Lecture 16: Relational Operators

Announcements

- 1. Should I attend grad school? Do I have the right profile?
- 2. But... SnapBook (the hottest tech giant) is giving me 150k
- 3. Why is CS the right choice?

Graduate School Information Panel

Thursday, Nov 9 @ 3:00PM 1240CS

Should I attend graduate school in CS?

How do I choose the right graduate program?

How do I prepare a competitive application?

Join us for a live Q&A with CS faculty, graduate students, and a graduate school admissions coordinator!

Lecture 16: Relational Operators

Today's Lecture

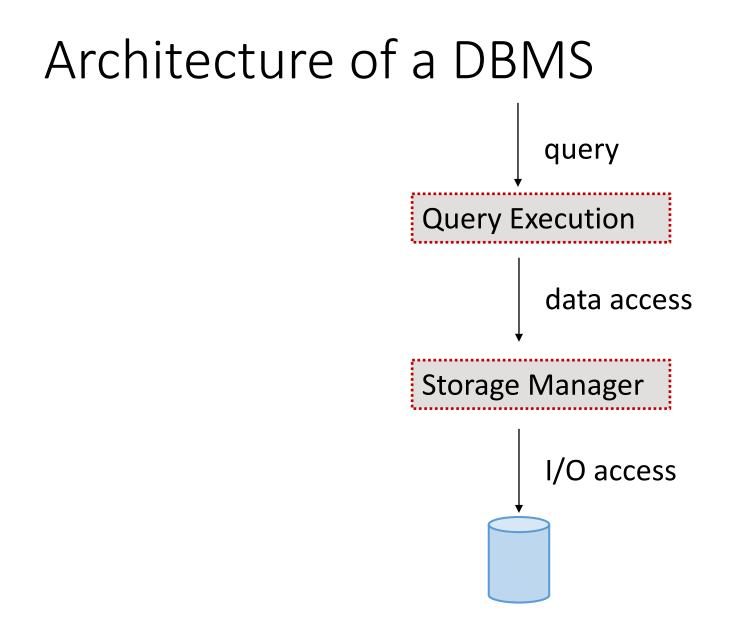
- 1. Logical vs Physical Operators
- 2. Select, Project
- 3. Prelims on Joins

Lecture 16

1. Logical vs Physical Operators

What you will learn about in this section

- 1. Recap: DB queries
- 2. Logical Plan
- 3. Physical Plan



Logical vs Physical Operators

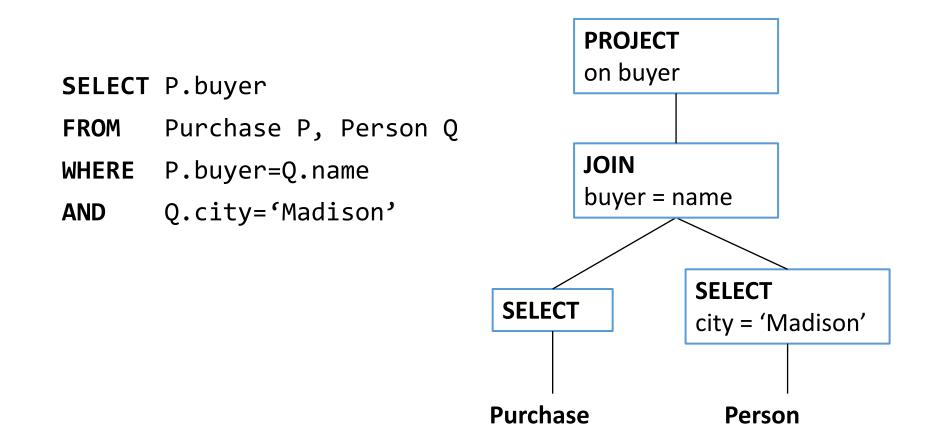
- Logical operators
 - what they do
 - e.g., union, selection, project, join, grouping
- Physical operators
 - *how* they do it
 - e.g., nested loop join, sort-merge join, hash join, index join

