Lecture 21: Concurrency &
Locking

Lecture 21

Today’s Lecture

1. Concurrency, scheduling & anomalies

2. Locking: 2PL, conflict serializability, deadlock detection

1. Concurrency, Scheduling &
Anomalies

Lecture 21 > Section 1

What you will learn about in this section

1. Interleaving & scheduling

2. Conflict & anomaly types

Lecture 21 > Section 1 > Interleaving & scheduling

Concurrency: Isolation & Consistency

* The DBMS must handle concurrency such that...

1. Isolation is maintained: Users must be able to execute
each TXN as if they were the only user

 DBMS handles the details of interleaving various TXNs

2. Consistency is maintained: TXNs must leave the DB in
a consistent state

 DBMS handles the details of enforcing integrity constraints

ACID

ACID

Lecture 21 > Section 1 > Interleaving & scheduling

Example- consider two TXNs:

T1: START TRANSACTION
Accounts
Amt = Amt + 100
Name = ‘A’

Accounts
Amt = Amt - 100
Name = ‘B’
COMMIT

T2: START TRANSACTION
Accounts
Amt = Amt *x 1.06
COMMIT

T1 transfers S100 from B’s account
to A’s account

T2 credits both accounts with a 6%

interest payment

Lecture 21 > Section 1 > Interleaving & scheduling

Example- consider two TXNs:

We can look at the TXNs in a timeline view- serial execution:

T, A+=100 B -= 100

T, A *=1.06 B *=1.06

Time

T1 transfers $100 from B’s T2 credits both accounts with a
account to A’s account 6% interest payment

Lecture 21 > Section 1 > Interleaving & scheduling

Example- consider two TXNs:

The TXNs could occur in either order... DBMS allows!

Ty A +=100 B-=100

T, | A*=1.06 B *=1.06

Time

T2 credits both accounts with a T1 transfers S100 from B’s
6% interest payment account to A’s account

Lecture 21 > Section 1 > Interleaving & scheduling

Example- consider two TXNs:

The DBMS can also interleave the TXNs

T, A += 100 B -= 100
T, |A*=1.06 B *=1.06
—
Time
T2 credits A’s account with 6% T2 credits B’s account with a 6%
interest payment, then T1 interest payment, then T1
transfers S100 to A’s account... transfers S100 from B’s

account...

Lecture 21 > Section 1 > Interleaving & scheduling

Ty

T,

A *=1.06

A += 100

Example- consider two TXNs:

The DBMS can also interleave the TXNs

B-=100

B *=1.06

What goes wrong here??

(nothing--it’s T2 Followed by T1)

Time

Lecture 21 > Section 1 > Interleaving & scheduling

Recall: Three Types of Regions of Memor

Loca Global

Main
Memory 1 2 4
1. Local: In our model each process in a DBMS has its (RAM)
own local memory, where it stores values that only
it “sees” Disk 3

2. Global: Each process can read from / write to

i i Log is a sequence from
shared data in main memory 8 q

main memory -> disk

3. Disk: Global memory can read from / flush to disk “Flushing to disk” =
writing to disk.

4. Log: Assume on stable disk storage- spans both
main memory and disk...

Lecture 21 > Section 1 > Interleaving & scheduling

Why Interleave TXNs?

* Interleaving TXNs might lead to anomalous outcomes... why do it?

* Several important reasons:

* Individual TXNs might be slow- don’t want to block other users
during!

* Disk access may be slow- let some TXNs use CPUs while others
accessing disk!

All concern large differences in performance

Lecture 21 > Section 1 > Interleaving & scheduling

Interleaving & Isolation

e The DBMS has freedom to interleave TXNs

“With great power
comes great

* However, it must pick an interleaving or schedule responsibility”

such that isolation and consistency are maintained

* Must be as if the TXNs had executed serially! ACID

DBMS must pick a schedule which maintains isolation
& consistency

Lecture 21 > Section 1 > Interleaving & scheduling

Scheduling examples

Serial schedule T,,T,:

Ty

T,

Starting
Balance $s0 $200

. $159 $106

A+=100||B-=100
A*=1.06| B*=1.06
Interleaved schedule A:
A += 100 B-=100

Ty

T,

A *=1.06

B *=1.06

. $159 $106

Same

result!

14

Lecture 21 > Section 1 > Interleaving & scheduling

Scheduling examples

Serial schedule T,,T,:

T, |A+=100]|B-=100

Starting
Balance

B *=1.06

T, A*=1.06

Interleaved schedule B:

T, A += 100

B-=100

T, A*=1.06 | B *=1.06

S50

$200

$159

q

$106

Different
result than

serial
T,T,!

