
Lecture	2	(cont’d)	&	Lecture	3:
Advanced	SQL	– Part	I

Announcements!

1. You	should	be	Jupyter notebook	Ninjas!

2. Welcome	Ting!
• New	TA-Office	hours	on	website	(room	to	be	announced)

3. Project	groups	finalized!	
• If	you	do	not	have	a	group	talk	with	us	ASAP!

4. Problem	Set	#1	released

2

Lecture	2

Lecture	2	(cont’d)	&	Lecture	3:
Advanced	SQL	– Part	I

Lecture	2

Today’s	Lecture

1. Recap	from	Lecture	2	&	Multi-table	queries
• ACTIVITY:	Multi-table	queries

2. Set	operators	&	nested	queries
• ACTIVITY:	Set	operator	subtleties

4

Lecture	2

Lecture	2	(cont’d):
Introduction	to	SQL

Lecture	2

3.	Multi-table	queries

6

Lecture	2		>		Section	3

What	you	will	learn	about	in	this	section

1. Primary	keys	and	Foreign	keys	recap

2. Joins:	SQL	semantics

3. ACTIVITY:	Multi-table	queries

7

Lecture	2		>		Section	3

8

Keys	and	Foreign	Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

What	is	a	
foreign	key	vs.	
a	key	here?

Lecture	2		>		Section	3		>		Foreign	Keys

A	key is	a	minimal	
subset	of	attributes
that	acts	as	a	unique	
identifier	for	tuples	in	a	
relation

If	two	tuples	agree	on	the	
values	of	the	key,	then	they	
must	be	the	same tuple!

9

Keys	and	Foreign	Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

What	is	a	
foreign	key	vs.	
a	key	here?

Lecture	2		>		Section	3		>		Foreign	Keys

A foreign	key is	an	attribute	(or	
collection	of	attributes)	in	one	
table	that	uniquely	identifies	a	
row	of	another	table.	

The foreign	key is defined in	a	
second	table,	but	it	refers	to	the	
primary key in	the	first	table.

Declaring	Foreign	Keys

Lecture	2		>		Section	3		>		Foreign	Keys

Company(CName: string, StockPrice: float, Country: string)
Product(PName: string, Price: float, Category: string, Manufacturer: string)

CREATE TABLE Product(
pname VARCHAR(100),
price FLOAT,
category VARCHAR(100),
manufacturer VARCHAR(100),
PRIMARY KEY (pname, manufacturer),
FOREIGN KEY (manufacturer) REFERENCES Company(cname)

)

Lecture	2		>		Section	3		>		Foreign	Keys

Can	we	do	this?	What	would	be	
the	problem?

Declaring	Foreign	Keys
CREATE TABLE Company(

cname VARCHAR(100),
stockprice FLOAT,
country VARCHAR(100),
PRIMARY KEY (cname),
FOREIGN KEY (cname) REFERENCES Product(pname, manufacturer)

)

CREATE TABLE Product(
pname VARCHAR(100),
price FLOAT,
category VARCHAR(100),
manufacturer VARCHAR(100),
PRIMARY KEY (pname, manufacturer)

)

Declaring	Foreign	Keys
Lecture	2		>		Section	3		>		Foreign	Keys

CREATE TABLE Company(
cname VARCHAR(100),
stockprice FLOAT,
country VARCHAR(100),
PRIMARY KEY (cname),
FOREIGN KEY (cname) REFERENCES Product(pname, manufacturer)

)

CREATE TABLE Product(
pname VARCHAR(100),
price FLOAT,
category VARCHAR(100),
manufacturer VARCHAR(100),
PRIMARY KEY (pname, manufacturer)

)

We	can	have	products	without	a	registered	
company!	Bad	design!	We’ll	see	more	next	week.

Can	we	do	this?	What	would	be	
the	problem?

Lecture	2		>		Section	3		>		Foreign	Keys

Declaring	Foreign	Keys
CREATE TABLE Company(

cname VARCHAR(100),
stockprice FLOAT,
country VARCHAR(100),
PRIMARY KEY (cname),
FOREIGN KEY (cname) REFERENCES Product(pname, manufacturer)

)

CREATE TABLE Product(
pname VARCHAR(100),
price FLOAT,
category VARCHAR(100),
manufacturer VARCHAR(100),
PRIMARY KEY (pname, manufacturer)

)

If	the primary	key is	a	set	of	columns	(a composite	key),	then	the foreign	
key also	must	be	a	set	of	columns	that	corresponds	to	the composite	key.

