
Optimization	Overview
Lecture	19

Lecture	19

Announcements

• B+Tree Project:	Push	push	push
• You	still	have	have	one	full	weekend!	
• Last	out	of		4	full	weekends.	Make	it	count!

• Note	on	previous	lectures	:	Derive	don’t	memorize.	
• E.g.,	3(P(R)	+	P(S))	+	OUT	
• I	really	do	not want	you	to	memorize	this	formula
• I	really	want	you	to	be	able	to	derive	it!

• Final.	Room	announced:	NOLAND	132	(Dec	20th 2:45	pm	– 4:45	pm)

Lecture	19

Today’s	Lecture

1. Logical	Optimization

2. Physical	Optimization

3

Lecture	19

Logical	vs.	Physical	Optimization

• Logical	optimization:
• Find	equivalent	plans	that	are	more	efficient
• Intuition:	Minimize	#	of	tuples	at	each	step	by	changing	
the	order	of	RA	operators

• Physical	optimization:
• Find	algorithm	with	lowest	IO	cost	to	execute	
our	plan
• Intuition:	Calculate	based	on	physical	parameters	
(buffer	size,	etc.)	and	estimates	of	data	size	(histograms)

Execution

SQL	Query

Relational	
Algebra	(RA)	Plan

Optimized
RA	Plan

Lecture	19

1.	Logical	Optimization

5

Lecture	19		>		Section	1

What	you	will	learn	about	in	this	section

1. Optimization	of	RA	Plans

2. ACTIVITY:	RA	Plan	Optimization

6

Lecture	19		>		Section	1

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expresson

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!

Lecture	19		>		Section	1 >		Plan	Optimization

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Relational	Algebra	allows	us	to	translate	declarative	(SQL)	
queries	into	precise	and	optimizable expressions!

Lecture	19		>		Section	1 >		Plan	Optimization

• Five	basic	operators:
1. Selection: s
2. Projection:	P
3. Cartesian	Product:	´
4. Union:	È
5. Difference:	-

• Derived	or	auxiliary	operators:
• Intersection,	complement
• Joins	(natural,equi-join,	theta	join,	semi-join)
• Renaming: r
• Division

Recall:	Relational	Algebra	(RA)

We’ll	look	at	these	first!

And	also	at	one	example	of	a	
derived	operator	(natural	
join)	and	a	special	operator	
(renaming)

Lecture	19		>		Section	1 >		Plan	Optimization

Recall:	Converting	SFW	Query	->	RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
sname = pname;

How	do	we	represent	
this	query	in	RA?

Π"#$,$&&'())(𝜎"#$,-./(𝑆 ⋈ 𝑃))

Students(sid,sname,gpa)
People(ssn,sname,address)

Lecture	19		>		Section	1 >		Plan	Optimization

Recall:	Logical	Equivalece of	RA	Plans

• Given	relations	R(A,B)	and	S(B,C):

• Here,	projection	&	selection	commute:	
• 𝜎45/(Π4(𝑅)) = Π4(𝜎45/(𝑅))

• What	about	here?
• 𝜎45/(Π8(𝑅))	?= Π8(𝜎45/(𝑅))

We’ll	look	at	this	in	more	depth	later	in	the	lecture…

Lecture	19		>		Section	1 >		Plan	Optimization

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

We’ll	look	at	how	to	then	optimize	these	
plans	now

Lecture	19		>		Section	1 >		Plan	Optimization

Note:	We	can	visualize	the	plan	as	a	tree

Π8

R(A,B) S(B,C)

Π8(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶)

Bottom-up	tree	traversal	=	order	of	operation	execution!	

Lecture	19		>		Section	1 >		Plan	Optimization

A	simple	plan

Π8

R(A,B) S(B,C)

What	SQL	query	does	this	
correspond	to?

Are	there	any	logically	
equivalent	RA	expressions?

Lecture	19		>		Section	1 >		Plan	Optimization

“Pushing	down”	projection

Π8

R(A,B) S(B,C)

Π8

R(A,B) S(B,C)

Π8

Why	might	we	prefer	this	plan?

Lecture	19		>		Section	1 >		Plan	Optimization

Takeaways

• This	process	is	called	logical	optimization

• Many	equivalent	plans	used	to	search	for	“good	plans”

• Relational	algebra	is	an	important	abstraction.

Lecture	19		>		Section	1 >		Plan	Optimization

RA	commutators

• The	basic	commutators:
• Push	projection through	(1)	selection,	(2)	join
• Push	selection	through	(3)	selection,	(4)	projection,	(5)	join
• Also:	Joins	can	be	re-ordered!

• Note	that	this	is	not	an	exhaustive	set	of	operations
• This	covers	local	re-writes;	global	re-writes	possible	but	much	harder

This	simple	set	of	tools	allows	us	to	greatly	improve	the	
execution	time	of	queries	by	optimizing	RA	plans!