Example

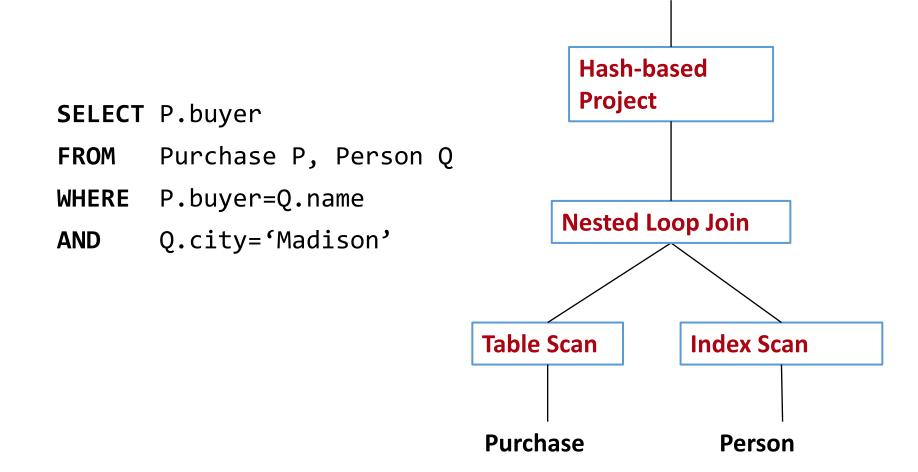
SELECT P.buyer

- **FROM** Purchase P, Person Q
- WHERE P.buyer=Q.name
- AND Q.city='Madison'
- Assume that Person has a B+ tree index on city

Example: Logical Plan



Example: Physical Plan



Relational Operators

We will see implementations for the following relational operators:

- select
- project
- join
- aggregation
- set operators

Lecture 16

2. Selection and Projection

What you will learn about in this section

- 1. Selection
- 2. Projection

Select Operator

access path = way to retrieve tuples from a table

• File Scan

- scan the entire file
- I/O cost: O(N), where N = #pages

• Index Scan:

- use an index available on some predicate
- I/O cost: it varies depending on the index

Index Scan Cost

I/O cost for index scan

- Hash index: O(1)
 - but we can only use it with equality predicates
- B+ tree index: O(log_FN) + X
 - X depends on whether the index is clustered or not:
 - *unclustered*: X = # selected tuples
 - *clustered*: X = (#selected tuples)/ (#tuples per page)

B+ Tree Scan Example

Example

- A relation with 1M records
- 100 records on a page
- 500 (key, rid) pairs on a page

	1% Selectivity	10% Selectivity
clustered	3+100	3+1000
unclustered	3+10,000	3+100,000
unclustered + sorting	3+(~10,000)	3+(~10,000)

General Selection Condition

- So far we studied selection on a single attribute
- How do we use indexes when we have multiple selection conditions?
 - R.a = 10 AND R.b > 10
 - R.a = 10 **OR** R.b < 20

Index Matching

- We say that an index *matches* a selection predicate if the index can be used to evaluate it
- Consider a conjunction-only selection. An index matches (part of) a predicate if
 - Hash: only equality operation & the predicate includes *all* index attributes
 - B+ Tree: the attributes are a prefix of the search key (any ops are possible)

Example

- A relation R(a,b,c,d)
- Does the index match the predicate?

Predicate	B+ tree on (a,b,c)	Hash index on (a,b,c)
a=5 AND b=3	yes	no
a>5 AND b<4	yes	no
b=3	no	no
a=5 AND c>10	yes	no
a=5 AND b=3 AND c=1	yes	yes
a=5 AND b=3 AND c=1 AND d >6	yes	yes

a=5 and b=3 and c=1 are primary conjuncts here

Index Matching

- A predicate can match more than one index
- Example:
 - hash index on (a) and B+ tree index on (b, c)
 - predicate: a=7 AND b=5 AND c=4
 - which index should we use?
 - 1. use either index
 - 2. use both indexes, then intersect the rid sets, and then fetch the tuples

Choosing the Right Index

- Selectivity of an access path = *fraction* of data pages that need to be retrieved
- We want to choose the *most selective* path!
- Estimating the selectivity of an access path is a hard problem

Estimating Selectivity

- Predicate: a=3 AND b=4 AND c=5
- hash index on (a,b,c)
 - selectivity is approximated by #pages / #keys
 - #keys is known from the index
- hash index on (b)
 - multiply the *reduction factors* for each primary conjunct
 - reduction factor = #pages/#keys
 - if #keys is unknown, use 1/10 as default value
 - this assumes independence of the attributes!

