
Lecture	17:	
Joins

Lecture	17

Graduate	School	Information	Panel

Should	I	attend	graduate	school	in	CS?

Thursday,	Nov	9	@	3:00PM
1240CS

How	do	I	prepare	a	competitive	application?

Join	us	for	a	live	Q&A	with	CS	faculty,	
graduate	students,	and	a	

graduate	school	admissions	coordinator!

How	do	I	choose	the	right	graduate	program?

Lecture	17:	
Joins

Lecture	17

Today’s	Lecture

1. Recap:	Select,	Project

2. Joins

3. Joins	and	Buffer	Management

4

Lecture	17

1.	Recap

5

Lecture	17

Lecture	17

Logical	Plan	=	How

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’

SELECT
SELECT
city	=	‘Madison’

JOIN
buyer	=	name

PROJECT
on	buyer

Purchase Person

Lecture	17

Physical	Plan	=	What

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’

Table	Scan Index	Scan

Nested	Loop	Join

Hash-based	
Project

Purchase Person

Lecture	16

Select	Operator

access	path =	way	to	retrieve	tuples	from	a	table
• File	Scan
• scan	the	entire	file
• I/O	cost:	O(N),	where	N	=	#pages

• Index	Scan:	
• use	an	index	available	on	some	predicate
• I/O	cost:	it	varies	depending	on	the	index

Lecture	16

Index	Matching

• We	say	that	an	index	matches a	selection	predicate	if	the	index	
can	be	used	to	evaluate	it
• Consider	a	conjunction-only	selection.	An	index	matches	(part	
of)	a	predicate	if
• Hash:	only	equality	operation	&	the	predicate	includes	all index	
attributes

• B+	Tree:		the	attributes	are	a	prefix	of	the	search	key	(any	ops	are	
possible)

Lecture	16

Choosing	the	Right	Index

• Selectivity of	an	access	path	=	fraction of	data	pages	that	need	
to	be	retrieved
• We	want	to	choose	the	most	selective	path!
• Estimating	the	selectivity	of	an	access	path	is	a	hard	problem

Lecture	17

Projection

Simple	case:	SELECT R.a, R.d
• scan	the	file	and	for	each	tuple	output	R.a,	R.d

Hard	case:	SELECT DISTINCT R.a, R.d
• project	out	the	attributes	
• eliminate	duplicate	tuples	(this	is	the	difficult	part!)

Lecture	17

Projection:	Sort-based

We	can	improve	upon	the	naïve	algorithm	by	modifying	the	sorting	
algorithm:

1. In	Pass	0 of	sorting,	project	out	the	attributes

2. In	subsequent	passes,	eliminate	the	duplicates	while	merging	the	runs

Lecture	17

Projection:	Hash-based

2-phase	algorithm:

• partitioning	
• project	out	attributes	and	split	the	input	into	B-1	partitions	using	a	
hash	function	h

• duplicate	elimination
• read	each	partition	into	memory	and	use	an	in-memory	hash	table	
(with	a	different hash	function)	to	remove	duplicates

2.	Joins

14

Lecture	17

What	you	will	learn	about	in	this	section

1. RECAP:	Joins

2. Nested	Loop	Join	(NLJ)

3. Block	Nested	Loop	Join	(BNLJ)

4. Index	Nested	Loop	Join	(INLJ)

15

Lecture	17

1.	Nested	Loop	Joins

16

Lecture	17

What	you	will	learn	about	in	this	section

1. RECAP:	Joins

2. Nested	Loop	Join	(NLJ)

3. Block	Nested	Loop	Join	(BNLJ)

4. Index	Nested	Loop	Join	(INLJ)

17

Lecture	17

RECAP:	Joins

Lecture	17		>		Joins

19

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

𝐑 ⋈ 𝑺

Lecture	17		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

20

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

𝐑 ⋈ 𝑺

Lecture	17		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

21

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

𝐑 ⋈ 𝑺

Lecture	17		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

22

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

𝐑 ⋈ 𝑺

Lecture	17		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

23

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

𝐑 ⋈ 𝑺

Lecture	17		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

24

Semantically:	A	Subset	of	the	Cross	Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×
Cross	
Product

Filter	by	
conditions
(r.A =	s.A)

… Can	we	actually	
implement	a	join	
in	this	way?