14

Joins

PName Price Category Manuf
Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country
GWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price
SingleTouch $149.99

Lecture	2		>		Section	3		>		Joins:	Basics

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

An	example	of	SQL	semantics

15

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross	
Product

A B C
3 3 4
3 3 5

A
3
3

Apply	
Projection

Lecture	2		>		Section	3		>		Joins:	semantics

Apply	
Selections	/	
Conditions

Output

Note	the	semantics of	a	join

16

SELECT R.A
FROM R, S
WHERE R.A = S.B

Lecture	2		>		Section	3		>		Joins:	semantics

Recall:	Cross	product	(A	X	B)	is	the	set	of	all	
unique	tuples	in	A,B

Ex:	{a,b,c}	X	{1,2}	
=	{(a,1),	(a,2),	(b,1),	(b,2),	(c,1),	(c,2)}

=	Filtering!

=	Returning	only	some attributes

Remembering	this	order	is	critical	to	understanding	the	
output	of	certain	queries	(see	later	on…)

1. Take	cross	product:
𝑋 = 𝑅×𝑆

2. Apply	selections	/	conditions:
𝑌 = 𝑟, 𝑠 ∈ 𝑋	 	𝑟. 𝐴 == 𝑟. 𝐵}

3. Apply	projections to	get	final	output:
𝑍 = (𝑦. 𝐴,)	𝑓𝑜𝑟	𝑦 ∈ 𝑌

Note:	we	say	“semantics”	not	“execution	
order”

• The	preceding	slides	show	what	a	join	means

• Not	actually	how	the	DBMS	executes	it	under	the	covers

Lecture	2		>		Section	3		>		Joins:	semantics

18

A	Subtlety	about	Joins

Find	all	countries	that	manufacture	some	product	
in	the	‘Gadgets’	category.

SELECT Country
FROM Product, Company
WHERE Manufacturer=CName AND Category=‘Gadgets’

Lecture	2		>		Section	3		>		ACTIVITYLecture	2		>		Section	3		>		Joins:	semantics

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

19

A	subtlety	about	Joins

PName Price Category Manuf

Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product Company
Cname Stock Country

GWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Country
?
?

SELECT Country
FROM Product, Company
WHERE Manufacturer=Cname

AND Category=‘Gadgets’

What	is	the	problem	?
What’s	the	solution	?

Lecture	2		>		Section	3		>		ACTIVITYLecture	2		>		Section	3		>		Joins:	semantics

ACTIVITY:		Lecture-2-3.ipynb

20

Lecture	2		>		Section	3		>		ACTIVITY

21

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

What	does	it	compute?

Lecture	2		>		Section	3		>		ACTIVITY

22

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

Computes	R	Ç (S	È T)

But	what	if	S	=	f?

S T

R

Go	back	to	the	semantics!

Lecture	2		>		Section	3		>		ACTIVITY

23

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

• Recall	the	semantics!
1. Take	cross-product
2. Apply	selections /	conditions
3. Apply	projection

• If	S	=	{},	then	the	cross	product	of	R,	S,	T	=	{},	and	the	query	result	=	{}!

Must	consider	semantics	here.		
Are	there	more	explicit	way	to	do	set	operations	like	this?

Lecture	2		>		Section	3		>		ACTIVITY

Lecture	3:
Advanced	SQL	– Part	I

1.	Set	Operators	&	Nested	
Queries

25

Lecture	3		>		Section	1

What	you	will	learn	about	in	this	section

1. Multiset operators	in	SQL

2. Nested	queries

3. ACTIVITY:	Set	operator	subtleties

26

Lecture	3		>		Section	1

27

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

Computes	R	Ç (S	È T)

But	what	if	S	=	f?

Lecture	3		>		Section	1		>		Set	Operators

S T

R

Go	back	to	the	semantics!

What	does	it	compute?

28

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

An	Unintuitive	Query

Lecture	3		>		Section	1		>		Set	Operators

• Recall	the	semantics!
1. Take	cross-product
2. Apply	selections /	conditions
3. Apply	projection

• If	S	=	{},	then	the	cross	product	of	R,	S,	T	=	{},	and	the	query	result	=	{}!

Must	consider	semantics	here.		
Are	there	more	explicit	way	to	do	set	operations	like	this?

29

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What	does	this	look	like	in	Python?

Lecture	3		>		Section	1		>		Set	Operators

• Semantics:
1. Take	cross-product

2. Apply	selections /	conditions

3. Apply	projection

Joins	/	cross-products are	just	nested	for	
loops (in	simplest	implementation)!

If-then	statements!

R	Ç (S	È T)

S T

R

30

SELECT DISTINCT R.A
FROM R, S, T
WHERE R.A=S.A OR R.A=T.A

What	does	this	look	like	in	Python?

Lecture	3		>		Section	1		>		Set	Operators

R	Ç (S	È T)

S T

R

output = {}

for r in R:
for s in S:

for t in T:
if r[‘A’] == s[‘A’] or r[‘A’] == t[‘A’]:

output.add(r[‘A’])
return list(output)

Can	you	see	now	what	happens	if	S	=	[]?

