Lecture 2 (cont’d) & Lecture 3:
Advanced SQL — Part |

Lecture 2

Announcements!

1. You should be Jupyter notebook Ninjas!

2. Welcome Ting!

* New TA-Office hours on website (room to be announced)

3. Project groups finalized!
* |f you do not have a group talk with us ASAP!

4. Problem Set #1 released

eeeeeeee

Lecture 2 (cont’d) & Lecture 3:
Advanced SQL — Part |

Lecture 2

Today’s Lecture

1. Recap from Lecture 2 & Multi-table queries
e ACTIVITY: Multi-table queries

2. Set operators & nested queries
* ACTIVITY: Set operator subtleties

eeeeeeee

Lecture 2 (cont’d):
Introduction to SQL

3. Multi-table queries

Lecture 2 > Section 3

What you will learn about in this section

1. Primary keys and Foreign keys recap
2. Joins: SQL semantics

3. ACTIVITY: Multi-table queries

Lecture 2 > Section 3 > Foreign Keys

Keys and Foreign Keys

GizmoWorks 25 USA W h atis a
Canon 65 Japan | foreign key vs.
Hitachi 15 Japan 3 key here?
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

A key is a minimal
subset of attributes
that acts as a unique
identifier for tuples in a
relation

If two tuples agree on the
values of the key, then they
must be the same tuple!

Lecture 2 > Section 3 > Foreign Keys

Keys and Foreign Keys

GizmoWorks 25 USA W h atis a
Canon 65 Japan | foreign key vs.
Hitachi 15 Japan 3 key here?

Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

A foreign key is an attribute (or
collection of attributes) in one
table that uniquely identifies a
row of another table.

The foreign key is defined in a
second table, but it refers to the
primary key in the first table.

Lecture 2 > Section 3 > Foreign Keys

Declaring Foreign Keys

Company (CName:
Product (PName:

string, StockPrice: float, Country: string)
string, Price: float, Category: string, Manufacturer: string)

CREATE TABLE Product(

pname VARCHAR(100),
price FLOAT,
category VARCHAR(100),

manufacturer VARCHAR(100),
PRIMARY KEY (pname, manufacturer),
FOREIGN KEY (manufacturer) REFERENCES Company(cname)

Lecture 2 > Section 3 > Foreign Keys

Declaring Foreign Keys

Company (
cname ,
stockprice)
country ’
(cname),

Product(
pname)
price ,
category)
manufacturer ,
(pname, manufacturer)

)

FOREIGN KEY (cname) REFERENCES Product(pname, manufacturer)

Can we do this? What would be
the problem?

Lecture 2 > Section 3 > Foreign Keys

Declaring Foreign Keys

Company (
cname ,
stockprice)
country
(cname),

Product (
pname ,
price ,
category
manufacturer

)

FOREIGN KEY (cname) REFERENCES Product(pname, manufacturer)

’
(pname, manufacturer)

’

’

Can we do this? What would be
the problem?

We can have products without a registered
company! Bad design! We’ll see more next week.

Lecture 2 > Section 3 > Foreign Keys

Declaring Foreign Keys

Company (
cnamé)
stockprice ,
country ’
(cnanh

FOREIGN KEY (cname) R RENCES Produciéfname, manufacturer)

Product(
pname)
price
category)
manufactyse€r ,
(pname, manufacturer)

)

If the primary key is a set of columns (a composite key), then the foreign
key also must be a set of columns that corresponds to the composite key.

Lecture 2 > Section 3 > Joins: Basics

Joins

Gizmo $19 Gadgets GWorks
Powergizmo | $29 Gadgets GWorks |- GWorks 25 USA
anon Japan
SingleTouch | $149 | Photography | Canon |- | Cano 65 b
| Hitachi 15 Japan
MultiTouch | $203 | Household | Hitachi
PName, Price
Product, Company
Manufacturer = CName
AND Country=‘Japan’
AND Price <= 200 SingleTouch $149.99

Lecture 2 > Section 3 > Joins: semantics

An example of SQL semantics
R.A Output

a-se | T

A

1 A | B|C
Cross Appl

1123 PR

3 Product 1302 Apply ﬁ Projection
:> Selections /

B |C 1|31|5 Conditions C

2 |3 31213 E 2

3 14 3134 .