𝐑 ⋈ 𝑺

Lecture	17		>		Joins

Notes

• We	write	𝐑 ⋈ 𝑺 to	mean	join	R	and	S	by	returning	all	tuple	pairs	
where	all	shared	attributes	are	equal

• We	write	𝐑 ⋈ 𝑺 on	A to	mean	join	R	and	S	by	returning	all	tuple	pairs	
where	attribute(s)	A	are	equal

• For	simplicity,	we’ll	consider	joins	on	two	tables and	with	equality	
constraints	(“equijoins”)

However	joins	canmerge	>	2	tables,	
and	some	algorithms	do	support	non-
equality	constraints!

Lecture	17		>		Joins

26

Nested	Loop	Joins

Lecture	17		>		NLJ

Notes
• We	are	again	considering	“IO	aware”	algorithms:	
care	about	disk	IO

• Given	a	relation	R,	let:
• T(R)	=	#	of	tuples	in	R
• P(R)	=	#	of	pages	in	R

• Note	also	that	we	omit	ceilings	in	calculations…	
good	exercise	to	put	back	in!

Lecture	17		>		NLJ

Recall	that	we	read	/	write	
entire	pages	with	disk	IO

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	17		>		NLJ

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	17		>		NLJ

P(R)

1. Loop	over	the	tuples	in	R

Note	that	our	IO	cost	is	based	
on	the	number	of	pages
loaded,	not	the	number	of	
tuples!

Cost:

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	17		>		NLJ

P(R)	+	T(R)*P(S)

Have	to	read	all	of	S	from	disk	for	every	tuple	in	R!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

Cost:

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	17		>		NLJ

P(R)	+	T(R)*P(S)

Note	that	NLJ	can	handle	things	other	than	equality	
constraints…	just	check	in	the	if	statement!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

Cost:

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	17		>		NLJ

P(R)	+	T(R)*P(S)	+	OUT

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

4. Write	out	(to	page,	then	
when	page	full,	to	disk)

Cost:

What	would	OUT
be	if	our	join	
condition	is	trivial	
(if	TRUE)?

OUT could	be	bigger	
than	P(R)*P(S)…	but	
usually	not	that	bad

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	17		>		NLJ

P(R)	+	T(R)*P(S)	+	OUT

What	if	R	(“outer”)	and	S	
(“inner”)	switched?

Cost:

P(S)	+	T(S)*P(R)	+	OUT

Outer	vs.	inner	selection	makes	a	huge	difference-
DBMS	needs	to	know	which	relation	is	smaller!

IO-Aware	Approach

Lecture	17		>		BNLJ

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	17		>		BNLJ

P(𝑅)

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

Cost:

Note:	There	could	be	some	
speedup	here	due	to	the	fact	
that	we’re	reading	in	multiple	
pages	sequentially	however	
we’ll	ignore	this	here!

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	17		>		BNLJ

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

Given	B+1	pages	of	memory

Note:	Faster	to	iterate	over	the	
smaller relation	first!

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

Cost:

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	17		>		BNLJ

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

BNLJ	can	also	handle	non-equality	constraints

Cost:

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	17		>		BNLJ

P 𝑅 +	; <
=>?

𝑃(𝑆) +	OUT

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

Again,	OUT could	be	bigger	than	
P(R)*P(S)…	but	usually	not	that	bad

BNLJ	vs.	NLJ:	Benefits	of	IO	Aware

• In	BNLJ,	by	loading	larger	chunks	of	R,	we	minimize	the	number	of	full	
disk	reads of	S
• We	only	read	all	of	S	from	disk	for	every	(B-1)-page	segment	of	R!
• Still	the	full	cross-product,	but	more	done	only	in	memory

P 𝑅 +	; <
=>?

𝑃(𝑆) +	OUTP(R)	+	T(R)*P(S)	+	OUT
NLJ BNLJ

BNLJ	is	faster	by		roughly	(=>?)@(<)
;(<)

!

Lecture	17		>		BNLJ

BNLJ	vs.	NLJ:	Benefits	of	IO	Aware

• Example:
• R:	500	pages
• S:	1000	pages
• 100	tuples	/	page
• We	have	12	pages	of	memory	(B	=	11)

• NLJ:	Cost	=	500	+	50,000*1000 =	50	Million	IOs	~=	140	hours

• BNLJ:	Cost	=	500	+	ABB∗?BBB
?B

=	50	Thousand IOs	~=	0.14	hours

Lecture	17		>		BNLJ

A	very	real	difference	from	a	small	
change	in	the	algorithm!

Ignoring	OUT	here…

Smarter	than	Cross-Products

Lecture	17		>		INLJ

Smarter	than	Cross-Products:	From	Quadratic	
to	Nearly	Linear
• All	joins	that	compute	the	full	cross-product have	some	quadratic	
term
• For	example	we	saw:

• Now	we’ll	see	some	(nearly)	linear	joins:
• ~	O(P(R)	+	P(S)	+	OUT),	where	again	OUT could	be	quadratic	but	is	usually	
better

P 𝑅 +	𝑷 𝑹
=>?

𝑷(𝑺) +	OUT

P(R)	+	T(R)P(S)	+	OUTNLJ

BNLJ

We	get	this	gain	by	taking	advantage	of	structure- moving	to	
equality	constraints	(“equijoin”)	only!

Lecture	17		>		INLJ

Index	Nested	Loop	Join	(INLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
Given index idx on S.A:

for r in R:
s in idx(r[A]):

yield r,s

Lecture	17		>		INLJ

P(R)	+	T(R)*L	+	OUT

àWe	can	use	an	index (e.g.	B+	Tree)	to	avoid	doing	
the	full	cross-product!

where	L	is	the	IO	cost	to	access	
all	the	distinct	values	in	the	
index;	assuming	these	fit	on	
one	page,	L	~	3 is	good	est.	

Cost:

3.	Joins	and	Memory

44

Lecture	17

What	you	will	learn	about	in	this	section

1. Sort-Merge	Join	(SMJ)

2. Hash	Join	(HJ)

3. SMJ	vs.	HJ

45

Lecture	17

Sort-Merge	Join	(SMJ)

46

Lecture	17		

What	you	will	learn	about	in	this	section

1. Sort-Merge	Join

2. “Backup”	&	Total	Cost

3. Optimizations

47

Lecture	17		

Sort	Merge	Join	(SMJ):	Basic	Procedure

To	compute	R ⋈ 𝑆	𝑜𝑛	𝐴:

1. Sort	R,	S	on	A	using	external	merge	sort

2. Scan sorted	files	and	“merge”

3. [May	need	to	“backup”- see	next	subsection]

Note	that	if	R,	S	are	already	sorted	on	A,	
SMJ	will	be	awesome!

Lecture	17				>		SMJ

Note	that	we	are	only	
considering	equality	
join	conditions	here

SMJ	Example:	R ⋈ 𝑆	𝑜𝑛	𝐴	with	3	page	buffer

• For	simplicity:	Let	each	page	be	one	tuple,	and	let	the	first	value	be	A	

Disk
Main	Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

We	show	the	file	
HEAD,	which	is	
the	next	value	
to	be	read!

Lecture	17				>		SMJ

SMJ	Example:	R ⋈ 𝑆	𝑜𝑛	𝐴	with	3	page	buffer

1.	Sort	the	relations	R,	S	on	the	join	key	(first	value)

Disk
Main	Memory

Buffer
R (5,b) (3,j)(0,a)

S (7,f) (0,j)(3,g)

(3,j) (5,b)(0,a)

(3,g) (7,f)(0,j)

Lecture	17				>		SMJ

SMJ	Example:	R ⋈ 𝑆	𝑜𝑛	𝐴	with	3	page	buffer

2.	Scan	and	“merge”	on	join	key!

Disk
Main	Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)

(0,a)(0,a)

(0,j)

Lecture	17				>		SMJ

SMJ	Example:	R ⋈ 𝑆	𝑜𝑛	𝐴	with	3	page	buffer

2.	Scan	and	“merge”	on	join	key!

Disk
Main	Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,j)(0,a)

(0,a)

(0,j)
(0,a,j)

Lecture	17				>		SMJ

SMJ	Example:	R ⋈ 𝑆	𝑜𝑛	𝐴	with	3	page	buffer

2.	Scan	and	“merge”	on	join	key!

Disk
Main	Memory

Buffer
R

S (3,g) (7,f)

(3,j) (5,b)

Output

(0,a)

(0,j)

(0,a,j)

(3,j,g)

(3,j)

(3,g)

(5,b)

(7,f)

Lecture	17				>		SMJ

SMJ	Example:	R ⋈ 𝑆	𝑜𝑛	𝐴	with	3	page	buffer

2.	Done!

Disk
Main	Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,a)

(0,j)

(0,a,j)

(3,j)

(3,g)

(3,j,g)

(5,b)

(7,f)

Lecture	17				>		SMJ

What	happens	with	duplicate	join	
keys?