Multiset Operations

31

Lecture	3		>		Section	1		>		Set	Operators

Recall	Multisets

32

Lecture	3		>		Section	1		>		Set	Operators

Tuple

(1,	a)

(1,	a)

(1, b)

(2,	c)

(2,	c)

(2,	c)

(1,	d)

(1,	d)

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 1

(2,	c) 3

(1, d) 2Equivalent	
Representations
of	a	Multiset

Multiset X

Multiset X

Note:	In	a	set	all	
counts	are	{0,1}.

𝝀 𝑿 =	“Count	of	tuple	in	X”
(Items	not	listed	have	
implicit	count	0)

Generalizing	Set	Operations	to	Multiset
Operations

33

Lecture	3		>		Section	1		>		Set	Operators

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 2

(1,	b) 0

(2,	c) 2

(1, d) 0

Multiset Z

∩ =

𝝀 𝒁 = 𝒎𝒊𝒏(𝝀 𝑿 , 𝝀 𝒀)
For	sets,	this	is	
intersection

34

Lecture	3		>		Section	1		>		Set	Operators

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 5

(1,	b) 1

(2,	c) 3

(1, d) 2

Multiset Z

∪ =

𝝀 𝒁 = 𝒎𝒂𝒙(𝝀 𝑿 , 𝝀 𝒀)
For	sets,	

this	is	union

Generalizing	Set	Operations	to	Multiset
Operations

Multiset Operations	in	SQL

35

Lecture	3		>		Section	1		>		Set	Operators

Explicit	Set	Operators:	INTERSECT

36

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture	3		>		Section	1		>		Set	Operators

Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∩ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

UNION

37

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture	3		>		Section	1		>		Set	Operators

Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

Why	aren’t	there	
duplicates?

What	if	we	want	
duplicates?

UNION	ALL

38

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture	3		>		Section	1		>		Set	Operators

Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

ALL	indicates	
the	Multiset	
disjoint	union	
operation

39

Lecture	3		>		Section	1		>		Set	Operators

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 7

(1,	b) 1

(2,	c) 5

(1, d) 2

Multiset Z

=

𝝀 𝒁 = 	𝝀 𝑿 + 	𝝀 𝒀
For	sets,	

this	is	disjoint
union

Generalizing	Set	Operations	to	Multiset
Operations

t

EXCEPT

40

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A

Lecture	3		>		Section	1		>		Set	Operators

Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 \{𝑟. 𝐴|𝑟. 𝐴 = 𝑡. 𝐴}

What	is	the	
multiset version?

𝝀 𝒁 = 	𝝀 𝑿 − 	𝝀 𝒀
For	elements	that	are	in	X

INTERSECT:	Still	some	subtle	problems…

41

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc = ‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc = ‘China’

What	if	two	companies	have	HQ	in	US:	BUT	one	has	factory	in	
China	(but	not	US)	and	vice	versa?	 What	goes	wrong?

“Headquarters	of	
companies	which	
make	gizmos	in	US	
AND China”

Lecture	3		>		Section	1		>		Set	Operators

INTERSECT:	Remember	the	semantics!

42

Company(name, hq_city) AS C
Product(pname, maker,
factory_loc) AS P

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc=‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Lecture	3		>		Section	1		>		Set	Operators

Example:		C		JOIN		P	on	maker	=	name
C.name C.hq_city P.pname P.maker P.factory_loc

X	Co. Seattle X X	Co. U.S.

Y	Inc. Seattle X Y Inc. China

INTERSECT:	Remember	the	semantics!

43

Company(name, hq_city) AS C
Product(pname, maker,
factory_loc) AS P

SELECT hq_city
FROM Company, Product
WHERE maker = name

AND factory_loc=‘US’
INTERSECT
SELECT hq_city
FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Lecture	3		>		Section	1		>		Set	Operators

Example:		C		JOIN		P	on	maker	=	name
C.name C.hq_city P.pname P.maker P.factory_loc

X	Co. Seattle X X	Co. U.S.

Y	Inc. Seattle X Y Inc. China

X	Co	has	a	factory	in	the	US	(but	not	China)
Y	Inc.	has	a	factor	in	China	(but	not	US)

But	Seattle	is	returned	by	the	query!

We	did	the	INTERSECT	
on	the	wrong	attributes!