315 3(13|5

Lecture 2 > Section 3 > Joins: semantics

o . . R.A
Note the semantics of a join 2 s
R.A = S.B
1. Take cross product: Eifj‘ﬂjeif;i;f ,rr? itfét syl iseserel
X =RXS

Ex: {a,b,c} X {1,2}
={(a,1), (3,2), (b,1), (b,2), (c,1), (c,2)}

2. Apply selections / conditions: = Filtering!
Y={(r,s)eX|r.A==r.B}

3. Apply projections to get final output: =Returning only some attributes
Z=W.A)foryeyY

Remembering this order is critical to understanding the
output of certain queries (see later on...)

Lecture 2 > Section 3 > Joins: semantics

Note: we say “semantics” not “execution
order”

* The preceding slides show what a join means

* Not actually how the DBMS executes it under the covers

Lecture 2 > Section 3 > Joins: semantics

A Subtlety about Joins

Find all countries that manufacture some product
in the ‘Gadgets’ category.

Country
Product, Company
Manufacturer=CName AND Category=‘Gadgets’

18

Lecture 2 > Section 3 > Joins: semantics

A subtlety about Joins

Gizmo $19 Gadgets GWorks GWorks 25 USA
Powergizmo | $29 Gadgets GWorks Canon 65 Japan
SingleTouch | $149 | Photography | Canon |7 Hitachs 15 Japan
MultiTouch | $203 | Household Hitachi

Country

Product, Company >

Manufacturer=Cname ;
AND Category=‘Gadgets’ 9

What is the problem ?
What'’s the solution ?

19

ACTIVITY: Lecture-2-3.ipynb

Lecture 2 > Section 3 > ACTIVITY

An Unintuitive Query

R.A
R, S, T
R.A=5.A OR R.A=T.A

What does it compute?

Lecture 2 > Section 3 > ACTIVITY

An Unintuitive Query

R.A
R, S, T
R.A=5.A OR R.A=T.A

But whatif S=¢?

ComputesRN (SUT) Go back to the semantics!

Lecture 2 > Section 3 > ACTIVITY

An Unintuitive Query

R.A
R, S, T
R.A=5.A OR R.A=T.A

e Recall the semantics!
1. Take cross-product
2. Apply selections / conditions
3. Apply projection

* If S={}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.
Are there more explicit way to do set operations like this?

Lecture 3:
Advanced SQL — Part |

1. Set Operators & Nested
Queries

Lecture 3 > Section 1

What you will learn about in this section

1. Multiset operators in SQL
2. Nested queries

3. ACTIVITY: Set operator subtleties

Lecture 3 > Section 1 > Set Operators

An Unintuitive Query

R.A
R, S, T
R.A=5.A OR R.A=T.A

What does it compute?

But whatif S=¢?

ComputesRN (SUT) Go back to the semantics!

Lecture 3 > Section 1 > Set Operators

An Unintuitive Query

R.A
R, S, T
R.A=5.A OR R.A=T.A

e Recall the semantics!
1. Take cross-product
2. Apply selections / conditions
3. Apply projection

* If S={}, then the cross product of R, S, T = {}, and the query result = {}!

Must consider semantics here.
Are there more explicit way to do set operations like this?

Lecture 3 > Section 1 > Set Operators

What does this look like in Python?

R.A
R, S, T

R.A=S.A OR R.A=T.A RAGVT)

e Semantics:

Joins / cross-products are just nested for
1. Take cross-product / P J

loops (in simplest implementation)!

2. Apply selections / conditions If-then statements!

3. Apply projection

Lecture 3 > Section 1 > Set Operators

What does this look like in Python?

R.A

R, S, T
R.A=S.A OR R.A=T.A RAGVT)

output = {}

for r in R:
for s in S:
for t in T:
if r[‘A’] == s[‘A’] or r[‘A’'] == t['A']:
output.add(r[‘A’])
return list(output)

Can you see now what happens if S =[]?

e 3 > Section 1 > Set Operators

Multiset Operations

Lecture 3 > Section 1 > Set Operators

Recall Multisets A(X)= “Count of tuple in X"

(Iltems not listed have
Multiset X implicit count 0O)

Tuple]
Multiset X

49
(1, a) (1, a) 2
(1 b) (1, b) 1
(2, c) 3
(2,¢) Equivalent (1, d) 2
(2, c) Representations
of a Multiset
(2, c)
(1, d) Note: In a set all
) counts are {0,1}.

