eeeeeeee

Lecture 9:
Data Storage and 10 Models

Lecture 9

Announcements

P“;"ﬂmﬁs

e Submission Project Part 1 tonight
* |nstructions on Piazza!

* PS2 due on Friday at 11:59 pm
 Questions? Easier than PS1.

e Badgers Rule!

Lecture 9

Today’s Lecture

1. Data Storage

2. Disk and Files

3. Buffer Manager - Prelims

1. Data Storage

Lecture 9 > Section 1

What you will learn about in this section

1. Life cycle of a query
2. Architecture of a DBMS

3. Memory Hierarchy

Lecture 9 > Section 1

Life cycle of a query

...................
........
.....
®e

‘f(2
Query Execute
Scheduler Operators

Parser —Optimizer —

and
Ritext
matches(‘insurance claims")

Syntax Tree Query Plan esult

Segments

Lecture 9 > Section 1 > Architecture of a DBMS

Internal Architecture of a DBMS

| |/O access

Lecture 9 > Section 1 > Storage Manager

Architecture of a Storage Manager
Access Methods

Sorted File Hash Index

B+-tree
Index

/O Manager

10 Accesses

Heap File

Concurrency Control
Manager

Recovery Manager

In Systems,
|O cost matters a ton!

8

Lecture 9 > Section 1 > Data Storage

Data Storage

* How does a DBMS store and access data?
* main memory (fast, temporary)
* disk (slow, permanent)

* How do we move data from disk to main memory?
* buffer manager

* How do we organize relational data into files?

Lecture 9 > Section 1 > Memory Hierarchy

Memory Hierarchy

Flash Storage

Magnetic Hard Disk Drive (HDD)

10

Lecture 9 > Section 1 > Memory Hierarchy

Why not main memory?

* Relatively high cost
* Main memory is not persistent!

* Typical storage hierarchy:
- Primary storage: main memory (RAM) for currently used data

- Secondary storage: disk for the main database

- Tertiary storage: tapes for archiving older versions of the data

2. Disk and Files

Lecture 9 > Section 2

What you will learn about in this section

1. All about disks
2. Accessing a disk

3. Managing disk space

Lecture 9 > Section 2 > Disks

Disks

e Secondary storage device of choice.

e Data is stored and retrieved in units called disk blocks

* Unlike RAM, time to retrieve a disk page varies
depending upon location on disk.

- Therefore, relative placement of pages on disk has major
impact on DBMS performance!

Lecture 9 > Section 2 > Disks

The Mechanics of a Disk " (T3 ™
Mechanical characteristics: .;) A
e Rotation speed (7200RPM) [)

* Number of platters (1-30)) \ N
* Number of tracks (<=10000) A mwem‘;
* Number of bytes/track(10°) | 7~ U

Arm assembly

Lecture 9 > Section 2 > Disks

Cylinder

The Mechanics of a Disk | "1 ("
. N ==
Platters spin @ ~ 7200rpm 7 \J o

Arm assembly moves to ./,
position a head on a desired)

track. Tracks under heads < >
make a Cylinder (|mag|nary|) Arm movemient

Only 1 head reads/writes at
aﬂy t|me Arm assembly

Block size : multiple of sector
size (which is fixed).

Platters

Lecture 9 > Section 2 > Disks

. . Cylinder _
The Mechanics of a Disk y <©/./‘ pindle

Disk head

— W,

/7
_z ector
< 25

Unit of read or write: | /7
disk block: k*Sector Size)

Once in memory: page ¢ \ \
I . Arm movemient
Typically: 4k or 8k or 16k e
wwwwwwww N

Arm assembly

Access time = seek time + rotational delay + transfer time
(1-20 ms) (0-10ms) (~1 ms per 8k block)

Lecture 9 > Section 2 > Disks

The Mechanics of a Disk

Minimize seek and rotational delay

“Next Block” concept

(1) Blocks on same track
(2) Blocks on same cylinder

(3) Blocks on adjacent cylinder

Disks read/write one block at a time

Access time = seek time +
rotational delay + transfer time

Cylinder
_——Spindle
Disk head } Tracks
— |
/‘I
‘ Sector

./I ’

< Platters

Arm movement

e

Arm assembly

For a

4

several pages at a time is a big win!

Lecture 9 > Section 2 > Accessing the Disk

Accessing the disk (I)

access time = rotational delay + seek time + transfer time

rotational delay: time to wait for sector to rotate under

the disk head

- typical delay: 010 ms

- maximum delay = 1 full rotation
- average delay ~ half rotation

RPM Average delay
5,400 5.56
7,200 4.17

10,000 3.00
15,000 2.00

19

Lecture 9 > Section 2 > Accessing the Disk

Accessing the disk (I1)

access time = rotational delay + seek time + transfer time

seek time: time to move the arm to position disk head
on the right track

- typical seek time: ~ 9 ms
- ~ 4 ms for high-end disks

20

Lecture 9 > Section 2 > Accessing the Disk

Accessing the disk (I1)

access time = rotational delay + seek time + transfer time

data transfer time: time to move the data to/from the
disk surface

. typical rates: ~100 MB/s

- the access time is dominated by the seek time and
rotational delay!