Estimating Selectivity

- Predicate: a > 10 AND a < 60
- If we have a range condition, we assume that the values are uniformly distributed
- The selectivity will be approximated by $\frac{interval}{High-Low}$

Predicates and Disjunction

- hash index on (a) + hash index on (b)
 - a=7 **or** b>5
 - a file scan is required
- hash index on (a) + B+ tree on (b)
 - a=7 **or** b>5
 - scan or use both indexes (fetch rids and take the union)
- hash index on (a) + B+ tree on (b)
 - (a=7 or c>5) and b > 5
 - we can use the B+ tree

Projection

Simple case: SELECT R.a, R.d

• scan the file and for each tuple output R.a, R.d

Hard case: SELECT DISTINCT R.a, R.d

- project out the attributes
- eliminate *duplicate tuples* (this is the difficult part!)

Projection: Sort-based

Naïve algorithm:

- 1. scan the relation and project out the attributes
- 2. sort the resulting set of tuples using all attributes
- 3. scan the sorted set by comparing only adjacent tuples and discard duplicates

Example

- **R**(a, b, c, d, e)
- M = 1000 pages
- B = 20 buffer pages
- Each field in the tuple has the same size
- Suppose we want to project on attribute **a**

Sort-based Cost Analysis

- initial scan = 1000 I/Os
- after projection T =(1/5)*1000 = 200 pages
- cost of writing T = 200 I/Os
- sorting in 2 passes = 2 * 2 * 200 = 800 I/Os
- final scan = 200 I/Os

total cost = 2200 I/Os

Projection: Sort-based

We can improve upon the naïve algorithm by modifying the sorting algorithm:

- 1. In Pass **0** of sorting, project out the attributes
- 2. In subsequent passes, eliminate the duplicates while merging the runs

Sort-based Cost Analysis

- we can sort in 2 passes
- first pass costs 1000 + 200 = 1200 I/Os
- the second pass costs 200 I/Os (not counting writing the result to disk)

total cost = 1400 I/Os

Projection: Hash-based

2-phase algorithm:

- partitioning
 - project out attributes and split the input into B-1 partitions using a hash function h
- duplicate elimination
 - read each partition into memory and use an in-memory hash table (with a *different* hash function) to remove duplicates

Projection: Hash-based

When does the hash table fit in memory?

- size of a partition = T / (B 1), where T is #pages after projection
- size of hash table = $f \cdot T / (B 1)$, where is a fudge factor (typically ~ 1.2)
- So, it must be $B > f \cdot T / (B 1)$, or approximately $B > \sqrt{f \cdot T}$

Hash-based Cost Analysis

- T = 200 so the hash table fits in memory!
- partitioning cost = 1000 + 200 = 1200 I/Os
- duplicate elimination cost = 200 I/Os

total cost = 1400 I/Os

Comparison

- Benefits of sort-based approach
 - better handling of skew
 - the result is sorted
- The I/O costs are the same if $B^2 > T$
 - 2 passes are needed by both algorithms

Projection: Index-based

- Index-only scan
 - projection attributes subset of index attributes
 - apply projection algorithm only to data entries
- If an *ordered index* contains all projection attributes as prefix of search key:
 - 1. retrieve index data entries in order
 - 2. discard unwanted fields
 - 3. compare adjacent entries to eliminate duplicates

Lecture 16

3. Joins

What you will learn about in this section

- 1. RECAP: Joins
- 2. Nested Loop Join (NLJ)
- 3. Block Nested Loop Join (BNLJ)
- 4. Index Nested Loop Join (INLJ)

