
Lecture	4:
Advanced	SQL	– Part	II

Announcements!

1. Problem	Set	#1	is	released!
• We	will	discuss	some	of	the	questions	at	the	end	of	this	lecture

2. Project	group	assignments
• Does	everybody	have	a	team?

3. Ask	questions,	Go	to	office	hours,	Engage	on	Piazza

2

Lecture	4

Lecture	4:
Advanced	SQL	– Part	II

Lecture	4

Today’s	Lecture

1. Aggregation	&	GROUP	BY
• ACTIVITY:	Fancy	SQL	Part	I

2. Advance	SQL-izing
• ACTIVITY:	Fancy	SQL	Part	II

3. Problem	Set	#1	Overview

4

Lecture	4

1.	Aggregation	&	GROUP	BY

5

Lecture	4		>		Section	1

What	you	will	learn	about	in	this	section

1. Aggregation	operators

2. GROUP	BY

3. GROUP	BY:	with	HAVING,	semantics

4. ACTIVITY:	Fancy	SQL	Pt.	I

6

Lecture	4		>		Section	1

7

Aggregation

SELECT COUNT(*)
FROM Product
WHERE year > 1995

Except	COUNT,	all	aggregations	
apply	to	a	single	attribute

SELECT AVG(price)
FROM Product
WHERE maker = “Toyota”

• SQL	supports	several	aggregation operations:
• SUM,	COUNT,	MIN,	MAX,	AVG

Lecture	4		>		Section	1		>		Aggregation

8

• COUNT	applies	to	duplicates,	unless	otherwise	stated

SELECT COUNT(category)
FROM Product
WHERE year > 1995

Note:	Same	as	COUNT(*).		
Why?

We	probably	want:

SELECT COUNT(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation:	COUNT

Lecture	4		>		Section	1		>		Aggregation

9

Purchase(product, date, price, quantity)

More	Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What	do	these	mean?

Lecture	4		>		Section	1		>		Aggregation

10

Simple	Aggregations
Purchase
Product Date Price Quantity
bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10
bagel 10/25 1.50 20

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50		(=	1*20	+	1.50*20)

Lecture	4		>		Section	1		>		Aggregation

11

Grouping	and	Aggregation

SELECT product,
SUM(price * quantity) AS TotalSales

FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s	see	what	this	means…

Find	total	sales	
after	10/1/2005	
per	product.

Lecture	4		>		Section	1		>		GROUP	BY

Purchase(product, date, price, quantity)

12

Grouping	and	Aggregation

1.	Compute	the	FROM and	WHERE clauses

2.	Group	by	the	attributes	in	the	GROUP	BY

3.	Compute	the	SELECT clause:	grouped	attributes	and	aggregates

Semantics	of	the	query:

Lecture	4		>		Section	1	>		GROUP	BY

13

1.	Compute	the	FROM and	WHERE clauses

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Lecture	4		>		Section	1		>		GROUP	BY

FROM

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

14

2.	Group	by	the	attributes	in	the	GROUP	BY

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Lecture	4 >		Section	1		>		GROUP	BY

GROUP BY Product Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

15

3.	Compute	the	SELECT clause:	grouped	
attributes	and	aggregates
SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Product TotalSales

Bagel 50

Banana 15

SELECTProduct Date Price Quantity

Bagel
10/21 1 20
10/25 1.50 20

Banana
10/3 0.5 10
10/10 1 10

Lecture	4 >		Section	1		>		GROUP	BY

16

GROUP	BY	v.s.	Nested	Quereis

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT DISTINCT x.product,
(SELECT Sum(y.price*y.quantity)
FROM Purchase y
WHERE x.product = y.product

AND y.date > ‘10/1/2005’) AS TotalSales
FROM Purchase x
WHERE x.date > ‘10/1/2005’

Lecture	3		>		Section	2		>		GROUP	BY

17

HAVING	Clause

Same	query	as	
before,	except	that	
we	consider	only	
products	that	have	
more	than
100	buyers

HAVING	clauses	contains	conditions	on	aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas	WHERE	clauses	condition	on	individual	tuples…

Lecture	4 >		Section	1		>		GROUP	BY

18

General	form	of	Grouping	and	Aggregation

• S	=	Can	ONLY	contain	attributes	a1,…,ak and/or	aggregates	over	other	attributes
• C1 =	is	any	condition	on	the	attributes	in	R1,…,Rn
• C2 =	is	any	condition	on	the	aggregate	expressions

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Why?