21

Lecture 9 > Section 2 > Accessing the Disk

Example: Specs

Seagate HDD
Capacity 3TB
RPM 7,200

Average Seek Time | 9ms
Max Transfer Rate | 210 MB/s
Platters 3

What are the 1/O rates for block size 4 KB and:
- random workload (~ 0.3 MB/s)
. sequential workload (~ 210 MB/s)

Lecture 9 > Section 2 > Managing Disk Space

Managing Disk Space

* The disk space is organized into files
* Files are made up of pages
* Pages contain records

* Data is allocated/deallocated in increments of pages
* Logically close pages should be nearby in the disk

Lecture 9 > Section 2 > SSDs

SSDs (Solid State Drive)

e SSDs use flash memory

* No moving parts (no rotate/seek motors
* eliminates seek time and rotational delay
* very low power and lightweight

e Data transfer rates: 300-600 MB/s

* SSDs can read data (sequential or
random) very fast!

24

Lecture 9 > Section 2 > SSDs

SSDs

e Small storage (0.1-0.5x of HDD)
e expensive (20x of HDD)
* Writes are much more expensive than reads (10x)

 Limited lifetime
* 1-10K writes per page
* the average failure rate is 6 years

Can only read and write in blocks or pages of
2K, 4K, or more bytes. Looks like a disk.

3. Buffer Manager - Prelims

Lecture 9 > Section 3

What you will learn about in this section

1. Buffer Manager

2. Replacement Policy

Lecture 9 > Section 3 > Storage & memory model

High-level: Disk vs. Main Memory

Arm asse

Disk: Random Access Memory (RAM) or Main Memory:

Fast: Random access, byte addressable
» ~10x faster for sequential access
e ~100,000x faster for random access!

* Slow: Sequential block access

* Read a blocks (not byte) at a time, so sequential access is cheaper
than random

* Disk read / writes are expensive!

Vol'atile: Data can be lost if e.g. crash occurs, power goes out,
etc!

* Durable: We will assume that once on disk, data is safe!
* Expensive: For $100, get 16GB of RAM vs. 2TB of disk!
* Cheap 28

Lecture 9 > Section 3 > The Buffer

The Buffer

* A buffer is a region of physical memory
used to store temporary data

* In this lecture: a region in main
memory used to store intermediate
data between disk and processes

* Key idea: Reading / writing to disk is slow-
need to cache data!

Main Memory

@ Buffer

Lecture 9 > Section 3 > The Buffer

The (Simplified) Buffer

* In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

 Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

@ Buffer

Lecture 9 > Section 3 > The Buffer

The (Simplified) Buffer

* In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

 Read(page): Read page from disk ->
buffer if not already in buffer

Main Memory

1,0

Buffer

3

Processes can then read from /

write to the page in the buffer

Lecture 9 > Section 3 > The Buffer

The (Simplified) Buffer

* In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

 Read(page): Read page from disk ->
buffer if not already in buffer

* Flush(page): Evict page from buffer &
write to disk

Main Memory

Buffer

1,2,3

Lecture 9 > Section 3 > The Buffer

The (Simplified) Buffer

* In this class: We’ll consider a buffer located
in main memory that operates over pages
and files:

Read(page): Read page from disk ->

buffer if not already in buffer
Flush(page): Evict page from buffer &

write to disk

Release(page): Evict page from buffer

without writing to disk

Main Memory

Buffer

1,2,3

Lecture 9 > Section 3 > The Buffer

Managing Disk: The DBMS
Buffer

e Database maintains its own buffer
 Why? The OS already does this...

* DB knows more about access
patterns.

* Watch for how this shows up! (cf. Sequential
Flooding)

* Recovery and logging require ability
to flush to disk.

Main Memory

@ Buffer

Lecture 9 > Section 3 > The Buffer

The Buffer Manager

* A buffer manager handles supporting operations for the buffer:

* Primarily, handles & executes the “replacement policy”

* i.e. finds a page in buffer to flush/release if buffer is full and a new
page needs to be read in

 DBMSs typically implement their own buffer management routines

Lecture 9 > Section 3 > The Buffer

A Simplified Filesystem Model

* For us, a page is a fixed-sized array of memory
* Think: One or more disk blocks

* Interface:
* write to an entry (called a slot) or set to “None”

 DBMS also needs to handle variable length fields

* Page layout is important for good hardware utilization as
well (see 346)

File

* And a file is a variable-length list of pages
* Interface: create / open / close; next_page(); etc.

Page

Lecture 9 > Section 3 > The Buffer

Buffer Manager

* Data must be in RAM for DBMS to operate on it
* All the pages may not fit into main memory

Buffer manager: responsible for bringing pages from disk to main
memory as heeded pages brought into main memory are in the
buffer pool the buffer pool is partitioned into frames: slots for holding
disk pages

Lecture 9 > Section 3 > The Buffer

Buffer Manager

page request H

buffer pool

38

Lecture 9 > Section 3 > The Buffer

Remember:

Buffer Manager

Read(page): Read page from disk ->
buffer if not already in buffer

Flush(page): Evict page from buffer &
write to disk

Release(page): Evict page from buffer
without writing to disk

Lecture 9 > Section 3 > The Buffer

Buffer replacement policy

* How do we choose a frame for replacement?
- LRU (Least Recently Used)
. Clock
- MRU (Most Recently Used)
« FIFO, random, ...

* The replacement policy has big impact on # of 1/O’s
(depends on the access pattern)

* To be continued!

