
Lecture	2:
Introduction	to	SQL

Announcements!

1. If	you	still	have	Jupyter trouble,	let	us	know!

2. Enroll	to	Piazza!!!

3. People	are	looking	for	groups.	Team	up!

4. Enrollment	should	be	finalized	soon!	

5. TA	updates	hopefully	by	Monday!
2

Lecture	2

Lecture	2:
Introduction	to	SQL

Lecture	2

Today’s	Lecture

1. SQL	introduction	&	schema	definitions
• ACTIVITY:	Table	creation

2. Basic	single-table	queries
• ACTIVITY:	Single-table	queries!

3. Multi-table	queries
• ACTIVITY:	Multi-table	queries!

4

Lecture	2

1.	SQL	Introduction	&	Definitions

5

Lecture	2		>		Section	1

What	you	will	learn	about	in	this	section

1. What	is	SQL?

2. Basic	schema	definitions

3. Keys	&	constraints	intro

4. ACTIVITY:	CREATE	TABLE	statements

6

Lecture	2		>		Section	1

SQL	Motivation

Lecture	2		>		Section	1		>		SQL

• But	why	use	SQL?
• The	relational	model	of	data is	the	most	widely	used	model	today

• Main	Concept:	the	relation- essentially,	a	table

Logical	data	independence:
protection	from	changes	in	the	
logical	structure	of	the	data

SQL	is	a	logical,	declarative	query	language.	We	use	SQL	because	
we	happen	to	use	the	relational	model.

Remember: The	reason	for	using	the	
relational	model	is	data	independence!

SQL	Motivation

• Dark	times	5	years	ago.
• Are	databases	dead?

• Now,	as	before:	everyone	sells	SQL	
• Pig,	Hive,	Impala

• “Not-Yet-SQL?”

Lecture	2		>		Section	1		>		SQL

9

Basic	SQL

Lecture	2		>		Section	1		>		SQL

SQL	Introduction

• SQL	is	a	standard	language	for	querying	and	manipulating	data

• SQL	is	a	very	high-level	programming	language
• This	works	because	it	is	optimized	well!

• Many	standards	out	there:	
• ANSI	SQL,		SQL92	(a.k.a.	SQL2),		SQL99	(a.k.a.	SQL3),	….
• Vendors	support	various	subsets

Probably	the	world’s	most	successful	parallel
programming	language	(multicore?)

SQL stands	for
Structured	Query	Language

Lecture	2		>		Section	1		>		SQL

11

SQL	is	a…

• Data	Definition	Language	(DDL)
• Define	relational	schemata
• Create/alter/delete	tables	and	their	attributes

• Data	Manipulation	Language	(DML)
• Insert/delete/modify	tuples	in	tables
• Query	one	or	more	tables	– discussed	next!

Lecture	2		>		Section	1		>		SQL

12

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product
A	relation or	table is	a	
multiset of	tuples	
having	the	attributes	
specified	by	the	schema

Let’s	break	this	
definition	down

Lecture	2		>		Section	1		>		Definitions

13

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A	multiset is	an	
unordered	list	(or:	a	set	
with	multiple	duplicate	
instances	allowed)

List:												[1,	1,	2,	3]
Set:												{1,	2,	3}
Multiset:			{1,	1,	2,	3}

i.e.	no	next(),	etc.	methods!

Lecture	2		>		Section	1		>		Definitions

14

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product An	attribute (or	column)	
is	a	typed	data	entry	
present	in	each	tuple	in	
the	relation

Attributes	must	have	an	atomic
type	in	standard	SQL,	i.e.	not	a	
list,	set,	etc.	

