## Lecture 7: Design Theory II

## Lecture 7: Design Theory II

Today's Lecture

- 1. Recap from Previous Lecture
- 2. Boyce-Codd Normal Form
  - ACTIVITY
- 3. Decompositions
  - ACTIVITY

*Lecture* 7 > *Section* 1

## 2. Recap from Previous Lecture

| <b>A</b> <sub>1</sub> | <br>A <sub>m</sub> | <b>B</b> <sub>1</sub> | <br><b>B</b> <sub>n</sub> |  |
|-----------------------|--------------------|-----------------------|---------------------------|--|
|                       |                    |                       |                           |  |
|                       |                    |                       |                           |  |
|                       |                    |                       |                           |  |
|                       |                    |                       |                           |  |
|                       |                    |                       |                           |  |

<u>Defn:</u> Given attribute sets  $A=\{A_1,...,A_m\}$  and  $B = \{B_1,...B_n\}$  in R,



Defn:

Given attribute sets  $A=\{A_1,...,A_m\}$  and  $B = \{B_1,...,B_n\}$  in R,

The *functional dependency*  $A \rightarrow B$  on **R** holds if for *any*  $t_i, t_j$  in R:



Given attribute sets  $A = \{A_1, ..., A_m\}$  and  $B = \{B_1, ..., B_n\}$  in R,

The *functional dependency*  $A \rightarrow B$  on **R** holds if for *any*  $t_i, t_j$  in R:

 $t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND } \dots$ AND  $t_i[A_m] = t_j[A_m]$ 



If t1,t2 agree here..



Given attribute sets  $A = \{A_1, ..., A_m\}$  and  $B = \{B_1, ..., B_n\}$  in R,

The *functional dependency*  $A \rightarrow B$  on **R** holds if for *any*  $t_i, t_j$  in R:

 $\underline{if} t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND}$  $... \text{ AND } t_i[A_m] = t_j[A_m]$ 

 $\frac{\text{then}}{\text{AND}} t_i[B_1] = t_j[B_1] \text{ AND } t_i[B_2] = t_j[B_2]$ AND ... AND  $t_i[B_n] = t_j[B_n]$ 





Given attribute sets  $A = \{A_1, ..., A_m\}$  and  $B = \{B_1, ..., B_n\}$  in R,

The *functional dependency*  $A \rightarrow B$  on **R** holds if for *any*  $t_i, t_j$  in R:

 $\underline{if} t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2] = t_j[A_2] \text{ AND}$  $... \text{ AND } t_i[A_m] = t_j[A_m]$ 

 $\frac{\text{then}}{\text{AND}} t_i[B_1] = t_j[B_1] \text{ AND } t_i[B_2] = t_j[B_2]$ AND ... AND  $t_i[B_n] = t_j[B_n]$ 



## Finding Functional Dependencies

Equivalent to asking: Given a set of FDs,  $F = {f_1, ..., f_n}$ , does an FD g hold?

**Inference problem**: How do we decide?

#### Answer: Three simple rules called **Armstrong's Rules.**

- 1. Split/Combine,
- 2. Reduction, and
- 3. Transitivity

## Closure of a set of Attributes

Given a set of attributes  $A_1, ..., A_n$  and a set of FDs F: Then the <u>closure</u>,  $\{A_1, ..., A_n\}^+$  is the set of attributes B s.t.  $\{A_1, ..., A_n\} \rightarrow B$ 

| <u>Example:</u> | F = | <pre>{name} → {color} {category} → {department} {color, category} → {price}</pre> |
|-----------------|-----|-----------------------------------------------------------------------------------|
|                 |     |                                                                                   |

Example Closures: {name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}

## Closure Algorithm

Start with  $X = \{A_1, ..., A_n\}$  and set of FDs F. **Repeat until** X doesn't change; **do**: if  $\{B_1, ..., B_n\} \rightarrow C$  is entailed by F and  $\{B_1, ..., B_n\} \subseteq X$ then add C to X. **Return** X as X<sup>+</sup>

## Finding Functional Dependencies

# 1. Use Armstrong's rules to find FDs that hold

#### Armstrong's Rules.

- 1. Split/Combine,
- 2. Reduction, and
- 3. Transitivity

#### **2. Use Closure Alg to find ALL FDs** Step 0: Give a set of FDs F Step 1: Compute X<sup>+</sup>, for every set of attributes X: Step 2: Enumerate all FDs X $\rightarrow$ Y, s.t. Y $\subseteq$ X<sup>+</sup> and X $\cap$ Y = $\emptyset$ :

Keys and Superkeys

A <u>superkey</u> is a set of attributes  $A_1, ..., A_n$  s.t. for *any other* attribute **B** in R, we have  $\{A_1, ..., A_n\} \rightarrow B$ 