Lecture 16

1. Nested Loop Joins

What you will learn about in this section

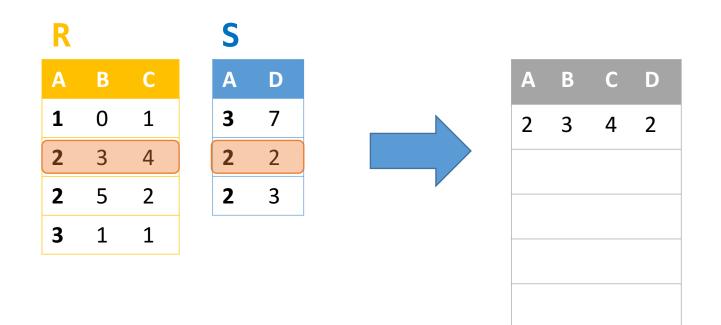
- 1. RECAP: Joins
- 2. Nested Loop Join (NLJ)
- 3. Block Nested Loop Join (BNLJ)
- 4. Index Nested Loop Join (INLJ)

Lecture 16 > Joins

RECAP: Joins

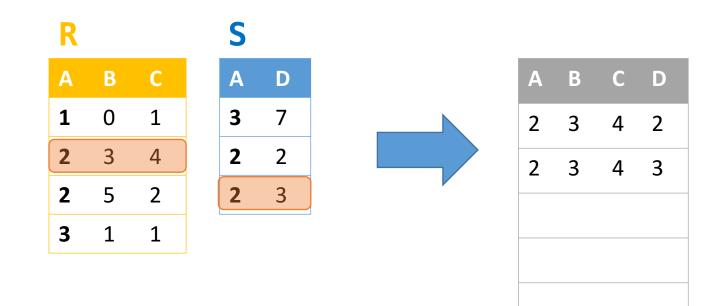
 $\mathbf{R} \bowtie \mathbf{S}$

<u>Example</u>: Returns all pairs of tuples $r \in R, s \in S$ such that r.A = s.A



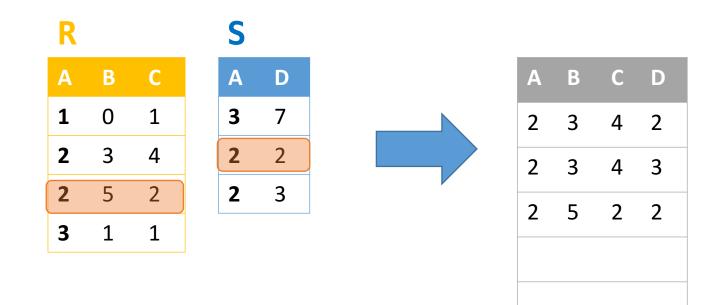
 $\mathbf{R} \bowtie \mathbf{S}$

<u>Example</u>: Returns all pairs of tuples $r \in R, s \in S$ such that r.A = s.A



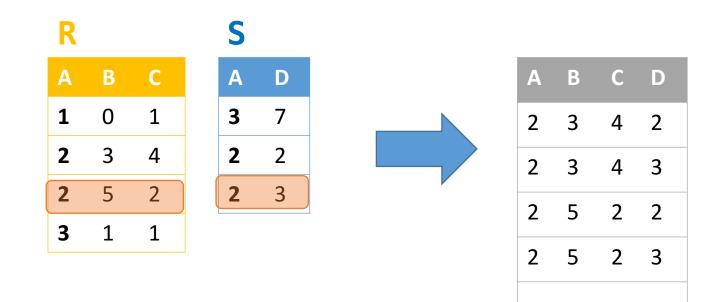
 $\mathbf{R} \bowtie \mathbf{S}$

<u>Example</u>: Returns all pairs of tuples $r \in R, s \in S$ such that r.A = s.A