Lecture	19		>		Section	1 >		Plan	Optimization

Optimizing	the	SFW	RA	Plan

Lecture	19		>		Section	1 >		Plan	Optimization

Π4,>

R(A,B) S(B,C)

T(C,D)

sA<10

Π4,>(𝜎4?@A 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Translating	to	RA

Lecture	19		>		Section	1 >		Plan	Optimization

Logical	Optimization

• Heuristically,	we	want	selections	and	projections	to	occur	as	early	as	
possible	in	the	plan	
• Terminology:	“push	down	selections”	and	“pushing	down	projections.”

• Intuition:We	will	have	fewer	tuples	in	a	plan.
• Could	fail	if	the	selection	condition	is	very	expensive	(say	runs	some	image	
processing	algorithm).	
• Projection	could	be	a	waste	of	effort,	but	more	rarely.

Lecture	19		>		Section	1 >		Plan	Optimization

Π4,>

R(A,B) S(B,C)

T(C,D)

sA<10

Π4,>(𝜎4?@A 𝑇 ⋈ 𝑅 ⋈ 𝑆)

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	

Lecture	19		>		Section	1 >		Plan	Optimization

Π4,>

R(A,B)

S(B,C)

T(C,D)

Π4,> 𝑇 ⋈ 𝜎4?@A(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
selection	on	A	so	
it	occurs	earlier	

sA<10

Lecture	19		>		Section	1 >		Plan	Optimization

Π4,>

R(A,B)

S(B,C)

T(C,D)

Π4,> 𝑇 ⋈ 𝜎4?@A(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan Push	down	
projection	so	it	
occurs	earlier	

sA<10

Lecture	19		>		Section	1 >		Plan	Optimization

Π4,>

R(A,B)

S(B,C)

T(C,D)

Π4,> 𝑇 ⋈ Π4,C 𝜎4?@A(𝑅) ⋈ 𝑆

SELECT R.A,S.D
FROM R,S,T
WHERE R.B = S.B

AND S.C = T.C
AND R.A < 10;

R(A,B) S(B,C) T(C,D)

Optimizing	RA	Plan We	eliminate	B	
earlier!

sA<10

Π4,D

In	general,	when	
is	an	attribute	not	
needed…?

Lecture	19		>		Section	1 >		Plan	Optimization

Activity-19-1.ipynb

25

Lecture	19		>		Section	1		>		ACTIVITY

2.	Physical	Optimization

26

Lecture	19		>		Section	2

What	you	will	learn	about	in	this	section

1. Index	Selection

2. Histograms

3. ACTIVITY

27

Lecture	19		>		Section	2

Index	Selection
Input:
• Schema	of	the	database
• Workload	description: set	of	(query	template,	frequency)	pairs

Goal:	Select	a	set	of	indexes	that	minimize	execution	time	of	the	
workload.
• Cost	/	benefit	balance:	Each	additional	index	may	help	with	some	
queries,	but	requires	updating

This	is	an	optimization	problem!

Lecture	19		>		Section	2		>		Index	Selection

Example

SELECT pname,
FROM Product
WHERE year = ? AND Category = ?
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category = ?

Frequency
10,000,000

Workload	
description:

Frequency
10,000,000

Which	indexes	might	we	choose?

Lecture	19		>		Section	2		>		Index	Selection

Example

SELECT pname
FROM Product
WHERE year = ? AND Category =?
AND manufacturer = ?

SELECT pname
FROM Product
WHERE year = ? AND category =?

Frequency
10,000,000

Workload	
description:

Frequency
100

Now	which	indexes	might	we	choose?		Worth	keeping	an	
index	with	manufacturer	in	its	search	key	around?

Lecture	19		>		Section	2		>		Index	Selection

Simple	Heuristic

• Can	be	framed	as	standard	optimization	problem:	Estimate	how	cost	
changes	when	we	add	index.

• We	can	ask	the	optimizer!

• Search	over	all	possible	space	is	too	expensive,	optimization	surface	is	
really	nasty.
• Real	DBs	may	have	1000s	of	tables!

• Techniques	to	exploit	structure	of	the	space.
• In	SQLServer Autoadmin.

NP-hard	problem,	but	can	be	solved!

Lecture	19		>		Section	2		>		Index	Selection

Estimating	index	cost?

• Note	that	to	frame	as	optimization	problem,	we	first	need	an	
estimate	of	the	cost of	an	index	lookup

• Need	to	be	able	to	estimate	the	costs	of	different	indexes	/	index	
types…

Lecture	19		>		Section	2		>		Index	Selection

We	will	see	this	mainly	depends	on	
getting	estimates	of	result	set	size!

