
Lecture	6:
Design	Theory

Lectures		6

Announcements

• Solutions	to	PS1	are	posted	online.	Grades	coming	soon!

• Project	part	1	is	out.
• Check	your	groups	and	let	us	know	if	you	have	any	issues.
• We	have	assigned	people	to	groups	that	had	only	two	members.

• Activities	and	Notebooks	are	there	for	your	benefit!

Lecture	6

Lecture	6:
Design	Theory	I

Lecture	6

Today’s	Lecture

1. Normal	forms	&	functional	dependencies
• ACTIVITY:	Finding	FDs

2. Finding	functional	dependencies

3. Closures,	superkeys &	keys
• ACTIVITY:	The	key	or	a	key?

4

Lecture	6

1.	Normal	forms	&	functional	
dependencies

5

Lecture	6		>		Section	1

What	you	will	learn	about	in	this	section

1. Overview	of	design	theory	&	normal	forms

2. Data	anomalies	&	constraints

3. Functional	dependencies

4. ACTIVITY:	Finding	FDs

6

Lecture	6		>		Section	1

Design	Theory

• Design	theory	is	about	how	to	represent	your	data	to	avoid	
anomalies.	

• It	is	a	mostly	mechanical	process
• Tools	can	carry	out	routine	portions

• We	have	a	notebook	implementing	all	algorithms!
• We’ll	play	with	it	in	the	activities!

Lecture	6		>		Section	1		>		Overview

Normal	Forms
• 1st Normal	Form	(1NF) =	All	tables	are	flat

• 2nd Normal	Form =	disused

• Boyce-Codd Normal	Form	(BCNF)

• 3rd Normal	Form	(3NF)

• 4th	and	5th Normal	Forms =	see	text	books

DB	designs	based	on	
functional	
dependencies,	
intended	to	prevent	
data	anomalies

Our	focus	
for	this	
lecture	+	
the	next	
two	ones

Lecture	6		>		Section	1		>		Overview

1st Normal	Form	(1NF)

Student Courses
Mary {CS564,CS368}
Joe {CS564,CS552}
… …

Violates	1NF.	

1NF	Constraint:	Types	must	be	atomic!

Student Courses
Mary CS564
Mary CS368
Joe CS564
Joe CS552

In	1st NF

Lecture	6		>		Section	1		>		Overview

Data	Anomalies	&	Constraints

Lecture	6		>		Section	1		>		Data	anomalies	&	constraints

Constraints	Prevent	(some)	
Anomalies	in	the	Data

Student Course Room
Mary CS564 B01
Joe CS564 B01
Sam CS564 B01
..

If	every	course	is	in	
only	one	room,	
contains	redundant
information!

A	poorly	designed	database	causes	anomalies:

Lecture	6		>		Section	1		>		Data	anomalies	&	constraints

Constraints	Prevent	(some)	
Anomalies	in	the	Data

Student Course Room
Mary CS564 B01
Joe CS564 C12
Sam CS564 B01
..

If	we	update	the	
room	number	for	
one	tuple,	we	get	
inconsistent	data	=	
an	update anomaly

A	poorly	designed	database	causes	anomalies:

Lecture	6		>		Section	1		>		Data	anomalies	&	constraints

Constraints	Prevent	(some)	
Anomalies	in	the	Data

Student Course Room
..

If	everyone	drops	the	class,	we	lose	what	
room	the	class	is	in!	=	a	delete anomaly

A	poorly	designed	database	causes	anomalies:

Lecture	6		>		Section	1		>		Data	anomalies	&	constraints

Constraints	Prevent	(some)	
Anomalies	in	the	Data

Student Course Room
Mary CS564 B01
Joe CS564 B01
Sam CS564 B01
..

Similarly,	we	can’t	
reserve	a	room	
without	students	
=	an	insert	
anomaly

A	poorly	designed	database	causes	anomalies:

… CS368 C12

Lecture	6		>		Section	1		>		Data	anomalies	&	constraints

Constraints	Prevent	(some)	
Anomalies	in	the	Data

Student Course
Mary CS564
Joe CS564
Sam CS564
.. ..