Lecture	17				>		Backup

Multiple	tuples	with	Same	Join	Key:	“Backup”

1.	Start	with	sorted	relations,	and	begin	scan	/	merge…

Disk
Main	Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,j)

(0,a)

(0,j)

Lecture	17				>		Backup

1.	Start	with	sorted	relations,	and	begin	scan	/	merge…

Disk
Main	Memory

Buffer
R

S 3,g 7,f

3,j 5,b

Output

(0,j)

(0,g)

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,j) (0,a,j)

Multiple	tuples	with	Same	Join	Key:	“Backup”

Lecture	17				>		Backup

1.	Start	with	sorted	relations,	and	begin	scan	/	merge…

Disk
Main	Memory

Buffer
R

S (0,g) 7,f

(0,j) 5,b

Output

(0,b)

(7,f)

(0,a)

(0,a)
(0,j)

(0,a,j)

(0,a,g)

Multiple	tuples	with	Same	Join	Key:	“Backup”

(0,g)

(0,j)

Lecture	17				>		Backup

1.	Start	with	sorted	relations,	and	begin	scan	/	merge…

Disk
Main	Memory

Buffer
R

S 0,g 7,f

0,j 5,b

Output

(0,j) (0,b)

(7,f)

(0,a)

(0,a,j)

(0,g)

(0,a,g)

(0,j)

Have	to	“backup”	in	the	scan	of	S	
and	read	tuple	we’ve	already	read!

(0,j)

Multiple	tuples	with	Same	Join	Key:	“Backup”

(0,j)

Lecture	17				>		Backup

Backup

• At	best,	no	backup	à scan	takes	P(R)	+	P(S)	reads
• For	ex:	if	no	duplicate	values	in	join	attribute

• At	worst	(e.g.	full	backup	each	time),	scan	could	take	P(R)	*	P(S)	reads!
• For	ex:	if	all	duplicate	values	in	join	attribute,	i.e.	all	tuples	in	R	and	S	have	the	same	
value	for	the	join	attribute

• Roughly:	For	each	page	of	R,	we’ll	have	to	back	up	and	read	each	page	of	S…

• Often	not	that	bad	however,	plus	we	can:
• Leave	more	data	in	buffer	(for	larger	buffers)
• Can	“zig-zag”	(see	animation)

Lecture	17				>		Backup

SMJ:	Total	cost

• Cost	of	SMJ	is	cost	of	sorting R	and	S…

• Plus	the	cost	of	scanning:	~P(R)+P(S)
• Because	of	backup:	in	worst	case	P(R)*P(S);	but	this	would	be	very	unlikely

• Plus	the	cost	of	writing	out:	~P(R)+P(S)	but	in	worst	case	T(R)*T(S)

~	Sort(P(R))	+	Sort(P(S))	
+	P(R)	+	P(S) +	OUT

Recall:	Sort(N)	≈ 2𝑁 log=
𝑵

𝟐(𝑩R𝟏)
+ 1

Note:	this	is	using	repacking,	where	we	estimate	
that	we	can	create	initial	runs	of	length	~2(B+1)

Lecture	17				>		Backup

SMJ	vs.	BNLJ:	Steel	Cage	Match

• If	we	have	100	buffer	pages,	P(R)	= 1000	pages	and	P(S)	=	500	pages:	
• Sort	both	in	two	passes:	2	*	2	*	1000	+	2	*	2	*	500	=	6,000	IOs
• Merge	phase	1000	+	500	=	1,500	IOs
• =	7,500	IOs	+	OUT

What	is	BNLJ?
• 500	+	1000* ABB

TU
=	6,500	IOs	+	OUT

• But,	if	we	have	35	buffer	pages?
• Sort	Merge	has	same	behavior	(still	2	passes)
• BNLJ?	15,500	IOs	+	OUT!

SMJ	is	~	linear	vs.	BNLJ	is	quadratic…
But	it’s	all	about	the	memory.

Lecture	17				>		Backup

A	Simple	Optimization:	Merges	Merged!