Lecture	4 >		Section	1		>		GROUP	BY

19

General	form	of	Grouping	and	Aggregation
SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

Evaluation	steps:
1. Evaluate	FROM-WHERE:	apply	condition	C1 on	the		

attributes	in	R1,…,Rn
2. GROUP	BY	the	attributes	a1,…,ak
3. Apply	condition	C2 to	each	group	(may	have	aggregates)
4. Compute	aggregates	in	S	and	return	the	result

Lecture	4 >		Section	1		>		GROUP	BY

20

Group-by	v.s.	Nested	Query

• Find	authors	who	wrote	³ 10	documents:
• Attempt	1:	with	nested	queries

SELECT DISTINCT Author.name
FROM Author
WHERE COUNT(

SELECT Wrote.url
FROM Wrote
WHERE Author.login = Wrote.login) > 10

Author(login, name)
Wrote(login, url)

This	is
SQL	by
a	novice

Lecture	4 >		Section	1		>		GROUP	BY

21

Group-by	v.s.	Nested	Query

• Find	all	authors	who	wrote	at	least	10	documents:
• Attempt	2:	SQL	style	(with	GROUP	BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login = Wrote.login
GROUP BY Author.name
HAVING COUNT(Wrote.url) > 10

No	need	for	DISTINCT:	automatically	from	GROUP	BY

This	is
SQL		by
an	expert

Lecture	4 >		Section	1		>		GROUP	BY

Group-by	vs.	Nested	Query

Which	way	is	more	efficient?

• Attempt	#1-With	nested:	How	many	times	do	we	do	a	SFW	query	
over	all	of	the	Wrote	relations?

• Attempt	#2-With	group-by:	How	about	when	written	this	way?

With	GROUP	BY	can	be	much more	efficient!

Lecture	4 >		Section	1		>		GROUP	BY

Activity-4-1.ipynb

23

Lecture	4		>		Section	1 >		ACTIVITY

3.	Advanced	SQL-izing

24

Lecture	4		>		Section	2

What	you	will	learn	about	in	this	section

1. Quantifiers

2. NULLs

3. Outer	Joins

4. ACTIVITY:	Fancy	SQL	Pt.	II

25

Lecture	4		>		Section	2

26

Quantifiers
Product(name, price, company)
Company(name, city)

Find	all	companies	
that	make	some
products	with	price	
<	100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.name = Product.company

AND Product.price < 100

Existential:	easy		!	J

Lecture	4		>		Section	2 >		Quantifiers

An	existential	quantifier is	a	
logical	quantifier	(roughly)	
of	the	form	“there	exists”

27

Quantifiers
Product(name, price, company)
Company(name, city)

Find	all	companies	
with	products	all
having	price	<	100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.name NOT IN(

SELECT Product.company
FROM Product.price >= 100)

A	universal	quantifier is	of	
the	form	“for	all” Universal:	hard	!		L

Find	all	companies	
that	make	only	
products	with	price	
<	100

Equivalent

Lecture	4		>		Section	2 >		Quantifiers

28

NULLS	in	SQL
• Whenever	we	don’t	have	a	value,	we	can	put	a	NULL

• Can	mean	many	things:
• Value	does	not	exists
• Value	exists	but	is	unknown
• Value	not	applicable
• Etc.

• The	schema	specifies	for	each	attribute	if	can	be	null	(nullable attribute)	or	
not

• How	does	SQL	cope	with	tables	that	have	NULLs?

Lecture	4 >		Section	2		>		NULLs

29

Null	Values

• For	numerical	operations,	NULL	->	NULL:
• If	x	=	NULL	then	4*(3-x)/7	is	still	NULL

• For	boolean operations,	in	SQL	there	are	three	values:

FALSE													=	 0
UNKNOWN				=	 0.5
TRUE															=	 1

• If	x=	NULL	then	x=“Joe”	is	UNKNOWN

Lecture	4 >		Section	2		>		NULLs

30

Null	Values

• C1	AND	C2			=		min(C1,	C2)
• C1		OR		 C2			=		max(C1,	C2)
• NOT	C1									=		1	– C1

SELECT *
FROM Person
WHERE (age < 25)

AND (height > 6 AND weight > 190)

Won’t	return	e.g.
(age=20
height=NULL
weight=200)!

Rule	in	SQL:	include	only	tuples	that	yield	TRUE	(1.0)

Lecture	4 >		Section	2		>		NULLs

31

Null	Values

Unexpected	behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some	Persons	are	not	included	!

Lecture	4 >		Section	2		>		NULLs

32

Null	Values

Can	test	for	NULL	explicitly:
• x	IS	NULL
• x	IS	NOT	NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

OR age IS NULL

Now	it	includes	all	Persons!

Lecture	4 >		Section	2		>		NULLs

33

RECAP:	Inner	Joins
By default,	joins	in	SQL	are	“inner	joins”:

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Both	equivalent:
Both	INNER	JOINS!