Course Room
CS564 B01
CS368 C12

Today:	develop	theory	to	understand	why	this	design	
may	be		better	and how	to	find	this	decomposition…

Is	this	form	better?

• Redundancy?	
• Update	anomaly?	
• Delete	anomaly?
• Insert	anomaly?

Lecture	6		>		Section	1		>		Data	anomalies	&	constraints

Functional	Dependencies

Lecture	6		>		Section	1		>		Functional	dependencies

Functional	Dependency

A->B	means	that	
“whenever	two	tuples	agree	on	A	then	they	agree	on	B.”

Def:	Let	A,B	be	sets of	attributes
We	write	A	à B	or	say	A	functionally	determines	
B	if,	for	any	tuples	t1 and	t2:	

t1[A]	=	t2[A]	implies	t1[B]	=	t2[B]

and	we	call	A	à B	a	functional	dependency

Lecture	6		>		Section	1		>		Functional	dependencies

A	Picture	Of	FDs

A1 … Am B1 … Bn

Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

Lecture	6		>		Section	1		>		Functional	dependencies

A1 … Am B1 … Bn

A	Picture	Of	FDs

ti

tj

Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

Lecture	6		>		Section	1		>		Functional	dependencies

A	Picture	Of	FDs
Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	…	
AND	ti[Am]	=	tj[Am]

A1 … Am B1 … Bn

ti

tj

If	t1,t2	agree	here..

Lecture	6		>		Section	1		>		Functional	dependencies

A	Picture	Of	FDs
Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

if ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	
…	AND	ti[Am]	=	tj[Am]

then ti[B1]	=	tj[B1]	AND	ti[B2]=tj[B2]	
AND	…	AND	ti[Bn]	=	tj[Bn]

A1 … Am B1 … Bn

ti

tj

If	t1,t2	agree	here.. …they	also	agree	here!

Lecture	6		>		Section	1		>		Functional	dependencies

FDs	for	Relational	Schema	Design

• High-level	idea:	why	do	we	care	about	FDs?

1. Start	with	some	relational	schema

2. Model	its	functional	dependencies	(FDs)

3. Use	these	to	design	a	better	schema
1. One	which	minimizes	the	possibility	of	anomalies

Lecture	6		>		Section	1		>		Functional	dependencies

Functional	Dependencies	as	Constraints

Student Course Room
Mary CS564 B01
Joe CS564 B01
Sam CS564 B01
..

Note:	The	FD	{Course}	
->	{Room}	holds	on	this	
instance

A	functional	dependency	is	a	form	
of	constraint

• Holds on	some	instances	not	
others.

• Part	of	the	schema,	helps	define	a	
valid	instance.

Lecture	6		>		Section	1

Recall:	an	instance of	a	schema	is	a	multiset of	
tuples	conforming	to	that	schema,	i.e.	a	table

Functional	Dependencies	as	Constraints

Student Course Room
Mary CS564 B01
Joe CS564 B01
Sam CS564 B01
..

However,	cannot	prove	
that	the	FD	{Course}	->	
{Room}	is	part	of	the	
schema

Note	that:
• You	can	check	if	an	FD	is	

violated by	examining	a	single	
instance;

• However,	you	cannot	prove
that	an	FD	is	part	of	the	
schema	by	examining	a	single	
instance.	
• This	would	require	checking	

every	valid	instance

Lecture	6		>		Section	1

25

More	Examples
An	FD	is	a	constraint	which	holds,	or	does	not	hold on	
an	instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Lecture	6		>		Section	1		>		Functional	dependencies

26

{Position}		à {Phone}

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ¬ Salesrep
E1111 Smith 9876 ¬ Salesrep
E9999 Mary 1234 Lawyer

More	Examples

Lecture	6		>		Section	1		>		Functional	dependencies

27

EmpID Name Phone Position
E0045 Smith 1234 ® Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 ® Lawyer

but	not {Phone}		à {Position}

More	Examples

Lecture	6		>		Section	1		>		Functional	dependencies

ACTIVITY

28

Lecture	6		>		Section	1		>		ACTIVITY

A B C D E

1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

Find	at	least	three FDs	which	
are	violated	on	this	instance:

{ } à { }
{ } à { }
{ } à { }

2.	Finding	functional	
dependencies

29

Lecture	6		>		Section	2

What	you	will	learn	about	in	this	section

1. “Good”	vs.	“Bad”	FDs:	Intuition

2. Finding	FDs

3. Closures

4. ACTIVITY:	Compute	the	closures

30

Lecture	6		>		Section	2

31

“Good”	vs.	“Bad”	FDs

We	can	start	to	develop	a	notion	of	good	vs.	bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID ->	Name,	Phone,	
Position	is	“good	FD”
• Minimal	redundancy,	

less	possibility	of	
anomalies

Lecture	6		>		Section	2		>		Good	vs.	Bad	FDs

32

“Good”	vs.	“Bad”	FDs

We	can	start	to	develop	a	notion	of	good	vs.	bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID ->	Name,	Phone,	
Position	is	“good	FD”

But	Position	->	Phone	is	a	
“bad	FD”
• Redundancy!		

Possibility	of	data	
anomalies

Lecture	6		>		Section	2		>		Good	vs.	Bad	FDs

Student Course Room
Mary CS564 B01
Joe CS564 B01
Sam CS564 B01
..

Given	a	set	of	FDs	(from	user)	our	goal	is	to:
1. Find	all	FDs,	and	
2. Eliminate	the	“Bad	Ones".

Returning	to	our	original	example…	
can	you	see	how	the	“bad	FD”	
{Course}	->	{Room}	could	lead	to	
an:
• Update	Anomaly
• Insert	Anomaly
• Delete	Anomaly
• …

“Good”	vs.	“Bad”	FDs

Lecture	6		>		Section	2		>		Good	vs.	Bad	FDs

FDs	for	Relational	Schema	Design

• High-level	idea:	why	do	we	care	about	FDs?

1. Start	with	some	relational	schema

2. Find	out	its	functional	dependencies	(FDs)

3. Use	these	to	design	a	better	schema
1. One	which	minimizes	possibility	of	anomalies

Lecture	6		>		Section	2		>		Finding	FDs

This	part	can	be	tricky!

Finding	Functional	Dependencies

• There	can	be	a	very	large	number of	FDs…
• How	to	find	them	all	efficiently?

• We	can’t	necessarily	show	that	any	FD	will	hold	on	all	instances…
• How	to	do	this?

We	will	start	with	this	problem:
Given	a	set	of	FDs,	F,	what	other	FDs	must	hold?

Lecture	6		>		Section	2		>		Finding	FDs

Equivalent	to	asking:	Given	a	set	of	FDs,	F	=	{f1,…fn},	does	an	FD	g	hold?

Inference	problem:	How	do	we	decide?

Finding	Functional	Dependencies

Lecture	6		>		Section	2		>		Finding	FDs

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Department}
3.	{Color,	Category}	à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which	/	how	many	other	FDs	do?!?	

Provided	FDs:Products

Given	the	provided	FDs,	we	can	see	that	{Name,	Category}	à {Price}	
must	also	hold	on	any	instance…	

Example:

Lecture	6		>		Section	2		>		Finding	FDs

Equivalent	to	asking:	Given	a	set	of	FDs,	F	=	{f1,…fn},	does	an	FD	g	hold?

Inference	problem:	How	do	we	decide?

Answer:	Three	simple	rules	called	Armstrong’s	
Rules.