• SMJ	is	composed	of	a	sort	phase	and	a	merge	phase

• During	the	sort	phase,	run	passes	of	external	merge	sort	on	R	and	S
• Suppose	at	some	point,	R	and	S	have	<=	B	(sorted)	runs	in	total

• We	could	do	two	merges	(for	each	of	R	&	S)	at	this	point,	complete	the	sort	
phase,	and	start	the	merge	phase…

• OR,	we	could	combine	them:	do	one B-way	merge	and	complete	the	join!

Given	B+1	buffer	pages

Lecture	17				>		Backup

Merge	/	Join	Phase

Sort	Phase
(Ext.	Merge	Sort)

Un-Optimized	SMJ

SR

Split	&	sortSplit	&	sort

MergeMerge

MergeMerge

Given	B+1	buffer	pages

Joined	output	
file	created!

Unsorted	input	relations

Lecture	17				>		Backup

Merge	/	Join	Phase

Sort	Phase
(Ext.	Merge	Sort)

Simple	SMJ	Optimization

SR

Split	&	sortSplit	&	sort

MergeMerge

Given	B+1	buffer	pages

Joined	output	
file	created!

Unsorted	input	relations

<=	B	total	runs

B-Way	Merge	/	Join

Lecture	17				>		Backup

Simple	SMJ	Optimization

• Now,	on	this	last	pass,	we	only	do	P(R)	+	P(S)	IOs	to	complete	the	join!

• If	we	can	initially	split	R	and	S	into	B	total	runs	each	of	length	approx.	<=	
2(B+1),	assuming	repacking	lets	us	create	initial	runs	of	~2(B+1)- then	we	
only	need	3(P(R)	+	P(S))	+	OUT for	SMJ!
• 2	R/W	per	page	to	sort	runs	in	memory,	1	R	per	page	to	B-way	merge	/	join!

• How	much	memory	for	this	to	happen?
• ; < R;(V)

=
≤ 2 𝐵 + 1 ⇒ ~	P R + P S ≤ 2𝐵Z

• Thus,	𝐦𝐚𝐱{𝐏 𝐑 , 𝐏 𝐒 } ≤ 𝑩𝟐 is	an	approximate	sufficient	condition

Given	B+1	buffer	pages

If	the	larger	of	R,S	has	<=	B2 pages,	then	SMJ	costs	
3(P(R)+P(S))	+	OUT!

Lecture	17				>		Backup

Takeaway	points	from	SMJ

If	input	already	sorted	on	join	key,	skip	the	sorts.
• SMJ	is	basically	linear.
• Nasty	but	unlikely	case:	Many	duplicate	join	keys.

SMJ	needs	to	sort	both	relations
• If	max	{	P(R),	P(S)	}	<	B2 then	cost	is	3(P(R)+P(S))	+	OUT

Lecture	17				>		Summary

Hash	Join	(HJ)

68

Lecture	17		

What	you	will	learn	about	in	this	section

1. Hash	Join

2. Memory	requirements

69

Lecture	17		

Recall:	Hashing

• Magic	of	hashing:
• A	hash	function	hB maps	into	[0,B-1]
• And	maps	nearly	uniformly

• A	hash	collision is	when	x	!=	y	but	hB(x)	=	hB(y)
• Note	however	that	it	will	never occur	that	x	=	y	but	hB(x)	!=	hB(y)

• We	hash	on	an	attribute	A,	so	our	has	function	is	hB(t)	has	the	form	
hB(t.A).	
• Collisionsmay	be	more	frequent.

Lecture	17				>		HJ

Hash	Join:	High-level	procedure

To	compute	R ⋈ 𝑆	𝑜𝑛	𝐴:

1. Partition	Phase:	Using	one	(shared)	hash	function	hB,	partition	R	
and	S	into	B buckets

2. Matching	Phase:	Take	pairs	of	buckets	whose	tuples	have	the	same	
values	for	h,	and	join	these
1. Use	BNLJ	here;	or	hash	again	à either	way,	operating	on	small	partitions	so	

fast!

