P.name

GizmoWorks Gizmo

GizmoWorks GizmoLite

GadgetCorp Gadget

Makes
MakesProduct

name category
price

Company

name

A	relationship between	entity	sets	P	and	C	is	a	
subset	of	all	possible	pairs	of	entities	in	P	and	C,	
with	tuples	uniquely	identified	by	P	and	C’s	keys

Midterm	Review		>		ER	Diagrams

36

Multiplicity	of	E/R	Relationships

Indicated	using	
arrows

1
2
3

a
b
c
d

One-to-one:

1
2
3

a
b
c
d

Many-to-one:

1
2
3

a
b
c
d

One-to-many:

1
2
3

a
b
c
d

Many-to-many:

X	->	Y	means	
there	exists	a	
function	mapping	
from	X	to	Y	(recall	
the	definition	of	a	
function)

Midterm	Review		>		ER	Diagrams

37

Constraints	in	E/R	Diagrams
• Finding	constraints	is	part	of	the	E/R	modeling	process.	Commonly	used	

constraints	are:

• Keys: Implicit	constraints	on	uniqueness	of	entities
• Ex:	An	SSN	uniquely	identifies	a	person

• Single-value	constraints:
• Ex:	a	person	can	have	only	one	father

• Referential	integrity	constraints: Referenced	entities	must	exist
• Ex:	if	you	work	for	a	company,	it	must	exist	in	the	database

• Other	constraints:
• Ex:	peoples’	ages	are	between	0	and	150

Recall	
FOREIGN	
KEYs!

Midterm	Review		>		ER	Diagrams

38

RECALL:	Mathematical	def.	of	Relationship

• A	mathematical	definition:

• Let	A,	B	be	sets
• A={1,2,3},			B={a,b,c,d},

• A	x	B	(the	cross-product)	is	the	set	of	all	pairs	(a,b)
• A	´ B	=	{(1,a),	(1,b),	(1,c),	(1,d),	(2,a),	(2,b),	(2,c),	(2,d),	
(3,a),	(3,b),	(3,c),	(3,d)}

• We	define	a	relationship to	be	a	subset	of	A	x	B
• R	=	{(1,a),	(2,c),	(2,d),	(3,b)}

1

2

3

a

b

c

d

A= B=

Midterm	Review		>		ER	Diagrams

39

• A	mathematical	definition:
• Let	A,	B	be	sets
• A	x	B	(the	cross-product)	is	the	set	of	all	pairs
• A	relationship is	a	subset	of	A	x	B

• Makes is	relationship- it	is	a	subset of	
Product	´ Company:

1

2

3

a

b

c

d

A= B=

makes Company
Product

Midterm	Review		>		ER	Diagrams

RECALL:	Mathematical	def.	of	Relationship

• There	can	only	be	one	relationship	for	every	
unique	combination	of	entities

• This	also	means	that	the	relationship	is	uniquely	
determined	by	the	keys	of	its	entities

• Example:	the	key	for	Makes	(to	right)	is	
{Product.name,	Company.name}

40
Why	does	this	make	sense?

This	follows	from	our	
mathematical	
definition	of	a	
relationship- it’s	a	SET!

MakesProduct

name category
price

Company

namesince

KeyMakes =	KeyProduct ∪ KeyCompany

Midterm	Review		>		ER	Diagrams

RECALL:	Mathematical	def.	of	Relationship

High-Level:	DB	Design

• Redundancy	&	data	anomalies

• Functional	dependencies
• For	database	schema	design
• Given	set	of	FDs,	find	others	implied- using	Armstrong’s	rules

• Closures
• Basic	algorithm
• To	find	all	FDs

• Keys	&	Superkeys

Midterm	Review		>		DB	Design

Constraints	Prevent	(some)	
Anomalies	in	the	Data

Student Course Room
Mary CS145 B01
Joe CS145 B01
Sam CS145 B01
..

If	every	course	is	in	
only	one	room,	
contains	redundant
information!

A	poorly	designed	database	causes	anomalies:

If	we	update	the	
room	number	for	
one	tuple,	we	get	
inconsistent	data	=	
an	update anomaly

If	everyone	drops	the	class,	we	lose	what	
room	the	class	is	in!	=	a	delete anomaly

Similarly,	we	can’t	
reserve	a	room	
without	students	
=	an	insert	
anomaly

… CS229 C12

Midterm	Review		>		DB	Design

Constraints	Prevent	(some)	
Anomalies	in	the	Data

Student Course
Mary CS145
Joe CS145
Sam CS145
.. ..

Course Room
CS145 B01
CS229 C12

Is	this	form	better?

• Redundancy?	
• Update	anomaly?	
• Delete	anomaly?
• Insert	anomaly?

Midterm	Review		>		DB	Design

A	Picture	Of	FDs
Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

if ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	
…	AND	ti[Am]	=	tj[Am]

then ti[B1]	=	tj[B1]	AND	ti[B2]=tj[B2]	
AND	…	AND	ti[Bn]	=	tj[Bn]

A1 … Am B1 … Bn

ti

tj

If	t1,t2	agree	here.. …they	also	agree	here!

Midterm	Review		>		DB	Design

FDs	for	Relational	Schema	Design

• High-level	idea:	why	do	we	care	about	FDs?

1. Start	with	some	relational	schema

2. Find	out	its	functional	dependencies	(FDs)

3. Use	these	to	design	a	better	schema
1. One	which	minimizes	possibility	of	anomalies

This	part	can	be	tricky!

Midterm	Review		>		DB	Design

Equivalent	to	asking:	Given	a	set	of	FDs,	F	=	{f1,…fn},	does	an	FD	g	hold?

Inference	problem:	How	do	we	decide?

Answer:	Three	simple	rules	called	Armstrong’s	
Rules.

1. Split/Combine,
2. Reduction,	and
3. Transitivity…	ideas	by	picture

Finding	Functional	Dependencies

Midterm	Review		>		DB	Design

47

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}

Midterm	Review		>		DB	Design

48

Closure	Algorithm
Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bn}	à C	is	in	F	and {B1,	

…,	Bn}	⊆ X:
then add	C	to	X.

Return X	as	X+

F	=

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color, dept,
price}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}{name} à {color}

{category} à {dept}

{color, category} à
{price}

Midterm	Review		>		DB	Design

Keys	and	Superkeys

A	superkey is	a	set	of	attributes	A1,	…,	An s.t.
for	any	other attribute	B in	R,
we	have	 {A1,	…,	An}	à B

A	key is	a	minimal superkey

I.e.	all	attributes	are	
functionally	determined
by	a	superkey

Meaning	that	no	subset	of	
a	key	is	also	a	superkey

Midterm	Review		>		DB	Design

CALCULATING	Keys	and	Superkeys

Also	see	Lecture-5.ipynb!!!

Midterm	Review		>		DB	Design

• Superkey?
• Compute	the	closure	of	A
• See	if	it	=	the	full	set	of	
attributes

• Key?
• Confirm	that	A	is	superkey
• Make	sure	that	no	subset	of	A	
is	a	superkey

• Only	need	to	check	one	‘level’	
down!

IsSuperkey(A,	R,	F):
A+	=	ComputeClosure(A,	F)
Return (A+==R)?

IsKey(A,	R,	F):
If not IsSuperkey(A,	R,	F):

return False
For B	in	SubsetsOf(A,	size=len(A)-1):

if	IsSuperkey(B,	R,	F):
return False

return True

Let	A	be	a	set	of	attributes,	R	set	
of	all	attributes,	F	set	of	FDs:

High-Level:	Decompositions

• Conceptual	design

• Boyce-Codd Normal	Form	(BCNF)
• Definition
• Algorithm

• Decompositions
• Lossless	vs.	Lossy
• A	problem	with	BCNF

Midterm	Review		>		Decompositions

52

Back	to	Conceptual	Design

Now	that	we	know	how	to	find	FDs,	it’s	a	straight-forward	process:

1. Search	for	“bad”	FDs

2. If	there	are	any,	then	keep	decomposing	the	table	into	sub-tables
until	no	more	bad	FDs

3. When	done,	the	database	schema	is	normalized

Recall:	there	are	several	normal	forms…

Midterm	Review		>		Decompositions

53

Boyce-Codd Normal	Form

BCNF	is	a	simple	condition	for	removing	anomalies	from	relations:

In	other	words:	there	are	no	“bad”	FDs

A	relation	R	is	in	BCNF if:

if	{A1,	...,	An}	à B is	a	non-trivial FD	in	R

then	{A1,	...,	An}		is	a	superkey for	R

Equivalently:	 ∀ sets	of	attributes	X,	either	(X+ =	X)	or	(X+ =	all	attributes)

Midterm	Review		>		Decompositions

54

Example

What	is	the	key?
{SSN,	PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in	BCNF

This	FD	is	bad	
because	it	is	not a	
superkey

Midterm	Review		>		Decompositions

55

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Let’s	check	anomalies:
• Redundancy	?
• Update	?
• Delete	?

{SSN} à {Name,City}

Now	in	BCNF!

This	FD	is	now	
good	because	it	is	
the	key

Midterm	Review		>		Decompositions

56

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	X	s.t.:	X+ ≠	X	and	X+	≠	[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Midterm	Review		>		Decompositions

57

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Find	a	set	of	attributes	X	
which	has	non-trivial	
“bad”	FDs,	i.e.	is	not	a	
superkey,	using	closures

Midterm	Review		>		Decompositions

58

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

If	no	“bad”	FDs	found,	in	
BCNF!

Midterm	Review		>		Decompositions

59

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Let	Y	be	the	attributes	that	
X	functionally	determines	
(+	that	are	not	in	X)

And	let	Z	be	the	other	
attributes	that	it	doesn’t

Midterm	Review		>		Decompositions

60

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

X ZY

R1 R2

Split	into	one	relation	(table)	
with	X	plus	the	attributes	
that	X	determines	(Y)…

Midterm	Review		>		Decompositions

61

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

X ZY

R1 R2

And	one	relation	with	X	plus	
the	attributes	it	does	not	
determine	(Z)

Midterm	Review		>		Decompositions

62

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Proceed	recursively	until	no	
more	“bad”	FDs!

