
The	Relational	Model

Lecture	18

Today’s	Lecture

1. The	Relational	Model	&	Relational	Algebra

2. Relational	Algebra	Pt.	II

2

Lecture	18

1.	The	Relational	Model	&	
Relational	Algebra

3

Lecture	18		>		Section	1

What	you	will	learn	about	in	this	section

1. The	Relational	Model

2. Relational	Algebra:	Basic	Operators

3. Execution

4. ACTIVITY:	From	SQL	to	RA	&	Back

4

Lecture	18		>		Section	1

Motivation

The	Relational	model	is	precise,	
implementable,	and	we	can	operate	on	it	

(query/update,	etc.)

Database	maps	internally	into	this	
procedural	language.

Lecture	18		>		Section	1		>		The	Relational	Model

A	Little	History

• Relational	model	due	to	Edgar	“Ted”	Codd,	
a	mathematician	at	IBM	in	1970
• A	Relational	Model	of	Data	for	Large	Shared	
Data	Banks". Communications	of	the	
ACM 13 (6):	377–387

• IBM	didn’t	want	to	use	relational	model	
(take	money	from	their	Information	
Management	System)

Won	Turing	
award	1981

Lecture	18		>		Section	1		>		The	Relational	Model

The	Relational	Model:	Schemata

• Relational	Schema:

Lecture	18		>		Section	1		>		The	Relational	Model

Students(sid: string, name: string, gpa: float)

AttributesString,	float,	int,	etc.	
are	the	domains of	
the	attributes

Relation	name

8

The	Relational	Model:	Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

An	attribute (or	
column)	is	a	typed	
data	entry	present	
in	each	tuple	in	
the	relation

The	number	of	
attributes	is	the	arity of	
the	relation

Lecture	18		>		Section	1		>		The	Relational	Model

9

The	Relational	Model:	Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student

A	tuple or	row (or	record)	is	a	single	
entry	in	the	table	having	the	
attributes	specified	by	the	schema

The	number	of	
tuples	is	the	
cardinality of	
the	relation

Lecture	18		>		Section	1		>		The	Relational	Model

10

The	Relational	Model:	Data
Student

A	relational	instance is	a	set of	tuples	
all	conforming	to	the	same	schema

Recall:	In	practice	
DBMSs	relax	the	set	
requirement,	and	
use	multisets.		

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Lecture	18		>		Section	1		>		The	Relational	Model

• A	relational	schema describes	the	data	that	is	contained	in	a	
relational	instance

To	Reiterate

Let	R(f1:Dom1,…,fm:Domm)	be	a	relational	schema then,	
an	instance	of	R	is	a	subset	of	Dom1 x	Dom2 x	…	x	Domn

Lecture	18		>		Section	1		>		The	Relational	Model

In	this	way,	a	relational	schema R	is	a	total	function	from	attribute	
names to	types

• A	relational	schema describes	the	data	that	is	contained	in	a	
relational	instance

One	More	Time

A	relation	R	of	arity t is	a	function:	
R	:	Dom1 x	…	x	Domt à {0,1}

Lecture	18		>		Section	1		>		The	Relational	Model

Then,	the	schema	is	simply	the	signature	of	the	function

I.e.	returns	whether	or	not	a	tuple	
of	matching	types	is	a	member	of	it

Note	here	that	order	matters,	attribute	name	doesn’t…
We’ll	(mostly)	work	with	the	other	model	(last	slide)	in	

which	attribute	name	matters,	order	doesn’t!

A	relational	database

• A	relational	database	schema is	a	set	of	relational	schemata,	one	for	
each	relation

• A	relational	database	instance is	a	set	of	relational	instances,	one	for	
each	relation

Two	conventions:	
1. We	call	relational	database	instances	as	simply	databases
2. We	assume	all	instances	are	valid,	i.e.,	satisfy	the	domain	constraints

Lecture	18		>		Section	1		>		The	Relational	Model

Remember	the	CMS

• Relation	DB	Schema
• Students(sid:	string,	name:	string,	gpa:	float)
• Courses(cid:	string,	cname:	string,	credits:	int)
• Enrolled(sid:	string,	cid:	string,	grade:	string)

Sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relation	
Instances

14

Lecture	18		>		Section	1		>		The	Relational	Model

Note	that	the	schemas	
impose	effective	domain	/	
type	constraints,	i.e.	Gpa
can’t	be	“Apple”

2nd Part	of	the	Model:	Querying

“Find	names	of	all	students	
with	GPA	>	3.5”

We	don’t	tell	the	system how	or	
where to	get	the	data- just	what	we	
want,	i.e.,	Querying	is	declarative

Actually,	I	showed	how	to	do	this	
translation	for	a	much	richer	language!