Note	again	that	we	are	only	
considering	equality	constraints	here

We	decompose the	problem	using	hB,	then	
complete	the	join

Lecture	17				>		HJ

Hash	Join:	High-level	procedure

1.	Partition	Phase:	Using	one	(shared)	hash	function	hB,	partition	R	and	
S	into	B buckets

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

More	detail	in	a	
second…

(0,a)
(0,a)

(0,j)

(3,j)
(3,b)

(0,a)
(0,j)

(5,b)(5,b)

Note	our	new	
convention:	
pages	each	
have	two	tuples	
(one	per	row)

Lecture	17				>		HJ

Hash	Join:	High-level	procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join	
matching	
buckets

2.	Matching	Phase:	Take	pairs	of	buckets	whose	tuples	have	the	same	
values	for	hB,	and	join	these

Lecture	17				>		HJ

(3,j)
(3,b)

Hash	Join:	High-level	procedure

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Don’t	have	
to	join	the	
others!		E.g.	
(S1 and	R2)!

2.	Matching	Phase:	Take	pairs	of	buckets	whose	tuples	have	the	same	
values	for	hB,	and	join	these

Lecture	17				>		HJ

(3,j)
(3,b)

Hash	Join	Phase	1:	Partitioning

Goal:	For	each	relation,	partition	relation	into	buckets such	that	if	
hB(t.A)	=	hB(t’.A)	they	are	in	the	same	bucket

Given	B+1	buffer	pages,	we	partition	into	B	buckets:
• We	use	B	buffer	pages	for	output	(one	for	each	bucket),	and	1	for	input

• The	“dual”	of	sorting.	
• For	each	tuple	t	in	input,	copy	to	buffer	page	for	hB(t.A)
• When	page	fills	up,	flush	to	disk.

Lecture	17				>		HJ

How	big	are	the	resulting	buckets?

• Given	N	input	pages,	we	partition	into	B	buckets:
• à Ideally	our	buckets	are	each	of	size	~	N/B	pages

• What	happens	if	there	are	hash	collisions?
• Buckets	could	be	>	N/B
• We’ll	do	several	passes…

• What	happens	if	there	are	duplicate	join	keys?
• Nothing	we	can	do	here…	could	have	some	skew in	size	of	the	buckets

Given	B+1	buffer pages

Lecture	17				>		HJ

How	big	do	we	want the	resulting	buckets?

• Ideally,	our	buckets	would	be	of	size	≤ 𝑩− 𝟏 pages
• 1 for	input	page, 1	for	output	page,	B-1 for	each	bucket

• Recall:	If	we	want	to	join	a	bucket	from	R	and	one	from	S,	we	
can	do	BNLJ	in	linear	time	if	for	one	of	them	(wlog say	R),		
	𝑷(𝑹) ≤ 𝑩 − 𝟏!
• And	more	generally,	being	able	to	fit	bucket	in	memory	is	
advantageous

• We	can	keep	partitioning	buckets	that	are	>	B-1	pages,	until	
they	are	≤ 𝑩− 𝟏 pages
• Using	a	new	hash	key	which	will	split	them…	 We’ll	call	each	of	these	

a	“pass”	again…

Given	B+1	buffer pages

Recall	for	BNLJ:

P 𝑅 +	
𝑃 𝑅 𝑃(𝑆)
𝐵 − 1

Lecture	17				>		HJ

We	partition	into	B	=	2 buckets	using	hash	function	h2 so	that	we	can	
have	one	buffer	page	for	each	partition	(and	one	for	input)

Hash	Join	Phase	1:	Partitioning

Disk

R

(3,j)
(0,j)

Given	B+1	=	3	buffer pages

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

For	simplicity,	we’ll	look	at	partitioning	
one	of	the	two	relations- we	just	do	the	
same	for	the	other	relation!

Recall:	our	goal	will	be	to	get	B	=	2	
buckets of	size	<=	B-1	à 1	page	each

Lecture	17				>		HJ

1.	We	read	pages	from	R	into	the	“input”	page	of	the	buffer…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

(0,a)
(3,a)

Lecture	17				>		HJ

2.	Then	we	use	hash	function	h2 to	sort	into	the	buckets,	which	each	
have	one	page	in	the	buffer

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(3,a)

h2(0)	=	0

(0,a)
(3,a)

(0,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

Lecture	17				>		HJ

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(3,a)

h2(3)	=	1

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

2.	Then	we	use	hash	function	h2 to	sort	into	the	buckets,	which	each	
have	one	page	in	the	buffer

Lecture	17				>		HJ

3.	We	repeat	until	the	buffer	bucket	pages	are	full…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(0,a) (3,a)

(3,j)
(0,j)

(5,b) (5,a)
(0,j)