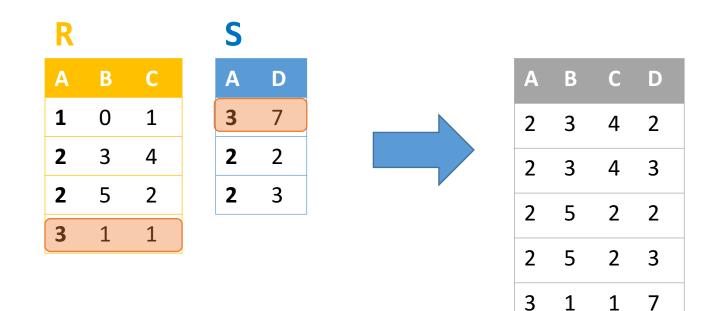
 $\mathbf{R} \bowtie \mathbf{S}$

Example: Returns all pairs of tuples $r \in R, s \in S$ such that r.A = s.A



 $\mathbf{R} \bowtie \mathbf{S}$

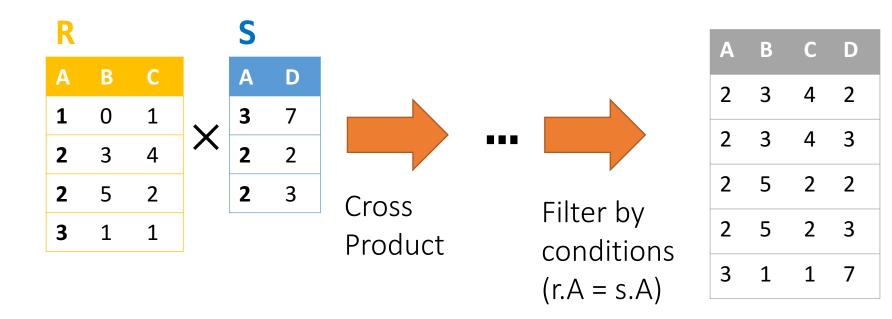
Example: Returns all pairs of tuples $r \in R, s \in S$ such that r.A = s.A



Semantically: A Subset of the Cross Product

 $\begin{array}{l} \mathbf{R} \bowtie \boldsymbol{S} \\ \mathbf{FROM} \\ \mathbf{K} & \mathbf{S} \\ \mathbf{K} & \mathbf{K} & \mathbf{K} \\ \mathbf{K}$

Example: Returns all pairs of tuples $r \in R, s \in S$ such that r.A = s.A



Can we actually implement a join in this way?

Notes

- We write **R** \bowtie **S** to mean *join R and S by returning all tuple pairs* where **all shared attributes** are equal
- We write **R** \bowtie **S** on **A** to mean *join R and S by returning all tuple pairs* where **attribute(s) A** are equal
- For simplicity, we'll consider joins on two tables and with equality constraints ("equijoins")

However joins *can* merge > 2 tables, and some algorithms do support nonequality constraints! *Lecture 16 > NLJ*

Nested Loop Joins

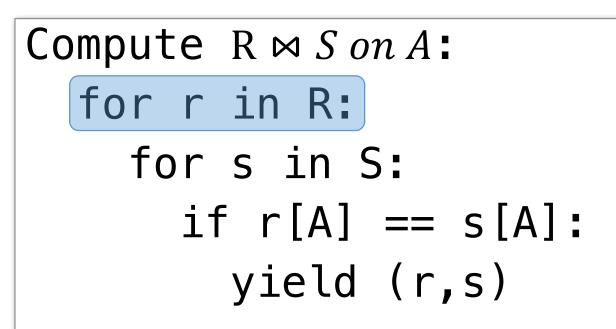
Notes

- We are again considering "IO aware" algorithms: *care about disk IO*
- Given a relation R, let:
 - T(R) = # of tuples in R
 - P(R) = # of pages in R

Recall that we read / write entire pages with disk IO

• Note also that we omit ceilings in calculations... good exercise to put back in!

Compute R ⋈ S on A:
 for r in R:
 for s in S:
 if r[A] == s[A]:
 yield (r,s)



<u>Cost:</u>

P(R)

1. Loop over the tuples in R

Note that our IO cost is based on the number of *pages* loaded, not the number of tuples!

Compute R ⋈ S on A:
 for r in R:
 for s in S:
 if r[A] == s[A]:
 yield (r,s)

Cost:

```
P(R) + T(R)*P(S)
```

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S

Have to read *all of S* from disk for *every tuple in R!*

Compute R ⋈ Son A: for r in R: for s in S: if r[A] == s[A]: yield (r,s) Cost:

```
P(R) + T(R)*P(S)
```

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just check in the *if* statement!