Lecture	18		>		Section	1		>		The	Relational	Model

SELECT S.name
FROM Students S
WHERE S.gpa > 3.5;

To	make	this	happen,	we	need	to	
translate	the	declarative	query	into	
a	series	of	operators…	we’ll	see	this	
next!

Virtues	of	the	model

• Physical	independence	(logical	too),	Declarative

• Simple,	elegant	clean:	Everything	is	a	relation

• Why	did	it	take	multiple	years?	
• Doubted	it	could	be	done	efficiently.

Lecture	18		>		Section	1		>		The	Relational	Model

Relational	Algebra

Lecture	18		>		Section	1 >		Relational	Algebra

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expresson

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!

Lecture	18		>		Section	1 >		Relational	Algebra

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Relational	Algebra	allows	us	to	translate	declarative	(SQL)	
queries	into	precise	and	optimizable expressions!

Lecture	18		>		Section	1 >		Relational	Algebra

• Five	basic	operators:
1. Selection: s
2. Projection:	P
3. Cartesian	Product:	´
4. Union:	È
5. Difference:	-

• Derived	or	auxiliary	operators:
• Intersection,	complement
• Joins	(natural,equi-join,	theta	join,	semi-join)
• Renaming: r
• Division

Relational	Algebra	(RA)

We’ll	look	at	these	first!

And	also	at	one	example	of	a	
derived	operator	(natural	
join)	and	a	special	operator	
(renaming)

Lecture	18		>		Section	1 >		Relational	Algebra

Keep	in	mind:	RA	operates	on	sets!

• RDBMSs	use	multisets,	however	in	relational	algebra	formalism	we	
will	consider	sets!

• Also:	we	will	consider	the	named	perspective,	where	every	attribute	
must	have	a	unique	name
• àattribute	order	does	not	matter…

Lecture	18		>		Section	1 >		Relational	Algebra

Now	on	to	the	basic	RA	operators…

• Returns	all	tuples	which	satisfy	a	
condition
• Notation:	 sc(R)
• Examples
• sSalary >	40000 (Employee)
• sname =	“Smith” (Employee)

• The	condition	c	can	be	=,	<,	£,	>,
³,	<>

1.	Selection	(𝜎)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎"#$	&'.)(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

Lecture	18		>		Section	1 >		Relational	Algebra

sSalary >	40000 (Employee)

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

Another	example:

Lecture	18		>		Section	1 >		Relational	Algebra

• Eliminates	columns,	then	removes	
duplicates
• Notation:			P A1,…,An (R)
• Example:	project	social-security	
number	and	names:
• P SSN,	Name (Employee)
• Output	schema:			Answer(SSN,	
Name)

2.	Projection	(Π)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Π45$67,"#$(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

Lecture	18		>		Section	1 >		Relational	Algebra

P Name,Salary (Employee)

SSN Name Salary
1234545 John 200000
5423341 John 600000
4352342 John 200000

Name Salary
John 200000
John 600000

Another	example:

Lecture	18		>		Section	1 >		Relational	Algebra

Note	that	RA	Operators	are	Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How	do	we	represent	
this	query	in	RA?

Π45$67,"#$(𝜎"#$&'.)(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎"#$&'.)(Π45$67,"#$(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are	these	logically	equivalent?

Lecture	18		>		Section	1 >		Relational	Algebra

• Each	tuple	in	R1	with	each	tuple	in	
R2
• Notation:	R1	´ R2
• Example:		
• Employee	´ Dependents

• Rare	in	practice;	mainly	used	to	
express	joins

3.	Cross-Product	(×)

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Lecture	18		>		Section	1 >		Relational	Algebra

ssn pname address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa
1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother	example:

Lecture	18		>		Section	1 >		Relational	Algebra

• Changes	the	schema,	not	the	instance
• A	‘special’	operator- neither	basic	nor	
derived
• Notation:	r B1,…,Bn (R)

• Note:	this	is	shorthand	for	the	proper	
form	(since	names,	not	order	
matters!):
• r A1àB1,…,AnàBn (R)

Renaming	(𝜌)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
𝜌4?@ABA,5$67,"C$A7D?EF"(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We	care	about	this	operator	because we	
are	working	in	a	named	perspective

Lecture	18		>		Section	1 >		Relational	Algebra

sid sname gpa
001 John 3.4

002 Bob 1.3

𝜌4?@ABA,5$67,"C$A7D?EF"(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg
001 John 3.4

002 Bob 1.3

Students

Another	example:

Lecture	18		>		Section	1 >		Relational	Algebra

• Notation:	R1⋈	R2

• Joins	R1 and	R2 on	equality	of	all	shared	attributes
• If	R1 has	attribute	set	A,	and	R2 has	attribute	set	B,	and	they	share	attributes	A⋂B	=	C,	can	also	be	
written:	R1⋈ 𝐶	R2

• Our	first	example	of	a	derived	RA operator:
• Meaning:		R1⋈ R2 =	PA	U	B(sC=D(𝜌J→L(R1)	´ R2))
• Where:

• The	rename	𝜌J→L renames	the	shared	attributes	in	
one	of	the	relations

• The	selection	sC=D	checks	equality	of	the	shared	attributes
• The	projection	PA	U	B	eliminates	the	duplicate	

common	attributes

Natural	Join	(⋈)

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

Lecture	18		>		Section	1 >		Relational	Algebra

ssn P.name address
1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa
001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address
001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People	PStudents	S
Another	example:

Lecture	18		>		Section	1 >		Relational	Algebra

Natural	Join

• Given	schemas	R(A,	B,	C,	D),	S(A,	C,	E),	what	is	the	schema	of	R	⋈	S	?

• Given	R(A,	B,	C),		S(D,	E),	what	is	R	⋈	S		?

• Given	R(A,	B),		S(A,	B),		what	is		R	⋈	S		?

Lecture	18		>		Section	1 >		Relational	Algebra

Example:	Converting	SFW	Query	->	RA

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
sname = pname;

How	do	we	represent	
this	query	in	RA?

Π"#$,$AAC744(𝜎"#$&'.)(𝑆 ⋈ 𝑃))

Lecture	18		>		Section	1 >		Relational	Algebra

Students(sid,sname,gpa)
People(ssn,sname,address)

Logical	Equivalece of	RA	Plans

• Given	relations	R(A,B)	and	S(B,C):

• Here,	projection	&	selection	commute:	
• 𝜎EM)(ΠE(𝑅)) = ΠE(𝜎EM)(𝑅))

• What	about	here?
• 𝜎EM)(ΠP(𝑅))	?= ΠP(𝜎EM)(𝑅))

We’ll	look	at	this	in	more	depth	later	in	the	lecture…

Lecture	18		>		Section	1 >		Relational	Algebra

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

We	saw	how	we	can	transform	declarative	SQL	queries	into	
precise,	compositional	RA	plans

Lecture	18		>		Section	1 >		Relational	Algebra

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

We’ll	look	at	how	to	then	optimize	these	
plans	later	in	this	class

Lecture	18		>		Section	1 >		Relational	Algebra

RDBMS	Architecture

How	is	the	RA	“plan”	executed?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

We	already	know	how	to	execute	all	the	basic	operators!

Lecture	18		>		Section	1 >		Relational	Algebra

RA	Plan	Execution

• Natural	Join	/	Join:
• We	saw	how	to	use	memory	&	IO	cost	considerations	to	pick	the	correct	algorithm	
to	execute	a	join with	(BNLJ,	SMJ,	HJ…)!

• Selection:
• We	saw	how	to	use	indexes	to	aid	selection
• Can	always	fall	back	on	scan	/	binary	search	as	well

• Projection:
• The	main	operation	here	is	finding	distinct	values	of	the	project	tuples;	we	briefly	
discussed	how	to	do	this	with	e.g.	hashing	or	sorting

We	already	know	how	to	execute	all	the	basic	operators!

Lecture	18		>		Section	1 >		Relational	Algebra

Activity-16-1.ipynb

40

Lecture	18		>		Section	1		>		ACTIVITY

2.	Adv.	Relational	Algebra

41

Lecture	18		>		Section	2

What	you	will	learn	about	in	this	section

1. Set	Operations	in	RA

2. Fancier	RA

3. Extensions	&	Limitations

42

Lecture	18		>		Section	2

• Five	basic	operators:
1. Selection: s
2. Projection:	P
3. Cartesian	Product:	´
4. Union:	È
5. Difference:	-

• Derived	or	auxiliary	operators:
• Intersection,	complement
• Joins	(natural,equi-join,	theta	join,	semi-join)
• Renaming: r
• Division

Relational	Algebra	(RA)

We’ll	look	at	these

And	also	at	some	of	
these	derived	operators

Lecture	18		>		Section	2

1.	Union	(È) and	2.	Difference	(–)

• R1	È R2
• Example:		
• ActiveEmployeesÈ RetiredEmployees

• R1	– R2
• Example:
• AllEmployees -- RetiredEmployees

R1 R2

R1 R2

Lecture	18		>		Section	2 >		Set	Operations

What	about	Intersection	(Ç) ?

