
Lecture	7:
Design	Theory	II

Lecture	7



Lecture	7:
Design	Theory	II

Lecture	7



Today’s	Lecture

1. Recap	from	Previous	Lecture

2. Boyce-Codd Normal	Form
• ACTIVITY

3. Decompositions
• ACTIVITY

3

Lecture	7



2.	Recap	from	Previous	Lecture

4

Lecture	7		>		Section	1



5

Lecture	7		>		Section	1

A1 … Am B1 … Bn

Defn:
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

Functional	Deps



6

Lecture	7		>		Section	1

Functional	Deps

A1 … Am B1 … Bn

ti

tj

Defn:
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:



7

Lecture	7		>		Section	1

Functional	Deps Defn:
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	…	
AND	ti[Am]	=	tj[Am]

A1 … Am B1 … Bn

ti

tj

If	t1,t2	agree	here..



8

Lecture	7		>		Section	1

Functional	Deps Defn:
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

if ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	
…	AND	ti[Am]	=	tj[Am]

then ti[B1]	=	tj[B1]	AND	ti[B2]=tj[B2]	
AND	…	AND	ti[Bn]	=	tj[Bn]

A1 … Am B1 … Bn

ti

tj

If	t1,t2	agree	here.. …they	also	agree	here!



9

Lecture	7		>		Section	1

Functional	Deps Defn:
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

if ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	
…	AND	ti[Am]	=	tj[Am]

then ti[B1]	=	tj[B1]	AND	ti[B2]=tj[B2]	
AND	…	AND	ti[Bn]	=	tj[Bn]

A1 … Am B1 … Bn

ti

tj

If	t1,t2	agree	here.. …they	also	agree	here!



10

Lecture	7		>		Section	1

Equivalent	to	asking:	Given	a	set	of	FDs,	F	=	{f1,…fn},	does	an	FD	g	hold?

Inference	problem:	How	do	we	decide?

Answer:	Three	simple	rules	called	Armstrong’s	
Rules.

1. Split/Combine,
2. Reduction,	and
3. Transitivity

Finding	Functional	Dependencies



11

Lecture	7		>		Section	1

Closure	of	a	set	of	Attributes
Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}



12

Lecture	7		>		Section	1

Closure	Algorithm

Start	with	X	=	{A1,	…,	An}	and	set	of	FDs	F.

Repeat	until X	doesn’t	change;	do:

if {B1,	…,	Bn}	à C	is	entailed	by	F	

and {B1,	…,	Bn}	⊆ X

then add	C	to	X.

Return X	as	X+



13

Lecture	7		>		Section	1

Finding	Functional	Dependencies
Armstrong’s	Rules.
1. Split/Combine,
2. Reduction,	and
3. Transitivity

Step	1:	Compute	X+,	for	every	set	of	attributes	X:
Step	2:	Enumerate	all	FDs	X	à Y,	s.t. Y	Í X+ and	X	Ç Y	=	Æ:

Step	0:	Give	a	set	of	FDs	F

1.	Use	Armstrong’s	rules
to	find	FDs	that	hold

2.	Use	Closure	Alg
to	find	ALL	FDs



14

Lecture	7		>		Section	1

Keys	and	Superkeys
A	superkey is	a	set	of	attributes	A1,	…,	An s.t.
for	any	other attribute	B in	R,
we	have	 {A1,	…,	An}	à B

A	key is	a	minimal superkey

I.e.	all	attributes	are	
functionally	determined
by	a	superkey

Meaning	that	no	subset	of	
a	key	is	also	a	superkey



15

Lecture	7		>		Section	1

Finding	Keys	and	Superkeys
For	each	set	of	attributes	X

1. Compute	X+

2. If	X+	=	set	of	all	attributes	then	X	is	a	superkey

3. If	X	is	minimal,	then	it	is	a	key



16

Lecture	7		>		Section	1

Putting	it	all	together
1. FDs	impose	constraints	on	data.	They	prevent	anomalies.

2. They	can	be	used	to	find	the	closure	of	a	set	of	attributes.

3. The	Closure	algorithm	allows	us	to	identify	superkeys and	
keys.



2.	Boyce-Codd Normal	Form

17

Lecture	7		>		Section	2



What	you	will	learn	about	in	this	section

1. Conceptual	Design

2. Boyce-Codd Normal	Form

3. The	BCNF	Decomposition	Algorithm

4. ACTIVITY

18

Lecture	7		>		Section	2



Conceptual	Design

Lecture	7		>		Section	2		>		Conceptual	Design



20

Back	to	Conceptual	Design

Now	that	we	know	how	to	find	FDs,	it’s	a	straight-forward	process:

1. Search	for	“bad”	FDs

2. If	there	are	any,	then	keep	decomposing	the	table	into	sub-tables
until	no	more	bad	FDs

3. When	done,	the	database	schema	is	normalized

Recall:	there	are	several	normal	forms…

Lecture	7		>		Section	2		>		Conceptual	Design



Boyce-Codd Normal	Form	(BCNF)

• Main	idea	is	that	we	define	“good”	and	“bad”	FDs	as	follows:

• X	à A	is	a	“good	FD” if	X	is	a	(super)key
• In	other	words,	if	A	is	the	set	of	all	attributes

• X	à A	is	a	“bad	FD” otherwise

•We	will	try	to	eliminate	the	“bad”	FDs!