Lecture	2		>		Section	1		>		Definitions

15

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

A	tuple or	row is	a	
single	entry	in	the	table	
having	the	attributes	
specified	by	the	schemaAlso	referred	to	sometimes	as	a	record

Lecture	2		>		Section	1		>		Definitions

16

Tables	in	SQL

PName Price Manufacturer

Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

SingleTouch $149.99 Canon

MultiTouch $203.99 Hitachi

Product

Lecture	2		>		Section	1		>		Definitions

The	number	of	tuples	is	
the	cardinality of	the	
relation

The	number	of	
attributes	is	the	arity of	
the	relation

17

Data	Types	in	SQL

• Atomic	types:
• Characters:	CHAR(20),	VARCHAR(50)
• Numbers:	INT,	BIGINT,	SMALLINT,	FLOAT
• Others:	MONEY,	DATETIME,	…

• Every	attribute	must	have	an	atomic	type
• Hence	tables	are	flat

Lecture	2		>		Section	1		>		Definitions

18

Table	Schemas

• The	schema of	a	table	is	the	table	name,	its	attributes,	and	their	
types:

• A	key is	an	attribute	whose	values	are	unique;	we	underline	a	key

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Lecture	2		>		Section	1		>		Definitions

Product(Pname: string, Price: float, Category:
string, Manufacturer: string)

Key	constraints

• A	key	is	an	implicit	constraint	on	which	tuples	can	be	in	the	relation

• i.e.	if	two	tuples	agree	on	the	values	of	the	key,	then	they	must	be	
the	same	tuple!

1.	Which	would	you	select	as	a	key?
2.	Is	a	key	always	guaranteed	to	exist?
3.	Can	we	have	more	than	one	key?

A	key is	a	minimal	subset	of	attributes that	acts	as	a	
unique	identifier	for	tuples	in	a	relation

Lecture	2		>		Section	1		>		Keys	&	constraints

Students(sid:string, name:string, gpa: float)

NULL	and	NOT	NULL

• To	say	“don’t	know	the	value”	we	use	NULL
• NULL	has	(sometimes	painful)	semantics,	more	details	later

sid name gpa
123 Bob 3.9
143 Jim NULL Say,	Jim	just	enrolled	in	his	first	class.	

In	SQL,	we	may	constrain	a	column	to	be	NOT	NULL,	e.g.,	“name”	in	this	table

Students(sid:string, name:string, gpa: float)

Lecture	2		>		Section	1		>		Keys	&	constraints

General	Constraints

• We	can	actually	specify	arbitrary	assertions
• E.g.	“There	cannot	be	25	people	in	the	DB	class”

• In	practice,	we	don’t	specify	many	such	constraints.	Why?
• Performance!

Whenever	we	do	something	ugly	(or	avoid	doing	something	
convenient)	it’s	for	the	sake	of	performance

Lecture	2		>		Section	1		>		Keys	&	constraints

Summary	of	Schema	Information

• Schema	and	Constraints	are	how	databases	understand	the	semantics	
(meaning)	of	data

• They	are	also	useful	for	optimization

• SQL	supports	general	constraints:	
• Keys	and	foreign	keys	are	most	important
• We’ll	give	you	a	chance	to	write	the	others

Lecture	2		>		Section	1		>		Summary

ACTIVITY:		Activity-2-1.ipynb

23

Lecture	2		>		Section	1		>		ACTIVITY

2.	Single-table	queries

24

Lecture	2		>		Section	2

What	you	will	learn	about	in	this	section

1. The	SFW	query

2. Other	useful	operators:	LIKE,	DISTINCT,	ORDER	BY

3. ACTIVITY:	Single-table	queries

25

Lecture	2		>		Section	2

26

SQL	Query

• Basic	form	(there	are	many	many	more	bells	and	whistles)

Call	this	a	SFW query.

Lecture	2		>		Section	2		>		SFW

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

27

Simple	SQL	Query:	Selection
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

Lecture	2		>		Section	2		>		SFW

SELECT *
FROM Product
WHERE Category = ‘Gadgets’

Selection is	the	operation	
of	filtering	a	relation’s	
tuples	on	some	condition

28

Simple	SQL	Query:	Projection
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

PName Price Manufacturer
Gizmo $19.99 GizmoWorks

Powergizmo $29.99 GizmoWorks

Lecture	2		>		Section	2		>		SFW

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Projection is	the	
operation	of	producing	an	
output	table	with	tuples	
that	have	a	subset	of	their	
prior	attributes