• It	is	a	derived	operator
• R1	Ç R2	=	R1	– (R1	– R2)
• Also	expressed	as	a	join!
• Example

• UnionizedEmployeesÇ RetiredEmployees

R1 R2

Lecture	18		>		Section	2 >		Set	Operations

Fancier	RA

Lecture	18		>		Section	2		>		Fancier	RA

Theta	Join	(⋈q)

• A	join	that	involves	a	predicate
• R1	⋈q R2			=		s q (R1	´ R2)
• Here	q can	be	any	condition	

SELECT *
FROM

Students,People
WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈R 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note	that	natural	join	is	a	
theta	join	+	a	projection.

Lecture	18		>		Section	2		>		Fancier	RA

Equi-join	(⋈	A=B)

• A	theta	join	where	q is	an	equality
• R1	⋈	A=B R2			=		s A=B (R1	´ R2)
• Example:
• Employee	⋈	SSN=SSN Dependents	

SELECT *
FROM

Students S,
People P

WHERE sname = pname;

SQL:

RA:
𝑆	 ⋈45$67M#5$67 	𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most	common	join	
in	practice!

Lecture	18		>		Section	2		>		Fancier	RA

Semijoin (⋉)

• R	⋉ S		=	P A1,…,An (R	⋈ S)
• Where	A1,	…,	An are	the	attributes	in	R
• Example:
• Employee	⋉	Dependents	

SELECT DISTINCT
sid,sname,gpa

FROM
Students,People

WHERE
sname = pname;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Lecture	18		>		Section	2		>		Fancier	RA

Semijoins	in	Distributed	Databases
• Semijoins are	often	used	to	compute	natural	joins	in	distributed	databases

SSN Name
.

SSN Dname Age
.

Employee

Dependents

network

Employee ⋈	ssn=ssn (s age>71 (Dependents))

T = P SSN s age>71 (Dependents)
R = Employee ⋉	T

Answer = R ⋈	Dependents

Send	less	data	to	
reduce	network	
bandwidth!

Lecture	18		>		Section	2		>		Fancier	RA

RA	Expressions	Can	Get	Complex!

Person									Purchase										Person										Product

sname=fred sname=gizmo

P pidP ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

P name

Lecture	18		>		Section	2		>		Fancier	RA

Multisets

Lecture	18		>		Section	2		>		Extensions	&	Limitations

Recall	that	SQL	uses	Multisets

53

Tuple

(1,	a)

(1,	a)

(1, b)

(2,	c)

(2,	c)

(2,	c)

(1,	d)

(1,	d)

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 1

(2,	c) 3

(1, d) 2Equivalent	
Representations
of	a	Multiset

Multiset X

Multiset X

Note:	In	a	set	all	
counts	are	{0,1}.

𝝀 𝑿 =	“Count	of	tuple	in	X”
(Items	not	listed	have	
implicit	count	0)

Lecture	18		>		Section	2		>		Extensions	&	Limitations

Generalizing	Set	Operations	to	Multiset
Operations

54

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 2

(1,	b) 0

(2,	c) 2

(1, d) 0

Multiset Z

∩ =

𝝀 𝒁 = 𝒎𝒊𝒏(𝝀 𝑿 , 𝝀 𝒀)
For	sets,	this	is	
intersection

Lecture	18		>		Section	2		>		Extensions	&	Limitations

55

Tuple 𝝀(𝑿)

(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1,	a) 7

(1,	b) 1

(2,	c) 5

(1, d) 2

Multiset Z

∪ =

𝝀 𝒁 = 𝝀 𝑿 + 	𝝀 𝒀
For	sets,	

this	is	union

Generalizing	Set	Operations	to	Multiset
Operations

Lecture	18		>		Section	2		>		Extensions	&	Limitations

Operations	on	Multisets

All	RA	operations	need	to	be	defined	carefully	on	bags

• sC(R):	preserve	the	number	of	occurrences

• PA(R):	no	duplicate	elimination

• Cross-product,	join:	no	duplicate	elimination

This	is	important- relational	engines	work	on	
multisets,	not	sets!

Lecture	18		>		Section	2		>		Extensions	&	Limitations

RA	has	Limitations	!

• Cannot	compute	“transitive	closure”

• Find	all	direct	and	indirect	relatives	of	Fred
• Cannot	express	in	RA	!!!		

• Need	to	write	C	program,	use	a	graph	engine,	or	modern	SQL…

Name1 Name2 Relationship
Fred Mary Father
Mary Joe Cousin
Mary Bill Spouse
Nancy Lou Sister

Lecture	18		>		Section	2		>		Extensions	&	Limitations