15

Lecture 21 > Section 1 > Interleaving & scheduling

Scheduling examples

Serial schedule T,,T;:

Starting
Balance

'|'1 A+=100||B-=100
T2 A*=1.06B*=1.06

Interleaved schedule B:

'|'1 A +=100 B-=100
T2 A*=1.06 B *=1.06

S50 $200
$153 $112

A B

1@ $112

Different
result than
serial T,,T,
ALSO!

16

Lecture 21 > Section 1 > Interleaving & scheduling

Scheduling examples

Interleaved schedule B:

T, |A+=100 B -= 100

T, A*=1.06 | B*=1.06

This schedule is different than any
serial order! \We say that it is not
serializable

Lecture 21 > Section 1 > Interleaving & scheduling

Scheduling Definitions

e A serial schedule is one that does not interleave the actions of
different transactions

* A and B are equivalent schedules if, for any database state, the
effect on DB of executing A is identical to the effect of executing B

* A serializable schedule is a schedule that is equivalent to some serial
execution of the transactions.

The word “some” makes this
definition powerful & tricky!

Lecture 21 > Section 1 > Interleaving & scheduling

Serializable?

A +=100

B-=100

A *=1.06

Serial schedules:

B*=1.06

A B
T,T, 1.06*(A+100) | 1.06*(B-100)]
T,,T4 1.06*A + 100 | 1.06*B - 100

A B

[1.06* (A+100)

1.06*(B-100)

Same as a serial schedule
for all possible values of
A, B = serializable

19

Lecture 21 > Section 1 > Interleaving & scheduling

Serializable?

A +=100

Serial schedules:

B-=100

A *=1.06

B *=1.06

A B

T,T, |1.06%(A+100) |1.06*(B-100)

T,T, |1.06*A+100 |1.06*B-100
A B
1.06*(A+100) | 1.06*B - 100

Not equivalent to any
serializable schedule =
not serializable

20

Lecture 21 > Section 1 > Interleaving & scheduling

What else can go wrong with interleaving?

* Various anomalies which break isolation / serializability

e Often referred to by name...

* Occur because of / with certain “conflicts” between
interleaved TXNs

Lecture 21 > Section 1 > Interleaving & scheduling

The DBMS’s view of the schedule

Each action in the TXNs
reads a value from global
memory and then writes
one back to it

Scheduling order matters!

W(B)

22

Lecture 21 > Section 1 > Interleaving & scheduling

Conflict Types

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

* Thus, there are three types of conflicts: Why no “RR Conflict”?
e Read-Write conflicts (RW)
* Write-Read conflicts (WR)
e Write-Write conflicts (WW)

Interleaving anomalies occur with / because of these conflicts between
TXNs (but these conflicts can occur without causing anomalies!)

See next section for more!

Lecture 21 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

“Unrepeatable read”:

Example: 1. T, reads some data from A

2. T, writes to A

T, |R(A) R(A)

3. Then, T, reads from A again
T, R(A) 'W(A) |C and now gets a different /

inconsistent value

Occurring because of a RW conflict

Lecture 21 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

“Dirty read” / Reading uncommitted data:

Example: 1. T, writes some data to A

2. T, reads from A, then writes
Ty [W(A) A back to A & commits
T, R(A)| |W(A)| |C 3. T, then aborts- now T,

. result is based on an
obsolete / inconsistent value

Occurring because of a WR conflict

Lecture 21 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

“Inconsistent read” / Reading partial commits:

1. T, writes some data to A

Example:

2. T, reads from A and B, and
T, (WA W(B) | |C then writes some value
which depends on A & B

T, R(A) | |R(B) | W(C=A*B) || C

3. T, then writes to B- now
> T,’s result is based on an
incomplete commit

Again, occurring because of a WR conflict

Lecture 21 > Section 1 > Interleaving & scheduling

Classic Anomalies with Interleaved Execution

Partially-lost update:

Example: 1. T, blind writes some data to A
2. T, blind writes to A and B
T, |[W(A) W(B) || C ?
3. T, then blind writes to B; now
T, W(A) |W(B) || C we have T,’s value for Band T,’s
> value for A- not equivalent to

any serial schedule!