Midterm	Review		>		Decompositions

R(A,B,C,D,E)BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Example

{A} à {B,C}
{C} à {D}

Midterm	Review		>		Decompositions

64

Example

R(A,B,C,D,E)
{A}+ =	{A,B,C,D}	≠	{A,B,C,D,E}

R1(A,B,C,D)
{C}+ =	{C,D}	≠	{A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Midterm	Review		>		Decompositions

Lossless	Decompositions

65

BCNF	decomposition	is	always	lossless.		Why?

Note:	don’t	need	
{A1,	...,	An}	à {C1,	...,	Cp}

If	 {A1,	...,	An}	à {B1,	...,	Bm}
Then	the	decomposition	is	lossless.
{A1,	...,	An} is	a	key	for	one	of	R1	or	R2

R(A1,...,An,B1,...,Bm,C1,...,Cp)

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Midterm	Review		>		Decompositions

66

A	Problem	with	BCNF
{Unit} à {Company}
{Company,Product} à {Unit}

We	do	a	BCNF	decomposition	
on	a	“bad”	FD:
{Unit}+ = {Unit, Company}

We	lose	the	FD	{Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}

Midterm	Review		>		Decompositions

High-Level:	Storage	and	Buffers

• Our	model	of	the	computer:	Disk	vs.	RAM

• Buffer	Pool

• Replacement	Policies

Midterm	Review		>		Storage	and	Buffers

High-level:	Disk	vs.	Main	Memory

Disk:

• Slow: Sequential	access
• (although	fast	sequential	reads)

• Durable:	We	will	assume	that	once	on	disk,	data	is	
safe!

• Cheap 68

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random	Access	Memory	(RAM)	or	Main	Memory:

• Fast: Random	access,	byte	addressable
• ~10x	faster	for	sequential	access
• ~100,000x	faster	for	random	access!

• Volatile: Data	can	be	lost	if	e.g.	crash	occurs,	power	goes	out,	
etc!

• Expensive: For	$100,	get	16GB	of	RAM	vs.	2TB	of	disk!

Midterm	Review		>		Storage	and	Buffers

The	Buffer	(Pool)

Disk

Main	Memory

Buffer	(Pool)
• A	buffer is	a	region	of	physical	memory	
used	to	store	temporary	data

• In	this	lecture:	a	region	in		main	
memory	used	to	store	intermediate	
data	between	disk	and	processes

• Key	idea:	Reading	/	writing	to	disk	is	slow-
need	to	cache	data!

Midterm	Review		>		Storage	and	Buffers

70

Buffer	Manager

• Memory	divided	into	buffer	frames:	slots	for	holding	disk	pages
• Bookkeeping	per	frame:

• Pin	count	:	#	users	of	the	page	in	the	frame
• Pinning :	Indicate	that	the	page	is	in	use
• Unpinning :	Release	the	page,	and	also	indicate	if	the	
page	is	dirtied

• Dirty	bit :	Indicates	if	changes	must	be	propagated	to	disk

Midterm	Review		>		Storage	and	Buffers

71

Buffer	Manager
• When	a	Page	is	requested:

• In	buffer	pool	->	return	a	handle	to	the	frame.	Done!
• Increment	the	pin	count

• Not	in	the	buffer	pool:
• Choose	a	frame	for	replacement
(Only	replace	pages	with	pin	count	==	0)

• If	frame	is	dirty,	write	it	to	disk
• Read	requested	page	into	chosen	frame
• Pin	the	page	and	return	its	address

Midterm	Review		>		Storage	and	Buffers

72

Buffer	Manager
• When	a	Page	is	requested:

• In	buffer	pool	->	return	a	handle	to	the	frame.	Done!
• Increment	the	pin	count

• Not	in	the	buffer	pool:
• Choose	a	frame	for	replacement
(Only	replace	pages	with	pin	count	==	0)

• If	frame	is	dirty,	write	it	to	disk
• Read	requested	page	into	chosen	frame
• Pin	the	page	and	return	its	address

Midterm	Review		>		Storage	and	Buffers

• How	do	we	choose	a	frame	for	replacement?
• LRU	(Least	Recently	Used)
• Clock
• MRU	(Most	Recently	Used)
• FIFO,	random,	…

• The	replacement	policy	has	big	impact	on	#	of	I/O’s	
(depends	on	the	access	pattern)

73

Buffer	replacement	policy

Midterm	Review		>		Storage	and	Buffers

74

LRU

• uses	a	queue of	pointers	to	frames	that	have	pin	count	=	0

• a	page	request	uses	frames	only	from	the	head of	the	queue

• when	a	the	pin	count	of	a	frame	goes	to	0,	it	is	added	to	the	end	of	
the	queue

Midterm	Review		>		Storage	and	Buffers

75

MRU

• uses	a	stack	of	pointers	to	frames	that	have	pin	count	=	0

• a	page	request	uses	frames	only	from	the	top	of	the	stack

• when	a	the	pin	count	of	a	frame	goes	to	0,	it	is	added	to	the	top	of	
the	stack

Midterm	Review		>		Storage	and	Buffers