Lecture	7		>		Section	2		>		BCNF



Boyce-Codd Normal	Form	(BCNF)

• Why	does	this	definition	of	“good”	and	“bad”	FDs	make	sense?

• If	X	is	not	a	(super)key,	it	functionally	determines	some of	the	
attributes

• Recall:	this	means	there	is	redundancy
• And	redundancy	like	this	can	lead	to	data	anomalies!

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

Lecture	7		>		Section	2		>		BCNF



23

Boyce-Codd Normal	Form

BCNF	is	a	simple	condition	for	removing	anomalies	from	relations:

In	other	words:	there	are	no	“bad”	FDs

A	relation	R	is	in	BCNF if:

if	{A1,	...,	An}	à B is	a	non-trivial FD	in	R

then	{A1,	...,	An}		is	a	superkey for	R

Equivalently:	 ∀ sets	of	attributes	X,	either	(X+ =	X)	or	(X+ =	all	attributes)

Lecture	7		>		Section	2		>		BCNF



24

Example

What	is	the	key?
{SSN,	PhoneNumber}

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

{SSN} à {Name,City}

⟹	Not in	BCNF

This	FD	is	bad	
because	it	is	not a	
superkey

Lecture	7		>		Section	2		>		BCNF



25

Example

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Madison

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

Let’s	check	anomalies:
• Redundancy	?
• Update	?
• Delete	?

{SSN} à {Name,City}

Now	in	BCNF!

This	FD	is	now	
good	because	it	is	
the	key

Lecture	7		>		Section	2		>		BCNF



26

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	X	s.t.:	X+ ≠	X	and	X+	≠	[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Lecture	7		>		Section	2		>		BCNF



27

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Find	a	set	of	attributes	X	
which	has	non-trivial	
“bad”	FDs,	i.e.	is	not	a	
superkey,	using	closures

Lecture	7		>		Section	2		>		BCNF



28

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

If	no	“bad”	FDs	found,	in	
BCNF!

Lecture	7		>		Section	2		>		BCNF



29

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Let	Y	be	the	attributes	that	
X	functionally	determines	
(+	that	are	not	in	X)

And	let	Z	be	the	other	
attributes	that	it	doesn’t

Lecture	7		>		Section	2		>		BCNF



30

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

X ZY

R1 R2

Split	into	one	relation	(table)	
with	X	plus	the	attributes	
that	X	determines	(Y)…

Lecture	7		>		Section	2		>		BCNF



31

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

X ZY

R1 R2

And	one	relation	with	X	plus	
the	attributes	it	does	not	
determine	(Z)

Lecture	7		>		Section	2		>		BCNF



32

BCNF	Decomposition	Algorithm

BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Proceed	recursively	until	no	
more	“bad”	FDs!

Lecture	7		>		Section	2		>		BCNF



R(A,B,C,D,E)BCNFDecomp(R):
Find	a	set	of	attributes	X	s.t.:	X+ ≠	X	and	X+	≠	

[all	attributes]

if (not	found)	then Return R

let Y	=	X+ - X,		Z	=	(X+)C
decompose R into	R1(X	È Y)	and	R2(X	È Z)

Return BCNFDecomp(R1),	BCNFDecomp(R2)

Example

{A} à {B,C}
{C} à {D}

Lecture	7		>		Section	2		>		BCNF



34

Example

R(A,B,C,D,E)
{A}+ =	{A,B,C,D}	≠	{A,B,C,D,E}

R1(A,B,C,D)
{C}+ =	{C,D}	≠	{A,B,C,D}

R2(A,E)R11(C,D) R12(A,B,C)

R(A,B,C,D,E)

{A} à {B,C}
{C} à {D}

Lecture	7		>		Section	2		>		BCNF



Activity-7.ipynb Exercise	1

35

Lecture	7		>		Section	2		>		ACTIVITY



3.	Decompositions

36

Lecture	7		>		Section	3



Recap:	Decompose	to	remove	redundancies

1. We	saw	that	redundancies in	the	data	(“bad	FDs”)	can	lead	to	data	
anomalies

2. We	developed	mechanisms	to	detect	and	remove	redundancies	by	
decomposing	tables	into	BCNF
1. BCNF	decomposition	is	standard	practice- very	powerful	&	widely	used!

3. However,	sometimes	decompositions	can	lead	to	more	subtle	
unwanted	effects…

37

Lecture	7		>		Section	3		>		Decompositions

When	does	this	happen?