Occurring because of a WW confflict

2. Conflict Serializability, Locking
& Deadlock

Lecture 21 > Section 2

What you will learn about in this section

1. RECAP: Concurrency

2. Conflict Serializability

3. DAGs & Topological Orderings
4. Strict 2PL

5. Deadlocks

Lecture 21 > Section 2 > Concurrency

Recall: Concurrency as Interleaving TXNs

Serial Schedule:
T, [R(A) || W(A) || R(B) || W(B)
T2 R(A) || W(A) || R(B) || W(B)
Interleaved Schedule:
T [R(A) || W(A) R(B) || W(B)
R(A) || W(A) R(B) || W(B)

T,

* For our purposes, having
TXNs occur concurrently
means interleaving their
component actions (R/W)

We call the particular
order of interleaving a
schedule

30

Lecture 21 > Section 2 > Concurrency

Recall: “Good” vs. “bad” schedules

Serial Schedule: Interleaved Schedules:
T, | RA) || wia) || R@) || wie) T, | R || wia) R(B) || W(B)
>
T, RA) || wia) || RB) || w(B) T, R(A) || W(A) R(B) || W(B)
- e
Why? T, [R || wea R@®) |[we)
T, RA) || wea) || RB) || wiB)

We want to develop ways of discerning “good” vs. “bad” schedules

31

Lecture 21 > Section 2 > Concurrency

Ways of Defining “Good” vs. “Bad” Schedules

* Recall from last time: we call a schedule serializable if it is equivalent
to some serial schedule

* We used this as a notion of a “good” interleaved schedule, since a
serializable schedule will maintain isolation & consistency

* Now, we’ll define a stricter, but very useful variant:

e Conflict serializability We'll need to define
conflicts first..

Lecture 21 > Section 2 > Conflict Serializability

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

Ty

R(A) || W(A) R(B) | IW(B) | \w-w Conflict

T, W-R Conﬂict\‘ R(A) || W(A) R(B)™ W(B)

Lecture 21 > Section 2 > Conflict Serializability

Conflicts

Two actions conflict if they are part of different TXNs, involve the same
variable, and at least one of them is a write

All “conflicts”!

Lecture 21 > Section 2 > Conflict Serializability

Conflict Serializability

* Two schedules are conflict equivalent if:
- They involve the same actions of the same TXNs

- Every pair of conflicting actions of two TXNs are ordered in the same way

* Schedule S is conflict serializable if S is conflict equivalent to some
serial schedule

Conflict serializable = serializable
So if we have conflict serializable, we have consistency & isolation!

Lecture 21 > Section 2 > Conflict Serializability

Recall: “Good” vs. “bad” schedules

Serial Schedule:
Ty | RA) || W) || rB) || W)
T2

W(A)TR”(B)

Note that in the “bad” schedule, the

order of conflicting actions is different

than the above (or any) serial
schedule!

N

Interleaved Schedules:

T, | R || wia) R(B) || W(B)

T R(A) || wia) }R‘(B) W(B)
>

T, | R || wia) R(B) || W(B)

T) |[wia) |[7@) || we

Conflict serializability also provides us with an operative

notion of “good” vs. “bad” schedules!

36

Lecture 21 > Section 2 > Conflict Serializability

Note: Conflicts vs. Anomalies

* Conflicts are things we talk about to help us characterize different
schedules

* Present in both “good” and “bad” schedules

 Anomalies are instances where isolation and/or consistency is broken
because of a “bad” schedule

* We often characterize different anomaly types by what types of conflicts
predicated them

Lecture 21 > Section 2 > Conflict Serializability

The Conflict Graph

* Let’s now consider looking at conflicts at the TXN level

* Consider a graph where the nodes are TXNs, and there is an edge
from T, éTj if any actions in T, precede and conflict with any actions
inT,

J

Lecture 21 > Section 2 > Conflict Serializability

What can we say about “good” vs. “bad”

conflict graphs?

Serial Schedule:

Ty [RA) || Wi || R@) || we)

\
T2 \%» W(A ;w; W(B)

A bit complicated...

™

Interleaved Schedules:

T, [RA) || wia RB) || W(B)

T, RAAP W(A) R(BIH W(B)
T, [RO || wia R(B) || W(B)
T, RIATH W(A) || R(B) W)

39

Lecture 21 > Section 2 > Conflict Serializability

What can we say about “good” vs. “bad”
conflict graphs?

Serial Schedule: Interleaved Schedules:
T —- T
T1 - T2 1 2
X >
Simple! T1 Tz

Theorem: Schedule is conflict serializable if and
only if its conflict graph is acyclic

Lecture 21 > Section 2 > Conflict Serializability

Let’s unpack this notion of acyclic
conflict graphs...

Lecture 21 > Section 2 > Topological orderings

DAGs & Topological Orderings

* A topological ordering of a directed graph is a linear ordering of its
vertices that respects all the directed edges

A directed acyclic graph (DAG) always has one or more topological
orderings

* (And there exists a topological ordering if and only if there are no directed
cycles)

Lecture 21 > Section 2 > Topological orderings

DAGs & Topological Orderings

* Ex: What is one possible topological ordering here?