1. Split/Combine,
2. Reduction,	and
3. Transitivity…	ideas	by	picture

Finding	Functional	Dependencies

Lecture	6		>		Section	2		>		Finding	FDs

1.	Split/Combine

A1 … Am B1 … Bn

A1,	…,	Am à B1,…,Bn

Lecture	6		>		Section	2		>		Finding	FDs

1.	Split/Combine

A1 … Am B1 … Bn

A1,	…,	Am à B1,…,Bn

…	is	equivalent	to	the	following	n FDs…

A1,…,Am à Bi for	i=1,…,n

Lecture	6		>		Section	2		>		Finding	FDs

1.	Split/Combine

A1 … Am B1 … Bn

A1,	…,	Am à B1,…,Bn

…	is	equivalent	to	…

And	vice-versa,	A1,…,Am à Bi for	i=1,…,n

Lecture	6		>		Section	2		>		Finding	FDs

2.	Reduction/Trivial
A1 … Am

A1,…,Am à Aj for	any	j=1,…,m

Lecture	6		>		Section	2		>		Finding	FDs

3.	Transitive	Closure

A1 … Am B1 … Bn C1 … Ck

A1,	…,	Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

Lecture	6		>		Section	2		>		Finding	FDs

3.	Transitive	Closure

A1 … Am B1 … Bn C1 … Ck

A1,	…,	Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

implies
A1,…,Am à C1,…,Ck

Lecture	6		>		Section	2		>		Finding	FDs

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Department}
3.	{Color,	Category}	à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which	/	how	many	other	FDs	hold?

Provided	FDs:Products

Example:

Lecture	6		>		Section	2		>		Finding	FDs

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Which	/	how	many	other	FDs	hold?

Provided	FDs:Inferred	FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} ?
5.	{Name,	Category}	->	{Color} ?
6.	{Name,	Category} ->	{Category} ?
7.	{Name,	Category ->	{Color,	Category} ?
8.	{Name,	Category}	->	{Price} ?

Lecture	6		>		Section	2		>		Finding	FDs

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Can	we	find	an	algorithmic	way	to	do	this?

Provided	FDs:Inferred	FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} Trivial
5.	{Name,	Category}	->	{Color} Transitive (4	->	1)
6.	{Name,	Category} ->	{Category} Trivial
7.	{Name,	Category ->	{Color,	Category} Split/combine (5	+	6)
8.	{Name,	Category}	->	{Price} Transitive	(7	-> 3)

Lecture	6		>		Section	2		>		Finding	FDs

Closures

Lecture	6		>		Section	2 >		Closures

49

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}

Lecture	6		>		Section	2 >		Closures

50

Closure	Algorithm

Start	with	X	=	{A1,	…,	An}	and	set	of	FDs	F.

Repeat	until X	doesn’t	change;	do:

if {B1,	…,	Bn}	à C	is	entailed	by	F	

and {B1,	…,	Bn}	⊆ X

then add	C	to	X.

Return X	as	X+

Lecture	6		>		Section	2 >		Closures

51

Closure	Algorithm
Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bn}	à C	is	in	F	and {B1,	

…,	Bn}	⊆ X:
then add	C	to	X.

Return X	as	X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F	=

{name, category}+ =
{name, category}

Lecture	6		>		Section	2 >		Closures

52

Closure	Algorithm
Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bn}	à C	is	in	F	and {B1,	

…,	Bn}	⊆ X:
then add	C	to	X.

Return X	as	X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F	=

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

Lecture	6		>		Section	2 >		Closures

53

Closure	Algorithm
Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bn}	à C	is	in	F	and {B1,	

…,	Bn}	⊆ X:
then add	C	to	X.

Return X	as	X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F	=

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}

Lecture	6		>		Section	2 >		Closures

54

Closure	Algorithm
Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bn}	à C	is	in	F	and {B1,	

…,	Bn}	⊆ X:
then add	C	to	X.

Return X	as	X+

F	=

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color, dept,
price}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}{name} à {color}

{category} à {dept}

{color, category} à
{price}

Lecture	6		>		Section	2 >		Closures

Example

55

Compute	{A,B}+ =	{A,	B,																													}

Compute	{A,	F}+ =	{A,	F,																													}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

Lecture	6		>		Section	2 >		Closures

Example

56

Compute	{A,B}+ =	{A,	B,	C,	D																										}

Compute	{A,	F}+ =	{A,	F,	B																												}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

Lecture	6		>		Section	2 >		Closures

Example

57

Compute	{A,B}+ =	{A,	B,	C,	D,	E}

Compute	{A,	F}+ =	{A,	B,	C,	D,	E,	F}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

Lecture	6		>		Section	2 >		Closures

3.	Closures,	Superkeys &	Keys

58

Lecture	6		>		Section	3

What	you	will	learn	about	in	this	section

1. Closures	Pt.	II

2. Superkeys &	Keys

3. ACTIVITY:		The	key	or	a	key?

59

Lecture	6		>		Section	3

60

Why	Do	We	Need the	Closure?