Lecture	17				>		HJ

3.	We	repeat	until	the	buffer	bucket	pages	are	full…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(3)	=	1

(3,j)
(0,j)

(3,a)
(3,j)

Lecture	17				>		HJ

3.	We	repeat	until	the	buffer	bucket	pages	are	full…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(0,a) (3,a)
(0,j)

(5,b) (5,a)
(0,j)

h2(0)	=	0

(3,a)
(3,j)

(0,a)
(0,j)

Lecture	17				>		HJ

3.	We	repeat	until	the	buffer	bucket	pages	are	full…	then	flush	to	disk

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(5,b) (5,a)
(0,j)

B0

B1

(3,a)
(3,j)

(0,a)
(0,j)

Lecture	17				>		HJ

3.	We	repeat	until	the	buffer	bucket	pages	are	full…	then	flush	to	disk

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)
(0,j)

Lecture	17				>		HJ

Note	that	collisions	can	occur!

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(5)	=	1

Collision!!!

(5,a)
(0,j)

(5,a)

Lecture	17				>		HJ

h2(5)	=	h2(3)	=	1

Finish	this	pass…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

(5,b)

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

h2(0)	=	0

(5,a)(0,j)

Lecture	17				>		HJ

Finish	this	pass…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)

(5,b)

Lecture	17				>		HJ

Finish	this	pass…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(5,a)(0,j)(5,b)

h2(5)	=	1

(5,a)
(5,b)

Lecture	17				>		HJ

h2(5)	=	h2(3)	=	1

Collision!!!

Finish	this	pass…

Main	Memory

Buffer

Hash	Join	Phase	1:	Partitioning

Input	
page

0 1

Output	(bucket)	pages

Disk

R

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j) (5,a)
(5,b)

Lecture	17				>		HJ

Hash	Join	Phase	1:	Partitioning

Disk

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

We	wanted	buckets	of	size	B-1	=	1…	
however	we	got	larger	ones	due	to:

(1)	Duplicate	join	keys

(2)	Hash	collisions

Lecture	17				>		HJ

Hash	Join	Phase	1:	Partitioning

Disk

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

(5,a)
(5,b)

To	take	care	of	larger	buckets	
caused	by	(2)	hash	collisions,	
we	can	just	do	another	pass!

What	hash	function	should	
we	use?

Do	another	pass	with	a	
different	hash	function,	h’2,	
ideally	such	that:

h’2(3)	!=	h’2(5)

Lecture	17				>		HJ

Hash	Join	Phase	1:	Partitioning

Disk

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

To	take	care	of	larger	buckets	
caused	by	(2)	hash	collisions,	
we	can	just	do	another	pass!

What	hash	function	should	
we	use?

Do	another	pass	with	a	
different	hash	function,	h’2,	
ideally	such	that:

h’2(3)	!=	h’2(5)

B2
(5,a)
(5,b)

Lecture	17				>		HJ

Hash	Join	Phase	1:	Partitioning

Disk

Given	B+1	=	3	buffer pages

B0

B1

(0,a)
(0,j)

(3,a)
(3,j)

(0,j)

What	about	duplicate	join	keys?		
Unfortunately	this	is	a	problem…	but	
usually	not	a	huge	one.

B2
(5,a)
(5,b)

We	call	this	unevenness	
in	the	bucket	size	skew

Lecture	17				>		HJ

Now	that	we	have	partitioned	R	and	S…

Lecture	17				>		HJ

Hash	Join	Phase	2:	Matching

• Now,	we	just	join	pairs	of	buckets	from	R	and	S	that	have	the	same	
hash	value	to	complete	the	join!

Disk

R

S

(3,j)
(0,j)

(0,a)
(0,a)

(3,b)

(5,b)(0,a)
(0,j)

Disk

R1

S1

hB

S2

R2

(0,a)
(0,a)

(0,j)

(0,a)
(0,j)

(5,b)(5,b)

Join	
matching	
buckets

Lecture	17				>		HJ

(3,j)
(3,b)

Hash	Join	Phase	2:	Matching

• Note	that	since	x	=	y	à h(x)	=	h(y),	we	only	need	to	consider	pairs	of	
buckets	(one	from	R,	one	from	S)	that	have	the	same	hash	function	value

• If	our	buckets	are	~𝑩 − 𝟏 pages, can	join	each	such	pair	using	BNLJ	in	
linear	time;	recall	(with	P(R)	=	B-1):

BNLJ	Cost: P 𝑅 +	; < ;(V)
=>?