One	Solution:	Nested	Queries

44

Company(name, hq_city)
Product(pname, maker, factory_loc)

SELECT DISTINCT hq_city
FROM Company, Product
WHERE maker = name

AND name IN (
SELECT maker
FROM Product
WHERE factory_loc = ‘US’)

AND name IN (
SELECT maker
FROM Product
WHERE factory_loc = ‘China’)

Lecture	3		>		Section	1		>		Nested	Queries

“Headquarters	of	
companies	which	
make	gizmos	in	US	
AND China”

Note:	If	we	hadn’t	
used	DISTINCT	here,	
how	many	copies	of	
each	hq_city would	
have	been	returned?

High-level	note	on	nested	queries

• We	can	do	nested	queries	because	SQL	is	compositional:

• Everything	(inputs	/	outputs)	is	represented	as	multisets- the	output	of	one	
query	can	thus	be	used	as	the	input	to	another	(nesting)!

• This	is	extremely powerful!

Lecture	3		>		Section	1		>		Nested	Queries

46

Nested	queries:	Sub-queries	Returning	
Relations

SELECT c.city
FROM Company c
WHERE c.name IN (

SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name
AND p.buyer = ‘Joe Blow‘)

“Cities	where	one	
can	find	
companies	that	
manufacture	
products	bought	
by	Joe	Blow”

Company(name, city)
Product(name, maker)
Purchase(id, product, buyer)

Lecture	3		>		Section	1		>		Nested	Queries

Another	
example:

47

Nested	Queries

SELECT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe Blow’

Is	this	query	equivalent?

Beware	of	duplicates!	

Lecture	3		>		Section	1		>		Nested	Queries

48

Nested	Queries

SELECT DISTINCT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe Blow’

Now	they	are	equivalent

Lecture	3		>		Section	1		>		Nested	Queries

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.product = pr.name

AND p.buyer = ‘Joe Blow‘)

49

Subqueries Returning	Relations

SELECT name
FROM Product
WHERE price > ALL(

SELECT price
FROM Product
WHERE maker = ‘Gizmo-Works’)

Product(name, price, category, maker)

You	can	also	use	operations	of	the	form:				
• s	>	ALL	R
• s	<	ANY	R
• EXISTS	R

Lecture	3		>		Section	1		>		Nested	Queries

Find	products	that	
are	more	expensive	
than	all	those	
produced	by	
“Gizmo-Works”

Ex:

ANY	and	ALL	not	supported	by	
SQLite.

50

Subqueries	Returning	Relations

SELECT p1.name
FROM Product p1
WHERE p1.maker = ‘Gizmo-Works’

AND EXISTS(
SELECT p2.name
FROM Product p2
WHERE p2.maker <> ‘Gizmo-Works’

AND p1.name = p2.name)

Product(name, price, category, maker)

You	can	also	use	operations	of	the	form:				
• s	>	ALL	R
• s	<	ANY	R
• EXISTS	R

Lecture	3		>		Section	1		>		Nested	Queries

Find	‘copycat’	
products,	i.e.	
products	made	by	
competitors	with	
the	same	names	as	
products	made	by	
“Gizmo-Works”

Ex:

<>	means	!=

51

Nested	queries	as	alternatives	to	INTERSECT	
and	EXCEPT

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE NOT EXISTS(

SELECT *
FROM S
WHERE R.A=S.A AND R.B=S.B)

Lecture	3		>		Section	1		>		Nested	Queries

INTERSECT	and	EXCEPT	not	in	
some	DBMSs!

If	R,	S	have	no	
duplicates,	then	
can	write	without	
sub-queries	
(HOW?)(SELECT R.A, R.B

FROM R)
EXCEPT
(SELECT S.A, S.B
FROM S)

52

Correlated	Queries

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title = m.title)

Movie(title, year, director, length)

Note	also:	this	can	still	be	expressed	as	single	SFW	query…

Lecture	3		>		Section	1		>		Nested	Queries

Find	movies	whose	
title	appears	more	
than	once.

Note	the	scoping	
of	the	variables!

53

Complex	Correlated	Query

SELECT DISTINCT x.name, x.maker
FROM Product AS x
WHERE x.price > ALL(

SELECT y.price
FROM Product AS y
WHERE x.maker = y.maker

AND y.year < 1972)

Lecture	3		>		Section	1		>		Nested	Queries

Find	products	(and	their	
manufacturers)	that	are	
more	expensive	than	all	
products	made	by	the	
same	manufacturer	
before	1972

Product(name, price, category, maker, year)

Can	be	very	powerful	(also	much	harder	to	optimize)

Activity-3-1.ipynb

54

Lecture	3		>		Section	1		>		ACTIVITY

Basic	SQL	Summary

• SQL	provides	a	high-level	declarative	language	for	manipulating	data	
(DML)

• The	workhorse	is	the	SFW	block

• Set	operators	are	powerful	but	have	some	subtleties

• Powerful,	nested	queries	also	allowed.

55

Lecture	3		>		Section	1		>		Summary