38

Decompositions	in	General

R1 =	the	projection of	R	on	A1,	...,	An,	B1,	...,	Bm

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lecture	7		>		Section	3		>		Decompositions

R2 =	the	projection of	R	on	A1,	...,	An,	C1,	...,	Cp



39

Theory	of	Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price
Gizmo 19.99
OneClick 24.99
Gizmo 19.99

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

I.e.	it	is	a	Lossless	
decomposition

Sometimes	a	
decomposition	is	
“correct”

Lecture	7		>		Section	3		>		Decompositions



40

Lossy Decomposition

Name Price Category
Gizmo 19.99 Gadget
OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category
Gizmo Gadget
OneClick Camera
Gizmo Camera

Price Category
19.99 Gadget
24.99 Camera
19.99 Camera

What’s	wrong	
here?

However	
sometimes	it	isn’t

Lecture	7		>		Section	3		>		Decompositions



Lossless	Decompositions

What	(set)	relationship	holds	between	R1	
Join	R2	and	R	if	lossless?

Hint:	Which	tuples	of	R	will	be	present?

It’s	lossless	
if	we	have	
equality!

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lecture	7		>		Section	3		>		Decompositions



Lossless	Decompositions

A	decomposition	R	to	(R1,	R2)	is	lossless if	R	=	R1	Join	R2

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lecture	7		>		Section	3		>		Decompositions



Lossless	Decompositions

43

BCNF	decomposition	is	always	lossless.		Why?

Note:	don’t	need	
{A1,	...,	An}	à {C1,	...,	Cp}

If	 {A1,	...,	An}	à {B1,	...,	Bm}
Then	the	decomposition	is	lossless

R(A1,...,An,B1,...,Bm,C1,...,Cp) 

R1(A1,...,An,B1,...,Bm) R2(A1,...,An,C1,...,Cp)

Lecture	7		>		Section	3		>		Decompositions



A	problem	with	BCNF

Note:	This	is	historically	
inaccurate,	but	it	makes	
it	easier	to	explain

Problem:	To	enforce	a	FD,	must	reconstruct	
original	relation—on	each	insert!

Lecture	7		>		Section	3		>		Decompositions



45

A	Problem	with	BCNF
{Unit} à {Company}
{Company,Product} à {Unit}

We	do	a	BCNF	decomposition	
on	a	“bad”	FD:
{Unit}+ = {Unit, Company}

We	lose	the	FD	{Company,Product} à {Unit}!!

Unit Company Product
… … …

Unit Company
… …

Unit Product
… …

{Unit} à {Company}

Lecture	7		>		Section	3		>		Decompositions



46

So	Why	is	that	a	Problem?
No	problem	so	far.	
All	local FD’s	are	
satisfied.

Unit Company
Galaga99 UW
Bingo UW

Unit Product
Galaga99 Databases
Bingo Databases

Unit Company Product
Galaga99 UW Databases
Bingo UW Databases

Let’s	put	all	the	
data	back	into	a	
single	table	again:

{Unit} à {Company}

Violates	the	FD	{Company,Product} à {Unit}!!

Lecture	7		>		Section	3		>		Decompositions



47

The	Problem

• We	started	with	a	table	R	and	FDs	F

• We	decomposed	R	into	BCNF	tables	R1,	R2,	…
with	their	own	FDs	F1,	F2,	…

• We	insert	some	tuples	into	each	of	the	relations—which	satisfy	their	
local	FDs	but	when	reconstruct	it	violates	some	FD	across	tables!

Practical	Problem:	To	enforce	FD,	must	reconstruct	
R—on	each	insert!

Lecture	7		>		Section	3		>		Decompositions



48

Dependency	Preserving	Decompositions

• Given	R	and	a	set	of	FDs	F,	we	decompose	R	into	R1	and	R2.	Suppose:

• R1	has	a	set	of	FDs	F1

• R2	has	a	set	of	FDs	F2

• F1	and	F2	are	computed	from	F	

Lecture	7		>		Section	3		>		Decompositions

A	decomposition	is	dependency	preserving if	by	enforcing	
F1	over	R1	and	F2	over	R2,	we	can	enforce	F	over	R	



49

Good	example

Lecture	7		>		Section	3		>		Decompositions



50

Bad	example

Lecture	7		>		Section	3		>		Decompositions



51

Possible	Solutions

• Various	ways	to	handle	so	that	decompositions	are	all	lossless	/	no	
FDs	lost
• For	example	3NF- stop	short	of	full	BCNF	decompositions.	Next	lecture!

• Usually	a	tradeoff	between	redundancy	/	data	anomalies	and	FD	
preservation…

BCNF	still	most	common- with	additional	steps	to	
keep	track	of	lost	FDs…

Lecture	7		>		Section	3		>		Decompositions



Activity-7.ipynb Exercise	2

52

Lecture	7		>		Section	3		>		ACTIVITY