• With	closure	we	can	find	all	FD’s	easily

• To	check	if	X	® A

1. Compute	X+

2. Check	if	A	Î X+

Note	here	that	X is	a	set of	
attributes,	but	A is	a	single
attribute.	

Recall	the	Split/combine rule:
X	à A1,	…,	X	à An
implies
X	à {A1,	…,	An}

Lecture	6		>		Section	3		>		Closures	Pt.	II

61

Using	Closure	to	Infer	ALL	FDs
{A,B} à C
{A,D} à B
{B} à D

Example:
Given	F	=Step	1:	Compute	X+,	for	every	set	of	attributes	X:

{A}+ = {A}
{B}+ = {B,D}
{C}+ = {C}
{D}+ = {D}
{A,B}+ = {A,B,C,D}
{A,C}+ = {A,C}
{A,D}+ = {A,B,C,D}
{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

No	need	to	
compute	these-
why?

Lecture	6		>		Section	3		>		Closures	Pt.	II

62

Using	Closure	to	Infer	ALL	FDs
{A,B} à C
{A,D} à B
{B} à D

Example:
Given	F	=Step	1:	Compute	X+,	for	every	set	of	attributes	X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step	2:	Enumerate	all	FDs	X	à Y,	s.t. Y	Í X+ and	X	Ç Y	=	Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

Lecture	6		>		Section	3		>		Closures	Pt.	II

63

Using	Closure	to	Infer	ALL	FDs
{A,B} à C
{A,D} à B
{B} à D

Example:
Given	F	=

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step	2:	Enumerate	all	FDs	X	à Y,	s.t. Y	Í X+ and	X	Ç Y	=	Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

“Y	is	in	the	
closure	of	X”

Lecture	6		>		Section	3		>		Closures	Pt.	II

Step	1:	Compute	X+,	for	every	set	of	attributes	X:

64

Using	Closure	to	Infer	ALL	FDs
{A,B} à C
{A,D} à B
{B} à D

Example:
Given	F	=

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step	2:	Enumerate	all	FDs	X	à Y,	s.t. Y	Í X+ and	X	Ç Y	=	Æ:

{A,B} à {C,D}, {A,D} à {B,C},
{A,B,C} à {D}, {A,B,D} à {C},
{A,C,D} à {B}

The	FD	X	à Y	
is	non-trivial

Lecture	6		>		Section	3		>		Closures	Pt.	II

Step	1:	Compute	X+,	for	every	set	of	attributes	X:

Superkeys and	Keys

Lecture	6		>		Section	3		>		Superkeys &	Keys

Keys	and	Superkeys

A	superkey is	a	set	of	attributes	A1,	…,	An s.t.
for	any	other attribute	B in	R,
we	have	 {A1,	…,	An}	à B

A	key is	a	minimal superkey

I.e.	all	attributes	are	
functionally	determined
by	a	superkey

Meaning	that	no	subset	of	
a	key	is	also	a	superkey

Lecture	6		>		Section	3		>		Superkeys &	Keys

Finding	Keys	and	Superkeys

• For	each	set	of	attributes	X

1. Compute	X+

2. If	X+	=	set	of	all	attributes	then	X	is	a	superkey

3. If	X	is	minimal,	then	it	is	a	key

Lecture	6		>		Section	3		>		Superkeys &	Keys

Example	of	Finding	Keys
Product(name, price, category, color)

{name, category} à price
{category} à color

What	is	a	key?

Lecture	6		>		Section	3		>		Superkeys &	Keys

Example	of	Keys
Product(name, price, category, color)

{name, category} à price
{category} à color

{name, category}+ = {name, price, category, color}
= the	set	of	all	attributes
⟹ this	is	a	superkey
⟹ this	is	a	key,	since	neither	name nor	category
alone	is	a	superkey

Lecture	6		>		Section	3		>		Superkeys &	Keys

Activity-6.ipynb

70

Lecture	6		>		Section	3 >		ACTIVITY