I.e. all attributes are *functionally determined* by a superkey

A **<u>key</u>** is a *minimal* superkey

Meaning that no subset of a key is also a superkey

## Finding Keys and Superkeys

For each set of attributes X

1. Compute X<sup>+</sup>

2. If X<sup>+</sup> = set of all attributes then X is a **superkey** 

3. If X is minimal, then it is a **key** 

## Putting it all together

1. FDs impose constraints on data. They prevent anomalies.

2. They can be used to find the closure of a set of attributes.

3. The Closure algorithm allows us to identify superkeys and keys.

*Lecture 7 > Section 2* 

## 2. Boyce-Codd Normal Form

#### What you will learn about in this section

- 1. Conceptual Design
- 2. Boyce-Codd Normal Form
- 3. The BCNF Decomposition Algorithm
- 4. ACTIVITY

Lecture 7 > Section 2 > Conceptual Design

#### Conceptual Design

### Back to Conceptual Design

Now that we know how to find FDs, it's a straight-forward process:

- 1. Search for "bad" FDs
- 2. If there are any, then *keep decomposing the table into sub-tables* until no more bad FDs
- 3. When done, the database schema is *normalized*

Recall: there are several normal forms...

#### Boyce-Codd Normal Form (BCNF)

- Main idea is that we define "good" and "bad" FDs as follows:
  - $X \rightarrow A$  is a "good FD" if X is a (super)key
    - In other words, if A is the set of all attributes
  - $X \rightarrow A$  is a *"bad FD"* otherwise
- We will try to eliminate the "bad" FDs!

### Boyce-Codd Normal Form (BCNF)

• Why does this definition of "good" and "bad" FDs make sense?

- If X is *not* a (super)key, it functionally determines *some* of the attributes
  - Recall: this means there is <u>redundancy</u>
  - And redundancy like this can lead to data anomalies!

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

#### Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is <u>in BCNF</u> if: if  $\{A_1, ..., A_n\} \rightarrow B$  is a *non-trivial* FD in R then  $\{A_1, ..., A_n\}$  is a superkey for R

*Equivalently*:  $\forall$  sets of attributes X, either (X<sup>+</sup> = X) or (X<sup>+</sup> = all attributes)

In other words: there are no "bad" FDs

#### Example

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |
| Joe  | 987-65-4321 | 908-555-1234 | Westfield |

 $\{SSN\} \rightarrow \{Name, City\}$ 

This FD is *bad* because it is <u>**not**</u> a superkey

 $\Rightarrow$  <u>Not</u> in BCNF

What is the key? {SSN, PhoneNumber}

#### Example

| Name | <u>SSN</u>  | City    |
|------|-------------|---------|
| Fred | 123-45-6789 | Seattle |
| Joe  | 987-65-4321 | Madison |

| <u>SSN</u>  | PhoneNumber  |
|-------------|--------------|
| 123-45-6789 | 206-555-1234 |
| 123-45-6789 | 206-555-6543 |
| 987-65-4321 | 908-555-2121 |
| 987-65-4321 | 908-555-1234 |

{SSN} → {Name,City}

This FD is now good because it is the key

#### Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

Now in BCNF!

BCNFDecomp(R):

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

```
if (not found) then Return R
```

If no "bad" FDs found, in BCNF!

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

let 
$$Y = X^+ - X$$
,  $Z = (X^+)^C$ 

Let Y be the attributes that *X* functionally determines (+ that are not in X)

And let Z be the other attributes that it doesn't

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^C$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$  Split into one relation (table) with X plus the attributes that X determines (Y)...



```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^C$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$  And one relation with X plus the attributes it *does not* determine (Z)



```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^C$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$ 

**Return** BCNFDecomp(R<sub>1</sub>), BCNFDecomp(R<sub>2</sub>)

Proceed recursively until no more "bad" FDs!

#### Example

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u>  $Y = X^+ - X$ ,  $Z = (X^+)^C$ decompose R into  $R_1(X \cup Y)$  and  $R_2(X \cup Z)$ 

**Return** BCNFDecomp(R<sub>1</sub>), BCNFDecomp(R<sub>2</sub>)

$$\begin{array}{l} \{A\} \rightarrow \{B,C\} \\ \{C\} \rightarrow \{D\} \end{array}$$



## Activity-7.ipynb Exercise 1

Lecture 7 > Section 3

## 3. Decompositions

#### Recap: Decompose to remove redundancies

- 1. We saw that **redundancies** in the data ("bad FDs") can lead to data anomalies
- 2. We developed mechanisms to **detect and remove redundancies by decomposing tables into BCNF** 
  - 1. BCNF decomposition is *standard practice* very powerful & widely used!
- 3. However, sometimes decompositions can lead to **more subtle unwanted effects...**

When does this happen?