29

Notation

Lecture	2		>		Section	2		>		SFW

SELECT Pname, Price, Manufacturer
FROM Product
WHERE Category = ‘Gadgets’

Product(PName, Price, Category, Manfacturer)

Answer(PName, Price, Manfacturer)

Input	schema

Output	schema

30

A	Few	Details

• SQL	commands are	case	insensitive:
• Same:	SELECT,		Select,		select
• Same:	Product,			product

• Values are	not:
• Different: ‘Seattle’,		‘seattle’

• Use	single	quotes	for	constants:
• ‘abc’		- yes
• “abc”	- no

Lecture	2		>		Section	2		>		SFW

31

LIKE:	Simple	String	Pattern	Matching

• s	LIKE p:		pattern	matching	on	strings
• p	may	contain	two	special	symbols:
• %		=	any	sequence	of	characters
• _			=	any	single	character

SELECT *
FROM Products
WHERE PName LIKE ‘%gizmo%’

Lecture	2		>		Section	2		>		Other	operators

32

DISTINCT:	Eliminating	Duplicates

SELECT DISTINCT Category
FROM Product

Versus

SELECT Category
FROM Product

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household

Lecture	2		>		Section	2		>		Other	operators

33

ORDER	BY:	Sorting	the	Results

SELECT PName, Price, Manufacturer
FROM Product
WHERE Category=‘gizmo’ AND Price > 50
ORDER BY Price, PName

Lecture	2		>		Section	2		>		Other	operators

Ties	are	broken	by	the	
second	attribute	on	the	
ORDER	BY	list,	etc.

Ordering	is	ascending,	
unless	you	specify	the	
DESC	keyword.

ACTIVITY:		Activity-2-2.ipynb

34

Lecture	2		>		Section	2 >		ACTIVITY

3.	Multi-table	queries

35

Lecture	2		>		Section	3

What	you	will	learn	about	in	this	section

1. Foreign	key	constraints

2. Joins:	basics

3. Joins:	SQL	semantics

4. ACTIVITY:	Multi-table	queries

36

Lecture	2		>		Section	3

Foreign	Key	constraints

student_id alone	is	not	a	
key- what	is?

sid name gpa
101 Bob 3.2
123 Mary 3.8

student_id cid grade

123 564 A
123 537 A+

Students Enrolled

We	say	that	student_id is	a	foreign	key that	refers	to	Students

Lecture	2		>		Section	3		>		Foreign	Keys

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• Suppose	we	have	the	following	schema:

• And	we	want	to	impose	the	following	constraint:
• ‘Only	bona	fide	students	may	enroll	in	courses’ i.e.	a	student	
must	appear	in	the	Students	table	to	enroll	in	a	class

Declaring	Foreign	Keys

Lecture	2		>		Section	3		>		Foreign	Keys

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

CREATE TABLE Enrolled(
student_id CHAR(20),
cid CHAR(20),
grade CHAR(10),
PRIMARY KEY (student_id, cid),
FOREIGN KEY (student_id) REFERENCES Students(sid)

)

Foreign	Keys	and	update	operations

DBA	chooses	(syntax	in	the	book)

Lecture	2		>		Section	3		>		Foreign	Keys

Students(sid: string, name: string, gpa: float)

Enrolled(student_id: string, cid: string, grade: string)

• What	if	we	insert	a	tuple	into	Enrolled,	but	no	corresponding	
student?
• INSERT	is	rejected	(foreign	keys	are	constraints)!

• What	if	we	delete	a	student?
1. Disallow	the	delete
2. Remove	all	of	the	courses	for	that	student
3. SQL	allows	a	third	via	NULL	(not	yet	covered)

40

Keys	and	Foreign	Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

What	is	a	
foreign	key	vs.	
a	key	here?

Lecture	2		>		Section	3		>		Foreign	Keys

41

Joins

Ex: Find	all	products	under	$200	manufactured	in	Japan;
return	their	names	and	prices.	

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

Lecture	2		>		Section	3		>		Joins:	Basics

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country) Note:	we	will	often	omit	
attribute	types	in	schema	
definitions	for	brevity,	but	
assume	attributes	are	
always	atomic	types

42

Joins

Ex: Find	all	products	under	$200	manufactured	in	Japan;
return	their	names	and	prices.	