= 𝑃(𝑅) +	 (=>?);(V)
=>?

=	P(R)	+	P(S)

Joining	the	pairs	of	buckets	is	linear!		
(As	long	as	smaller	bucket	<=	B-1	pages)

Lecture	17				>		HJ

Hash	Join	Phase	2:	Matching

h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	values

R ⋈ 𝑆	𝑜𝑛	𝐴	

Lecture	17				>		HJ

Hash	Join	Phase	2:	Matching

h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	values

R ⋈ 𝑆	𝑜𝑛	𝐴	

To	perform	the	join,	we	
ideally	just	need	to	
explore	the	dark	blue	
regions	

=	the	tuples	with	same	
values	of	the	join	key	A

A=1

A=2

A=3

A=4
A=5

A=6

Lecture	17				>		HJ

Hash	Join	Phase	2:	Matching

h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	values

R ⋈ 𝑆	𝑜𝑛	𝐴	

With	a	join	algorithm	like	
BNLJ	that	doesn’t	take	
advantage	of	equijoin	
structure,	we’d	have	to	
explore	this	whole	grid!

Lecture	17				>		HJ

Hash	Join	Phase	2:	Matching

h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A	
hashed	
values

S.A	hashed	values

R ⋈ 𝑆	𝑜𝑛	𝐴	
h(A)=0

h(A)=1

h(A)=2

With	HJ,	we	only	
explore	the	blue	
regions

=	the	tuples	with	
same	values	of	h(A)!

We	can	apply	BNLJ	to	
each	of	these	regions

Lecture	17				>		HJ

Hash	Join	Phase	2:	Matching

R.A	
hashed	
values

S.A	hashed	values

R ⋈ 𝑆	𝑜𝑛	𝐴	h'(A)=0

h'(A)
=2

An	alternative	to	
applying	BNLJ:

We	could	also	hash	
again,	and	keep	doing	
passes	in	memory	to	
reduce	further!

h'(A)=1

h'(A)
=3 h'(A)

=4

h'(A)=5

Lecture	17				>		HJ

How	much	memory	do	we	need	for	HJ?

• Given	B+1	buffer	pages

• Suppose	(reasonably)	that	we	can	partition	into	B	buckets	in	2	passes:
• For	R,	we	get	B	buckets	of	size	~P(R)/B
• To	join	these	buckets	in	linear	time,	we	need	these	buckets	to	fit	in	B-1	pages,	
so	we	have:

+	WLOG:	Assume	P(R)	<=	P(S)

𝐵 − 1 ≥
𝑃 𝑅
𝐵 ⇒ ~𝑩𝟐 ≥ 𝑷(𝑹)

Quadratic	relationship	
between	smaller	
relation’s	size	&	memory!

Lecture	17				>		Memory	requirements

Hash	Join	Summary

• Given	enough	buffer	pages	as	on	previous	slide…

• Partitioning requires	reading	+	writing	each	page	of	R,S
• à 2(P(R)+P(S))	IOs

• Matching (with	BNLJ)	requires	reading	each	page	of	R,S
• à P(R)	+	P(S)	IOs

• Writing	out	results could	be	as	bad	as	P(R)*P(S)…	but	probably	closer	to	P(R)+P(S)

HJ	takes	~3(P(R)+P(S))	+	OUT IOs!

Lecture	17				>		Memory	requirements

SMJ	vs.	HJ

Lecture	17	

Sort-Merge	v.	Hash	Join

• Given	enough	memory,	both	SMJ	and	HJ	have	performance:

• “Enough”	memory	=

• SMJ:	B2 >	max{P(R),	P(S)}

• HJ:	B2 >	min{P(R),	P(S)}

Hash	Join	superior	if	relation	sizes	differ	greatly.		Why?

~3(P(R)+P(S))	+	OUT

Lecture	17	

Further	Comparisons	of	Hash	and	Sort	Joins

• Hash	Joins	are	highly	parallelizable.

• Sort-Merge	less	sensitive	to	data	skew and	result	
is	sorted

Lecture	17	

Summary

• Saw	IO-aware	join	algorithms
• Massive	difference

• Memory	sizes	key	in	hash	versus	sort	join
• Hash	Join	=	Little	dog	(depends	on	smaller	relation)

• Skew	is	also	a	major	factor

Lecture	17	