Lecture	4 >		Section	2		>		NULLs

34

Inner	Joins	+	NULLS	=	Lost	data?
By default,	joins	in	SQL	are	“inner	joins”:

However:	Products	that	never	sold	(with	no	Purchase	tuple)	will	be	lost!

SELECT Product.name, Purchase.store
FROM Product
JOIN Purchase ON Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

Lecture	4 >		Section	2		>		NULLs

35

Outer	Joins

• An	outer	join returns	tuples	from	the	joined	relations	that	don’t	have	a	
corresponding	tuple	in	the	other	relations
• I.e.	If	we	join	relations	A	and	B	on	a.X =	b.X,	and	there	is	an	entry	in	A	with	X=5,	but	
none	in	B	with	X=5…
• A	LEFT	OUTER	JOIN	will	return	a	tuple	(a,	NULL)!

• Left	outer	joins	in	SQL:

Lecture	4		>		Section	2		>		Outer	Joins

SELECT Product.name, Purchase.store
FROM Product
LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

Now	we’ll	get	products	even	if	they	didn’t	sell

36

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase
INNER	JOIN:

SELECT Product.name, Purchase.store
FROM Product

INNER JOIN Purchase
ON Product.name = Purchase.prodName

Note:	another	equivalent	way	to	write	an	
INNER	JOIN!

Lecture	4		>		Section	2		>		Outer	Joins

37

name category

Gizmo gadget

Camera Photo

OneClick Photo

prodName store

Gizmo Wiz

Camera Ritz

Camera Wiz

name store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase
LEFT	OUTER	JOIN:

SELECT Product.name, Purchase.store
FROM Product

LEFT OUTER JOIN Purchase
ON Product.name = Purchase.prodName

Lecture	4		>		Section	2		>		Outer	Joins

38

Other	Outer	Joins

• Left	outer	join:
• Include	the	left	tuple	even	if	there’s	no	match

• Right	outer	join:
• Include	the	right	tuple	even	if	there’s	no	match

• Full	outer	join:
• Include	the	both	left	and	right	tuples	even	if	there’s	no	match

Lecture	4		>		Section	2		>		Outer	Joins

Activity-4-2.ipynb

39

Lecture	3		>		Section	3		>		ACTIVITY

Summary

SQL	is	a	rich	programming	language	
that	handles	the	way	data	is	processed	

declaratively

40

Lecture	2,	3,	&	4		>		SUMMARY

Problem	Set	#1:
SQL	Uber	Alles

Lecture	4		>		Problem	Set	#1

Problems	in	PS#1

42

Lecture	4		>		Problem	Set	#1

1. Linear	algebra	in	SQL

2. Precipitation	data	and	nested	queries

3. The	traveling	SQL	salesman:	Graph	traversals	in	SQL

Linear	algebra	in	SQL

1. Simple	joins	with	aggregations

2. Hint	1:	Using	aliases	leads	to	clean	SQL

3. Hint	2:	SQL	supports	many	operations	over	numeric	attributes	(in	
the	SELECT	part	of	an	SFW	query)

43

Lecture	4		>		Problem	Set	#1

SELECT MAX(A.val*B.val)
FROM A, B
WHERE A.i= B.i AND A.j = B.j

Precipitation	data	and	nested	queries

1. Aggregates	inside	nested	queries.	Remember	SQL	is	compositional

2. Hint	1:	Break	down	query	description	to	steps	(subproblems)

3. Hint	2:	Whenever	in	doubt	always	go	back	to	the	definition

44

Lecture	4		>		Problem	Set	#1

Precipitation	data	and	nested	queries
Example:	
“Using	a single	SQL	query,	find	all	of	the	
stations	that	had	the	highest	daily	precipitation	
(across	all	stations)	on	any	given	day.”

45

Lecture	4		>		Problem	Set	#1

SELECT station_id, day
FROM precipitation,

(SELECT day AS maxd, MAX(precipitation)AS maxp
FROM precipitation
GROUP BY day)

WHERE day = maxd AND precipitation = maxp

Precipitation

The	traveling	SQL	salesman:	Graph	traversals	in	SQL

1. Views:	Details	in	the	description.	Nothing	more	than	temp	aliases	for	
queries.	Remember:	SQL	is	compositional!

2. Self-joins	are	very	powerful

46

Lecture	4		>		Problem	Set	#1

Example:	
“Find	all	paths	of	size	two	in	a	
directed	graph”

47

Lecture	4		>		Problem	Set	#1

SELECT e1.src, e1.trg, e2.trg
FROM edges AS e1, edges AS e2,
WHERE e1.trg = e2.src

The	traveling	SQL	salesman:	Graph	traversals	in	SQL

edge_id src trg

1 A B

2 B C

3 C D

Edges

Some	more	examples:	https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-
database-recursive-ctes-and-topological-sort-with-postgres/620/