Lecture 3 > Section 1 > Set Operators

Generalizing Set Operations to Multiset
Operations

Multiset X Multiset Y Multiset Z
(1, a) 2 (1, a) 5 (1, a) 2
(1, b) 0 n (1, b) 1 — (1, b) 0
(2, c) 3 (2,) 2 (2, c) 2
(1, d) 0 (1, d) 2 (1, d) 0

For sets, this is

A(Z) = min(A(X), A(Y)) intersection

Lecture 3 > Section 1 > Set Operators

Generalizing Set Operations to Multiset
Operations

Multiset X Multiset Y Multiset Z
(1, a) 2 (1, a) 5 (1, a) 5
(1, b) 0 U (1, b) 1 — (1, b) 1
(2, c) 3 (2,) 2 (2, c) 3
(1, d) 0 (1, d) 2 (1, d) 2
For sets,

A(Z) = max(A(X),A(Y)) this is union

e 3 > Section 1 > Set Operators

Multiset Operations in SQL

Lecture 3 > Section 1 > Set Operators

Explicit Set Operators: INTERSECT

=

’

>
I wn

{rAlr.A=s.A}n{r.A|r.A=t.A}

INTERSECT

poliveiiy el iy iy
=

B>
I —
—
B>

Lecture 3 > Section 1 > Set Operators

UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION

SELECT RJA
FROM R, T
WHERE R.A=T.A

{rAlr.A=s.A}Uu{r.A|lr.A=t.A}

Why aren’t there
duplicates?

What if we want
duplicates?

37

Lecture 3 > Section 1 > Set Operators

UNION ALL

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A

{rrAlr.A=s.A}Uu{r.A|r.A=t.A}

ALL indicates
the Multiset
disjoint union
operation

38

Lecture 3 > Section 1 > Set Operators

Generalizing Set Operations to Multiset
Operations

Multiset X Multiset Y Multiset Z
(1, a) 2 (1, a) 5 (1, a) 7
(1, b) 0 Ll (1, b) 1 — (1, b) 1
(2, c) 3 (2,) 2 (2, c) 5
(1, d) 0 (1, d) 2 (1, d) 2
For sets,
AZ)= A X))+ A(Y) this is disjoint

union

Lecture 3 > Section 1 > Set Operators

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT {rrA|lr.A=s.A\{r.Alr.A =t. A}
SELECT R.A
FROM R, T
WHERE R.A=T.A Q, What is the

multiset version?

AZ) = A(X)— A(Y)
For elements that are in X

40

Lecture 3 > Section 1 > Set Operators

INTERSECT: Still some subtle problems...

hg_city “Headquarters of

Company, Product : :

maker = name companies which

AND factory_loc = ‘US’ make gizmos in US
AND China”

hg_city

Company, Product

maker = name

AND factory_loc = ‘China’

What if two companies have HQ in US: BUT one has factory in
China (but not US) and vice versa? What goes wrong?

Lecture 3 > Section 1 > Set Operators

INTERSECT: Remember the semantics!

Example: C JOIN P on maker =name

Company, Product
maker = name
AND factory_loc=‘US’

FROM Company, Product
WHERE maker = name
AND factory_loc=‘China’

Y)

C.name C.hqg_city P.oname P.maker P.factory loc
X Co. Seattle X X Co. U.S.
Y Inc. Seattle X Y Inc. China

- N

42

Lecture 3 > Section 1 > Set Operators

INTERSECT: Remember the semantics!

Example: C JOIN P on maker =name

C.name C.hqg_city P.oname P.maker P.factory loc
[X Co. Seattle X X Co. U.S.
[Y Inc. Seattle X Y Inc. China

- N

maker =

Company, Product
name

AND factory_loc=‘US’

FROM
WHERE maker =

Company, Product
name

AND factory_loc=‘China’

We did the INTERSECT

on the wrong attributes!

But Seattle is returned by the query!