Ex:0,1,2,3 (or:0, 1, 3, 2)

Lecture 21 > Section 2 > Topological orderings

DAGs & Topological Orderings

* Ex: What is one possible topological ordering here?

There is hone!

Lecture 21 > Section 2 > Topological orderings

Connection to conflict serializability

* In the conflict graph, a topological ordering of nodes corresponds to a
serial ordering of TXNs

* Thus an acyclic conflict graph = conflict serializable!

Theorem: Schedule is conflict serializable if and
only if its conflict graph is acyclic

Lecture 21 > Section 2 > Strict 2PL

Strict Two-Phase Locking

* We consider locking- specifically, strict two-phase locking- as a way to
deal with concurrency, because is guarantees conflict serializability
(if it completes- see upcoming...)

* Also (conceptually) straightforward to implement, and transparent to
the user!

Lecture 21 > Section 2 > Strict 2PL

Strict Two-phase Locking (Strict 2PL) Protocol:

TXNs obtain:

* An X (exclusive) lock on object before writing.

Note: Terminology
* If a TXN holds, no other TXN can get a lock (S or X) on that object. here- “exclusive”

“shared”- meant to
* An S (shared) lock on object before reading be intuitive- no tricks!

* If a TXN holds, no other TXN can get an X lock on that object

* All locks held by a TXN are released when TXN completes.

Lecture 21 > Section 2 > Strict 2PL

Picture of 2-Phase Locking (2PL)

Locks Lock
Acquisition

the TXN a Lock Release

has \\ On TXN commit!

N
N
\\
O locks N

Strict 2PL

Lecture 21 > Section 2 > Strict 2PL

Strict 2PL

Theorem: Strict 2PL allows only schedules whose
dependency graph is acyclic

Proof Intuition: In strict 2PL, if there isan edge T, 2 T, (i.e. T;and T,
conflict) then T, needs to wait until T; is finished — so cannot have an edge

TJ-QTi

Therefore, Strict 2PL only allows conflict
serializable = serializable schedules

Lecture 21 > Section 2 > Strict 2PL

Strict 2PL

* If a schedule follows strict 2PL and locking, it is conflict serializable...

* ...and thus serializable
e ...and thus maintains isolation & consistency!

* Not all serializable schedules are allowed by strict 2PL.

* So let’s use strict 2PL, what could go wrong?

Lecture 21 > Section 2 > Deadlocks

Deadlock Detection: Example

Waits-for graph:

T, |S(A)| R(A) @ @

First, T, requests a shared lock
on A to read from it

Lecture 21 > Section 2 > Deadlocks

Deadlock Detection: Example

T, [S(A)

5(B)

Next, T, requests a shared lock
on B to read from it

Waits-for graph:

& @

Lecture 21 > Section 2 > Deadlocks

Deadlock Detection: Example

T, |S(A)| R(A)

T, 5(B)

X(A)

Waiting...

T, then requests an exclusive

lock on A to write to it- now T,

Is waiting on Tj,...

Waits-for graph:

O

Lecture 21 > Section 2 > Deadlocks

Deadlock Detection: Example

Waits-for graph:

T, [s@)][ra) X(8) ! waiting. @ »@
T, S(B) | R(B) | | X(A) iWaiting...
I g Cycle =
DEADLOCK

Finally, T, requests an exclusive
lock on B to write to it- now T,
is waiting on T,... DEADLOCK!

Lecture 21 > Section 2 > Deadlocks

sqlite3.0OperationalError: database 1s locked

The problem?
Deadlock!??! @ ’@

Lecture 21 > Section 2 > Deadlocks

Deadlocks

* Deadlock: Cycle of transactions waiting for locks to be released by
each other.

* Two ways of dealing with deadlocks:
1. Deadlock prevention

2. Deadlock detection

Lecture 21 > Section 2 > Deadlocks

Deadlock Detection

* Create the waits-for graph:
- Nodes are transactions

- There is an edge from T, =2 T, if T, is waiting for T; to release a lock

* Periodically check for (and break) cycles in the waits-for graph

Lecture 21 > Section 2

Summary

* Concurrency achieved by interleaving TXNs such that isolation &
consistency are maintained

* We formalized a notion of serializability that captured such a “good”
interleaving schedule

* We defined conflict serializability, which implies serializability

* Locking allows only conflict serializable schedules
* If the schedule completes... (it may deadlock!)