#### Decompositions in General



 $R_{1} = \text{the projection of R on } A_{1}, \dots, A_{n}, B_{1}, \dots, B_{m}$  $R_{2} = \text{the projection of R on } A_{1}, \dots, A_{n}, C_{1}, \dots, C_{p}$ 

### Theory of Decomposition

| Name     | Price | Category |
|----------|-------|----------|
| Gizmo    | 19.99 | Gadget   |
| OneClick | 24.99 | Camera   |
| Gizmo    | 19.99 | Camera   |

Sometimes a decomposition is "correct"

I.e. it is a Lossless decomposition



| Name     | Category |
|----------|----------|
| Gizmo    | Gadget   |
| OneClick | Camera   |
| Gizmo    | Camera   |

#### Lossy Decomposition

| Name     | Price | Category |
|----------|-------|----------|
| Gizmo    | 19.99 | Gadget   |
| OneClick | 24.99 | Camera   |
| Gizmo    | 19.99 | Camera   |

*However sometimes it isn't* 

What's wrong here?

| Name     | Category |
|----------|----------|
| Gizmo    | Gadget   |
| OneClick | Camera   |
| Gizmo    | Camera   |

| Price | Category |
|-------|----------|
| 19.99 | Gadget   |
| 24.99 | Camera   |
| 19.99 | Camera   |

#### Lossless Decompositions



What (set) relationship holds between R1 Join R2 and R if lossless?

*Hint: Which tuples of R will be present?* 



#### Lossless Decompositions



A decomposition R to (R1, R2) is <u>lossless</u> if R = R1 Join R2

#### Lossless Decompositions



If  $\{A_1, ..., A_n\} \rightarrow \{B_1, ..., B_m\}$ Then the decomposition is lossless Note: don't need { $A_1, ..., A_n$ }  $\rightarrow$  { $C_1, ..., C_p$ }

BCNF decomposition is always lossless. Why?

#### A problem with BCNF

# <u>Problem</u>: To enforce a FD, must reconstruct original relation—*on each insert!*

Note: This is historically inaccurate, but it makes it easier to explain

#### A Problem with BCNF



{Unit} → {Company}
{Company,Product} → {Unit}

We do a BCNF decomposition
on a "bad" FD:
{Unit}+ = {Unit, Company}

{Unit} → {Company}

We lose the FD {Company, Product} → {Unit}!!

#### So Why is that a Problem?



No problem so far. All *local* FD's are satisfied.

Let's put all the data back into a single table again:

Violates the FD {Company, Product} → {Unit}!!

#### The Problem

- We started with a table R and FDs F
- We decomposed R into BCNF tables R<sub>1</sub>, R<sub>2</sub>, ... with their own FDs F<sub>1</sub>, F<sub>2</sub>, ...
- We insert some tuples into each of the relations—which satisfy their local FDs but when reconstruct it violates some FD **across** tables!

<u>Practical Problem</u>: To enforce FD, must reconstruct R—*on each insert!* 

#### Dependency Preserving Decompositions

- Given **R** and a set of FDs *F*, we decompose **R** into **R1** and **R2**. Suppose:
  - R1 has a set of FDs F1
  - R2 has a set of FDs F2
  - F1 and F2 are computed from F

A decomposition is <u>dependency preserving</u> if by enforcing *F1* over **R1** and *F2* over **R2**, we can enforce *F* over **R** 

#### Good example

Person(SSN, name, age, canDrink)

- $SSN \rightarrow name, age$
- $age \rightarrow canDrink$

#### decomposes into

- **R**<sub>1</sub>(SSN, name, age)
  - $-SSN \rightarrow name, age$
- **R**<sub>2</sub>(age, canDrink)
  - $-age \rightarrow canDrink$

### Bad example

**R**(A, B, C)

- $A \longrightarrow B$
- $B, C \rightarrow A$





Decomposes into:

recover

 $\mathbf{R}_2$ 

| <b>R<sub>1</sub>(A, B)</b> |  |
|----------------------------|--|
| $-A \longrightarrow B$     |  |
| $\mathbf{R}_{2}(A, C)$     |  |

– no FDs here!!

| Α              | В | C |
|----------------|---|---|
| <b>a</b> 1     | b | С |
| a <sub>2</sub> | b | С |

The recovered table violates  $B, C \rightarrow A$ 

#### Possible Solutions

- Various ways to handle so that decompositions are all lossless / no FDs lost
  - For example 3NF- stop short of full BCNF decompositions. **Next lecture!**
- Usually a tradeoff between redundancy / data anomalies and FD preservation...

BCNF still most common- with additional steps to keep track of lost FDs...

## Activity-7.ipynb Exercise 2