X Co has a factory in the US (but not China)
Y Inc. has a factor in China (but not US)

43

Lecture 3 > Section 1 > Nested Queries

One Solution: Nested Queries

hg_city
Company, Product
maker = name
AND name IN (
maker
Product
factory_loc
AND name IN (
maker
Product
factory_loc

IUS’)

‘China’)

“Headqguarters of
companies which
make gizmos in US
AND China”

Note: If we hadn’t
used DISTINCT here,
how many copies of
each hg_city would
have been returned?

Lecture 3 > Section 1 > Nested Queries

High-level note on nested queries

* We can do nested queries because SQL is compositional:

* Everything (inputs / outputs) is represented as multisets- the output of one
qguery can thus be used as the input to another (nesting)!

* This is extremely powerful!

Lecture 3 > Section 1 > Nested Queries

Nested queries: Sub-gueries Returning

Relations
Another
example:
c.city
Company cC
c.name IN (

pr.maker
Purchase p, Product pr
p.product = pr.name
AND p.buyer = ‘Joe Blow‘)

“Cities where one
can find
companies that
manufacture
products bought
by Joe Blow”

Lecture 3 > Section 1 > Nested Queries

Nested Queries

s this query equivalent?

c.city

Company c,

Product pr,

Purchase p

C.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe Blow’

Beware of duplicates!

Lecture 3 > Section 1 > Nested Queries

Nested Queries

DISTINCT c.city

Company c,

Product pr,

Purchase p

C.name = pr.maker
AND pr.name = p.product
AND p.buyer ‘Joe Blow’

DISTINCT c.city
Company c
c.name IN (
pr.maker
Purchase p, Product pr
p.product = pr.name
AND p.buyer = ‘Joe Blow')

Now they are equivalent

Lecture 3 > Section 1 > Nested Queries

Subqgueries Returning Relations

You can also use operations of the form:
s>ALLR

s<ANYR

EXISTS R

Ex:

name

Product

price > ALL(
price
Product
maker =

‘Gizmo-Works')

ANY and ALL not supported by

SQlite.

Find products that
are more expensive
than all those
produced by
“Gizmo-Works”

Lecture 3 > Section 1 > Nested Queries

Ex:

You can also use operations of the form:
s>ALLR

s<ANYR

EXISTS R

pl.name
Product pl
pl.maker = ‘Gizmo-Works’
AND EXISTS(
p2.name
Product p2
p2.maker <> ‘Gizmo-Works'

AND pl.name = p2.name)

Subqgueries Returning Relations

<> means =

Find ‘copycat’
products, i.e.
products made by
competitors with
the same names as
products made by
“Gizmo-Works”

Lecture 3 > Section 1 > Nested Queries

Nested queries as alternatives to INTERSECT
and EXCEPT

R.B

s.8|

R.B

s.8|

INTERSECT and EXCEPT not in

some DBMSs!
R.A, R.B
R
(
b S
S
R.A=S.A AND R.B=S.B) IFR, S nee me
duplicates, then
can write without
sub-queries
R.A, R.B (HOW?)
R
(
b S
S
R.A=S.A AND R.B=S.B)

Lecture 3 > Section 1 > Nested Queries

Correlated Queries

Movie(title, year, director, length)

SELECT DISTINCT title

FROM (Movie AS m]

WHERE year <> ANY(
SELECT year
FROM [Movie|
WHERE title = [m.title)

Find movies whose
title appears more
than once.

Note the scoping
of the variables!

Note also: this can still be expressed as single SFW query...

52

Lecture 3 > Section 1 > Nested Queries

Complex Correlated Query

X.name, X.maker
Product AS X
X.price > (
y.price
Product AS vy
X.Mmaker = y.maker
AND y.year < 1972)

Find products (and their
manufacturers) that are
more expensive than all
products made by the
same manufacturer
before 1972

Can be very powerful (also much harder to optimize)

Lecture 3 > Section1 > ACTIVITY

Activity-3-1.ipynb

Lecture 3 > Section 1 > Summary

Basic SQL Summary

* SQL provides a high-level declarative language for manipulating data
(DML)

* The workhorse is the SFW block
e Set operators are powerful but have some subtleties

* Powerful, nested queries also allowed.