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

Lecture	2		>		Section	3		>		Joins:	Basics

A	join between	tables	returns	
all	unique	combinations	of	
their	tuples	which	meet	
some	specified	join	condition

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

43

Joins

Several	equivalent	ways	to	write	a	basic	join	in	SQL:

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

Lecture	2		>		Section	3		>		Joins:	Basics

SELECT PName, Price
FROM Product
JOIN Company ON Manufacturer = Cname

AND Country=‘Japan’
WHERE Price <= 200

A	few	more	later	on…

Product(PName, Price, Category, Manufacturer)

Company(CName, StockPrice, Country)

44

Joins

PName Price Category Manuf
Gizmo $19 Gadgets GWorks

Powergizmo $29 Gadgets GWorks

SingleTouch $149 Photography Canon

MultiTouch $203 Household Hitachi

Product
Company

Cname Stock Country
GWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

PName Price
SingleTouch $149.99

Lecture	2		>		Section	3		>		Joins:	Basics

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer = CName

AND Country=‘Japan’
AND Price <= 200

45

Tuple	Variable	Ambiguity	in	Multi-Table

SELECT DISTINCT name, address
FROM Person, Company
WHERE worksfor = name

Lecture	2		>		Section	3		>		Joins:	Semantics

Person(name, address, worksfor)

Company(name, address)

Which	“address”	does	
this	refer	to?

Which	“name”s??

46

Lecture	2		>		Section	3		>		Joins:	Semantics

Person(name, address, worksfor)

Company(name, address)

SELECT DISTINCT Person.name, Person.address
FROM Person, Company
WHERE Person.worksfor = Company.name

SELECT DISTINCT p.name, p.address
FROM Person p, Company c
WHERE p.worksfor = c.name

Both	equivalent	
ways	to	resolve	
variable	
ambiguity

Tuple	Variable	Ambiguity	in	Multi-Table

47

Meaning	(Semantics)	of	SQL	Queries

SELECT x1.a1, x1.a2, …, xn.ak
FROM R1 AS x1, R2 AS x2, …, Rn AS xn
WHERE Conditions(x1,…, xn)

Answer	=	{}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions(x1,…,	xn)

then Answer	=	Answer	È {(x1.a1,	x1.a2,	…,	xn.ak)}
return Answer

Almost	never	the	fastest way	
to	compute	it!

Note:	this is	a	multiset union

Lecture	2		>		Section	3		>		Joins:	semantics

An	example	of	SQL	semantics

48

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross	
Product

A B C
3 3 4
3 3 5

A
3
3

Apply	
Projection

Lecture	2		>		Section	3		>		Joins:	semantics

Apply	
Selections	/	
Conditions

Output

Note	the	semantics of	a	join

49

SELECT R.A
FROM R, S
WHERE R.A = S.B

Lecture	2		>		Section	3		>		Joins:	semantics

Recall:	Cross	product	(A	X	B)	is	the	set	of	all	
unique	tuples	in	A,B

Ex:	{a,b,c}	X	{1,2}	
=	{(a,1),	(a,2),	(b,1),	(b,2),	(c,1),	(c,2)}

=	Filtering!

=	Returning	only	some attributes

Remembering	this	order	is	critical	to	understanding	the	
output	of	certain	queries	(see	later	on…)

1. Take	cross	product:
𝑋 = 𝑅×𝑆

2. Apply	selections	/	conditions:
𝑌 = 𝑟, 𝑠 ∈ 𝑋	 	𝑟. 𝐴 == 𝑟. 𝐵}

3. Apply	projections to	get	final	output:
𝑍 = (𝑦. 𝐴,)	𝑓𝑜𝑟	𝑦 ∈ 𝑌

Note:	we	say	“semantics”	not	“execution	
order”

• The	preceding	slides	show	what	a	join	means

• Not	actually	how	the	DBMS	executes	it	under	the	covers

Lecture	2		>		Section	3		>		Joins:	semantics