Compute R ⋈ S on A:
 for r in R:
 for s in S:
 if r[A] == s[A]:
 yield (r,s)

What would *OUT* be if our join condition is trivial (*if TRUE*)? *OUT* could be bigger than P(R)*P(S)... but usually not that bad Cost:

P(R) + T(R)*P(S) + OUT

- 1. Loop over the tuples in R
- 2. For every tuple in R, loop over all the tuples in S
- 3. Check against join conditions
- 4. Write out (to page, then when page full, to disk)

Compute R ⋈ S on A:
 for r in R:
 for s in S:
 if r[A] == s[A]:
 yield (r,s)

Cost:

P(R) + T(R)*P(S) + OUT

What if R ("outer") and S ("inner") switched?

P(S) + T(S)*P(R) + OUT

Outer vs. inner selection makes a huge difference-DBMS needs to know which relation is smaller! *Lecture 16 > BNLJ*

IO-Aware Approach

Given *B***+1** pages of memory

```
Compute R \bowtie S \text{ on } A:
  for each B-1 pages pr of R:
    for page ps of S:
       for each tuple r in pr:
         for each tuple s in ps:
           if r[A] == s[A]:
              yield (r,s)
```

 $\frac{Cost:}{P(R)}$

1. Load in B-1 pages of R at a time (leaving 1 page each free for S & output)

Note: There could be some speedup here due to the fact that we're reading in multiple pages sequentially however we'll ignore this here!

Given *B***+1** pages of memory

```
Compute R \bowtie S \text{ on } A:
  for each B-1 pages pr of R:
    for page ps of S:
       for each tuple r in pr:
         for each tuple s in ps:
           if r[A] == s[A]:
              yield (r,s)
```

```
<u>Cost:</u>
```

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S

Note: Faster to iterate over the *smaller* relation first!

Given *B***+1** pages of memory

```
Compute R \bowtie S \text{ on } A:
  for each B-1 pages pr of R:
    for page ps of S:
       for each tuple r in pr:
         for each tuple s in ps:
           if r[A] == s[A]:
              yield (r,s)
```

$$P(R) + \frac{P(R)}{B-1}P(S)$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

BNLJ can also handle non-equality constraints

Given *B***+1** pages of memory

```
Compute R \bowtie S \text{ on } A:
  for each B-1 pages pr of R:
    for page ps of S:
       for each tuple r in pr:
         for each tuple s in ps:
           if r[A] == s[A]:
             yield (r,s)
```

Again, *OUT* could be bigger than P(R)*P(S)... but usually not that bad

<u>Cost:</u>

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

- Load in B-1 pages of R at a time (leaving 1 page each free for S & output)
- 2. For each (B-1)-page segment of R, load each page of S
- 3. Check against the join conditions

```
4. Write out
```

BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full disk reads of S
 - We only read all of S from disk for every (B-1)-page segment of R!
 - Still the full cross-product, but more done only in memory

NLJ

$$P(R) + T(R)*P(S) + OUT$$

$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

BNLJ is faster by roughly
$$\frac{(B-1)T(R)}{P(R)}$$
 !

BNLJ vs. NLJ: Benefits of IO Aware

- Example:
 - R: 500 pages
 - S: 1000 pages
 - 100 tuples / page
 - We have 12 pages of memory (B = 11)

Ignoring OUT here...

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs ~= <u>140 hours</u>

• BNLJ: Cost = $500 + \frac{500 \times 1000}{10} = 50$ Thousand IOs ~= <u>0.14 hours</u>

A very real difference from a small change in the algorithm!

Lecture 16 > INLJ

Smarter than Cross-Products

Smarter than Cross-Products: From Quadratic to Nearly Linear

- All joins that compute the *full cross-product* have some quadratic term
 - For example we saw:

BNLJ
$$P(R) + \frac{P(R)}{B-1}P(S) + OUT$$

- Now we'll see some (nearly) linear joins:
 - ~ O(P(R) + P(S) + OUT), where again OUT could be quadratic but is usually better

We get this gain by *taking advantage of structure*- moving to equality constraints ("equijoin") only!

Index Nested Loop Join (INLJ)

Compute R ⋈ S on A:
 Given index idx on S.A:
 for r in R:
 s in idx(r[A]):
 yield r,s

```
Cost:
```

```
P(R) + T(R)*L + OUT
```

where L is the IO cost to access all the distinct values in the index; assuming these fit on one page, L ~ 3 is good est.

→ We can use an index (e.g. B+ Tree) to avoid doing the full cross-product!