Ex:	Clustered	vs.	Unclustered

Cost	to	do	a	range	query	for	M	entries	over	N-page	file	(P	per	page):

• Clustered:	
• To	traverse:	Logf(1.5N)
• To	scan:	1	random	IO	+	 EF@

G
	sequential	IO

• Unclustered:	
• To	traverse:	Logf(1.5N)
• To	scan:	~	M	random	IO

Lecture	19		>		Section	2		>		Index	Selection

Suppose	we	are	using	a	
B+	Tree	index	with:
• Fanout f
• Fill	factor	2/3

Plugging	in	some	numbers

• Clustered:	
• To	traverse:	LogF(1.5N)
• To	scan:	1	random	IO	+	 EF@

G
sequential	IO

• Unclustered:	
• To	traverse:	LogF(1.5N)
• To	scan:	~	M	random	IO

• If	M	=	1,	then	there	is	no	difference!
• If	M	=	100,000	records,	then	difference	is	~10min.	Vs.	10ms!

Lecture	19		>		Section	2		>		Index	Selection

To	simplify:
• Random	IO	=	~10ms
• Sequential	IO	=	free

~	1	random	IO	=	10ms

~	M random	IO	=	M*10ms

If	only	we	had	good	estimates	of	M…

Histograms	&	IO	Cost	Estimation

35

Lecture	19		>		Section	2		>		Histograms

IO	Cost	Estimation	via	Histograms

• For	index	selection:
• What	is	the	cost	of	an	index	lookup?

• Also	for	deciding	which	algorithm	to	use:
• Ex:	To	execute	R ⋈ 𝑆,	which	join	algorithm	should	DBMS	use?

• What	if	we	want	to	compute	𝝈𝑨,𝟏𝟎(𝐑) ⋈ 𝝈𝑩5𝟏(𝑺)?

• In	general,	we	will	need	some	way	to	estimate intermediate	result	set	sizes

Lecture	19		>		Section	2		>		Histograms

Histograms	provide	a	way	to	efficiently	
store	estimates	of	these	quantities

Histograms

• A	histogram	is	a	set	of	value	ranges	(“buckets”)	and	the	frequencies	of	
values	in	those	buckets	occurring

• How	to	choose	the	buckets?
• Equiwidth &	Equidepth

• Turns	out	high-frequency	values	are	very	important

Lecture	19		>		Section	2		>		Histograms

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Values

Frequency

How	do	we	
compute	how	
many	values	
between	8	and	
10?	
(Yes,	it’s	obvious)

Problem:	counts	take	up	too	much	space!

Example

Lecture	19		>		Section	2		>		Histograms

Full	vs.	Uniform	Counts

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

How	much	space	
do	the	full	counts	
(bucket_size=1)	
take?

How	much	space	
do	the	uniform	
counts	
(bucket_size=ALL)	
take?

Lecture	19		>		Section	2		>		Histograms

Fundamental	Tradeoffs

• Want	high	resolution	(like	the	full	counts)

• Want	low	space	(like	uniform)

• Histograms	are	a	compromise!

So	how	do	we	compute	the	“bucket”	sizes?

Lecture	19		>		Section	2		>		Histograms

Equi-width

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All	buckets	roughly	the	same	width

Lecture	19		>		Section	2		>		Histograms

Equidepth

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All	buckets	contain	roughly	the	same	
number	of	items	(total	frequency)

Lecture	19		>		Section	2		>		Histograms

Histograms

• Simple,	intuitive	and	popular

• Parameters:	#	of	buckets	and	type

• Can	extend	to	many	attributes	(multidimensional)

Lecture	19		>		Section	2		>		Histograms

Maintaining	Histograms

• Histograms	require	that	we	update	them!
• Typically,	you	must	run/schedule	a	command	to	update	statistics	on	the	
database
• Out	of	date	histograms	can	be	terrible!

• There	is	research	work	on	self-tuning	histograms	and	the	use	of	query	
feedback
• Oracle	11g

Lecture	19		>		Section	2		>		Histograms

Nasty	example

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.	we	insert	many	tuples with	value	>	16
2.	we	do	not	update	the	histogram
3.	we	ask	for	values	>	20?

Lecture	19		>		Section	2		>		Histograms

Compressed	Histograms

• One	popular	approach:	
1. Store	the	most	frequent	values	and	their	counts	explicitly
2. Keep	an	equiwidth or	equidepth one	for	the	rest	of	the	values

People	continue	to	try	all	manner	of	fanciness	here	
wavelets,	graphical	models,	entropy	models,…	

Lecture	19		>		Section	2		>		Histograms

Activity-19-2.ipynb

47

Lecture	19		>		Section	2 >		ACTIVITY

Happy	Thanksgiving!

• Don’t	forget: Push	until	the	22nd then	get	to	enjoy	a	nice	break	J

Lecture	19

If	you’re	into	cult	
movies:

