
Lecture	16:	
Relational	Operators

Lecture	16

Announcements

2

Lecture	16

1. Should	I	attend	grad	school?	Do	I	have	the	right	profile?

2. But… SnapBook (the	hottest	tech	giant)	is	giving	me	150k

3. Why	is	CS	the	right	choice?

Graduate	School	Information	Panel

Should	I	attend	graduate	school	in	CS?

Thursday,	Nov	9	@	3:00PM
1240CS

How	do	I	prepare	a	competitive	application?

Join	us	for	a	live	Q&A	with	CS	faculty,	
graduate	students,	and	a	

graduate	school	admissions	coordinator!

How	do	I	choose	the	right	graduate	program?

Lecture	16:	
Relational	Operators

Lecture	16

Today’s	Lecture

1. Logical	vs	Physical	Operators

2. Select,	Project

3. Prelims	on	Joins

5

Lecture	16

1.	Logical	vs	Physical	Operators	

6

Lecture	16

What	you	will	learn	about	in	this	section

1. Recap:	DB	queries

2. Logical	Plan

3. Physical	Plan

7

Lecture	16

query

Query	Execution

data	access

Storage	Manager

I/O	access

Lecture	16

Architecture	of	a	DBMS

Lecture	16

Logical	vs	Physical	Operators

• Logical	operators
• what they	do
• e.g.,	union,	selection,	project,	join,	grouping

• Physical	operators
• how they	do	it
• e.g.,	nested	loop	join,	sort-merge	join,	hash	join,	index	join

Lecture	16

Example

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’

• Assume	that	Person	has	a	B+	tree	index	on	city

Lecture	16

Example:	Logical	Plan

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’

SELECT
SELECT
city	=	‘Madison’

JOIN
buyer	=	name

PROJECT
on	buyer

Purchase Person

Lecture	16

Example:	Physical	Plan

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name
AND Q.city=‘Madison’

Table	Scan Index	Scan

Nested	Loop	Join

Hash-based	
Project

Purchase Person

Lecture	16

Relational	Operators

We	will	see	implementations	for	the	following	
relational	operators:
• select
• project
• join
• aggregation
• set	operators

2.	Selection	and	Projection

14

Lecture	16

What	you	will	learn	about	in	this	section

1. Selection

2. Projection

15

Lecture	16

Lecture	16

Select	Operator

access	path =	way	to	retrieve	tuples	from	a	table
• File	Scan
• scan	the	entire	file
• I/O	cost:	O(N),	where	N	=	#pages

• Index	Scan:	
• use	an	index	available	on	some	predicate
• I/O	cost:	it	varies	depending	on	the	index

Lecture	16

Index	Scan	Cost

I/O	cost	for	index	scan
• Hash	index:	O(1)	
• but	we	can	only	use	it	with	equality	predicates

• B+	tree	index:	O(logFN)	+	X
• X	depends	on	whether	the	index	is	clustered	or	not:
• unclustered:	X	=	#	selected	tuples
• clustered:	X	=	(#selected	tuples)/	(#tuples	per	page)

Lecture	16

B+	Tree	Scan	Example

Example
• A	relation	with	1M	records
• 100	records	on	a	page
• 500	(key,	rid)	pairs	on	a	page

1%	Selectivity 10%	Selectivity

clustered 3+100 3+1000

unclustered 3+10,000 3+100,000

unclustered +	sorting 3+(~10,000) 3+(~10,000)

Lecture	16

General	Selection	Condition

• So	far	we	studied	selection	on	a	single	attribute
• How	do	we	use	indexes	when	we	have	multiple	
selection	conditions?
• R.a = 10 AND R.b > 10
• R.a = 10 OR R.b < 20

Lecture	16

Index	Matching

• We	say	that	an	index	matches a	selection	predicate	if	the	index	
can	be	used	to	evaluate	it
• Consider	a	conjunction-only	selection.	An	index	matches	(part	
of)	a	predicate	if
• Hash:	only	equality	operation	&	the	predicate	includes	all index	
attributes

• B+	Tree:		the	attributes	are	a	prefix	of	the	search	key	(any	ops	are	
possible)

Lecture	16

Example
• A	relation	R(a,b,c,d)
• Does	the	index	match	the	predicate?

Predicate B+	tree	on (a,b,c) Hash	index	on	(a,b,c)
a=5	AND b=3 yes no

a>5	AND b<4	 yes no

b=3 no no

a=5	AND c>10 yes no

a=5	AND b=3	AND c=1 yes yes

a=5	AND b=3	AND c=1 AND d	>6 yes yes

a=5	and	b=3	and	c=1	 are	primary	conjuncts	here

Lecture	16

Index	Matching

• A	predicate	can	match	more	than	one	index
• Example:
• hash	index	on	(a)	and	B+	tree	index	on	(b,	c)	
• predicate:	a=7 AND b=5 AND c=4
• which	index	should	we	use?

1. use	either	index
2. use	both	indexes,	then	intersect	the	rid	sets,	and	then	fetch	the	tuples

Lecture	16

Choosing	the	Right	Index

• Selectivity of	an	access	path	=	fraction of	data	pages	that	need	
to	be	retrieved
• We	want	to	choose	the	most	selective	path!
• Estimating	the	selectivity	of	an	access	path	is	a	hard	problem

Lecture	16

Estimating	Selectivity

• Predicate:	a=3 AND b=4 AND c=5
• hash	index	on	(a,b,c)
• selectivity	is	approximated	by	#pages	/	#keys
• #keys	is	known	from	the	index

• hash	index	on	(b)
• multiply	the	reduction	factors	for	each	primary	conjunct
• reduction	factor	=	#pages/#keys
• if	#keys	is	unknown,	use	1/10	as	default	value
• this	assumes	independence	of	the	attributes!

Lecture	16

Estimating	Selectivity

• Predicate:	a > 10 AND a < 60
• If	we	have	a	range	condition,	we	assume	that	the	values	are	
uniformly	distributed

• The	selectivity	will	be	approximated	by		 !"#$%&'(
)!*+,-./

Lecture	16

Predicates	and	Disjunction

• hash	index	on	(a)	+ hash	index	on	(b)	
• a=7 or b>5
• a	file	scan	is	required

• hash	index	on	(a)	+ B+	tree	on	(b)	
• a=7 or b>5
• scan	or	use	both	indexes	(fetch	rids	and	take	the	union)

• hash	index	on	(a)	+ B+	tree	on	(b)	
• (a=7 or c>5) and b > 5
• we	can	use	the	B+	tree

Lecture	16

Projection

Simple	case:	SELECT R.a, R.d
• scan	the	file	and	for	each	tuple	output	R.a,	R.d

Hard	case:	SELECT DISTINCT R.a, R.d
• project	out	the	attributes	
• eliminate	duplicate	tuples	(this	is	the	difficult	part!)

Lecture	16

Projection:	Sort-based

Naïve	algorithm:

1. scan	the	relation	and	project	out	the	attributes

2. sort	the	resulting	set	of	tuples	using	all	attributes

3. scan	the	sorted	set	by	comparing	only	adjacent	tuples	and	
discard	duplicates

Lecture	16

Example

R(a,	b,	c,	d,	e)

• M	=	1000	pages

• B	=	20	buffer	pages

• Each	field	in	the	tuple	has	the	same	size

• Suppose	we	want	to	project	on	attribute	a

Lecture	16

Sort-based	Cost	Analysis

• initial	scan	=	1000	I/Os
• after	projection	T	=(1/5)*1000	=	200	pages
• cost	of	writing	T	=	200	l/Os
• sorting	in	2	passes	=		2	*	2	*	200	=	800	l/Os
• final	scan	=	200	I/Os

total	cost	=	2200	I/Os

Lecture	16

Projection:	Sort-based

We	can	improve	upon	the	naïve	algorithm	by	modifying	the	sorting	
algorithm:

1. In	Pass	0 of	sorting,	project	out	the	attributes

2. In	subsequent	passes,	eliminate	the	duplicates	while	merging	the	runs

Lecture	16

Sort-based	Cost	Analysis

• we	can	sort	in	2	passes	
• first	pass	costs	1000	+	200	=	1200	I/Os
• the	second	pass	costs	200	I/Os (not	counting	writing	the	result	
to	disk)	

total	cost	=	1400		I/Os

Lecture	16

Projection:	Hash-based

2-phase	algorithm:

• partitioning	
• project	out	attributes	and	split	the	input	into	B-1	partitions	using	a	
hash	function	h

• duplicate	elimination
• read	each	partition	into	memory	and	use	an	in-memory	hash	table	
(with	a	different hash	function)	to	remove	duplicates

Lecture	16

Projection:	Hash-based

When	does	the	hash	table	fit	in	memory?

• size	of	a	partition	=	𝑇	/	(𝐵 − 1),	where	T	is	#pages	after	
projection

• size	of	hash	table	=	𝑓 : 𝑇	/	(𝐵 − 1),	where	is	a	fudge	factor	
(typically	~	1.2)

• So,	it	must	be	𝐵	 > 	𝑓 : 𝑇	/	(𝐵 − 1),	or	approximately	𝐵 >
	 𝑓 : 𝑇�

Lecture	16

Hash-based	Cost	Analysis

• T	=	200	so	the	hash	table	fits	in	memory!
• partitioning	cost	=	1000	+	200	=	1200	I/Os
• duplicate	elimination	cost	=	200	I/Os

total	cost	=	1400	I/Os

Lecture	16

Comparison

• Benefits	of	sort-based	approach	
• better	handling	of	skew
• the	result	is	sorted

• The	I/O	costs	are	the	same	if	B2 >	T
• 2	passes	are	needed	by	both	algorithms

Lecture	16

Projection:	Index-based

• Index-only	scan
• projection	attributes	subset	of	index	attributes
• apply	projection	algorithm	only	to	data	entries	

• If	an	ordered index contains	all	projection	attributes	as	prefix
of	search	key:
1. retrieve	index	data	entries	in	order
2. discard	unwanted	fields
3. compare	adjacent	entries	to	eliminate	duplicates

3.	Joins

38

Lecture	16

What	you	will	learn	about	in	this	section

1. RECAP:	Joins

2. Nested	Loop	Join	(NLJ)

3. Block	Nested	Loop	Join	(BNLJ)

4. Index	Nested	Loop	Join	(INLJ)

39

Lecture	16

1.	Nested	Loop	Joins

40

Lecture	16

What	you	will	learn	about	in	this	section

1. RECAP:	Joins

2. Nested	Loop	Join	(NLJ)

3. Block	Nested	Loop	Join	(BNLJ)

4. Index	Nested	Loop	Join	(INLJ)

41

Lecture	16

RECAP:	Joins

Lecture	16		>		Joins

43

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

𝐑 ⋈ 𝑺

Lecture	16		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

44

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

𝐑 ⋈ 𝑺

Lecture	16		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

45

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

𝐑 ⋈ 𝑺

Lecture	16		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

46

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

𝐑 ⋈ 𝑺

Lecture	16		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

47

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

𝐑 ⋈ 𝑺

Lecture	16		>		Joins

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

48

Semantically:	A	Subset	of	the	Cross	Product

SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

×
Cross	
Product

Filter	by	
conditions
(r.A =	s.A)

… Can	we	actually	
implement	a	join	
in	this	way?

𝐑 ⋈ 𝑺

Lecture	16		>		Joins

Notes

• We	write	𝐑 ⋈ 𝑺 to	mean	join	R	and	S	by	returning	all	tuple	pairs	
where	all	shared	attributes	are	equal

• We	write	𝐑 ⋈ 𝑺 on	A to	mean	join	R	and	S	by	returning	all	tuple	pairs	
where	attribute(s)	A	are	equal

• For	simplicity,	we’ll	consider	joins	on	two	tables and	with	equality	
constraints	(“equijoins”)

However	joins	canmerge	>	2	tables,	
and	some	algorithms	do	support	non-
equality	constraints!

Lecture	16		>		Joins

50

Nested	Loop	Joins

Lecture	16		>		NLJ

Notes
• We	are	again	considering	“IO	aware”	algorithms:	
care	about	disk	IO

• Given	a	relation	R,	let:
• T(R)	=	#	of	tuples	in	R
• P(R)	=	#	of	pages	in	R

• Note	also	that	we	omit	ceilings	in	calculations…	
good	exercise	to	put	back	in!

Lecture	16		>		NLJ

Recall	that	we	read	/	write	
entire	pages	with	disk	IO

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	16		>		NLJ

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	16		>		NLJ

P(R)

1. Loop	over	the	tuples	in	R

Note	that	our	IO	cost	is	based	
on	the	number	of	pages
loaded,	not	the	number	of	
tuples!

Cost:

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	16		>		NLJ

P(R)	+	T(R)*P(S)

Have	to	read	all	of	S	from	disk	for	every	tuple	in	R!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

Cost:

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	16		>		NLJ

P(R)	+	T(R)*P(S)

Note	that	NLJ	can	handle	things	other	than	equality	
constraints…	just	check	in	the	if	statement!

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

Cost:

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	16		>		NLJ

P(R)	+	T(R)*P(S)	+	OUT

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	
over	all	the	tuples	in	S

3. Check	against	join	conditions

4. Write	out	(to	page,	then	
when	page	full,	to	disk)

Cost:

What	would	OUT
be	if	our	join	
condition	is	trivial	
(if	TRUE)?

OUT could	be	bigger	
than	P(R)*P(S)…	but	
usually	not	that	bad

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

Lecture	16		>		NLJ

P(R)	+	T(R)*P(S)	+	OUT

What	if	R	(“outer”)	and	S	
(“inner”)	switched?

Cost:

P(S)	+	T(S)*P(R)	+	OUT

Outer	vs.	inner	selection	makes	a	huge	difference-
DBMS	needs	to	know	which	relation	is	smaller!

IO-Aware	Approach

Lecture	16		>		BNLJ

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	16		>		BNLJ

P(𝑅)

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

Cost:

Note:	There	could	be	some	
speedup	here	due	to	the	fact	
that	we’re	reading	in	multiple	
pages	sequentially	however	
we’ll	ignore	this	here!

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	16		>		BNLJ

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

Given	B+1	pages	of	memory

Note:	Faster	to	iterate	over	the	
smaller relation	first!

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

Cost:

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	16		>		BNLJ

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

BNLJ	can	also	handle	non-equality	constraints

Cost:

P 𝑅 +	
𝑃 𝑅
𝐵 − 1𝑃(𝑆)

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

Lecture	16		>		BNLJ

P 𝑅 +	P Q
R,S

𝑃(𝑆) +	OUT

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

Again,	OUT could	be	bigger	than	
P(R)*P(S)…	but	usually	not	that	bad

BNLJ	vs.	NLJ:	Benefits	of	IO	Aware

• In	BNLJ,	by	loading	larger	chunks	of	R,	we	minimize	the	number	of	full	
disk	reads of	S
• We	only	read	all	of	S	from	disk	for	every	(B-1)-page	segment	of	R!
• Still	the	full	cross-product,	but	more	done	only	in	memory

P 𝑅 +	P Q
R,S

𝑃(𝑆) +	OUTP(R)	+	T(R)*P(S)	+	OUT
NLJ BNLJ

BNLJ	is	faster	by		roughly	(R,S)T(Q)
P(Q)

!

Lecture	16		>		BNLJ

BNLJ	vs.	NLJ:	Benefits	of	IO	Aware

• Example:
• R:	500	pages
• S:	1000	pages
• 100	tuples	/	page
• We	have	12	pages	of	memory	(B	=	11)

• NLJ:	Cost	=	500	+	50,000*1000 =	50	Million	IOs	~=	140	hours

• BNLJ:	Cost	=	500	+	UVV∗SVVV
SV

=	50	Thousand IOs	~=	0.14	hours

Lecture	16		>		BNLJ

A	very	real	difference	from	a	small	
change	in	the	algorithm!

Ignoring	OUT	here…

Smarter	than	Cross-Products

Lecture	16		>		INLJ

Smarter	than	Cross-Products:	From	Quadratic	
to	Nearly	Linear
• All	joins	that	compute	the	full	cross-product have	some	quadratic	
term
• For	example	we	saw:

• Now	we’ll	see	some	(nearly)	linear	joins:
• ~	O(P(R)	+	P(S)	+	OUT),	where	again	OUT could	be	quadratic	but	is	usually	
better

P 𝑅 +	𝑷 𝑹
R,S

𝑷(𝑺) +	OUT

P(R)	+	T(R)P(S)	+	OUTNLJ

BNLJ

We	get	this	gain	by	taking	advantage	of	structure- moving	to	
equality	constraints	(“equijoin”)	only!

Lecture	16		>		INLJ

Index	Nested	Loop	Join	(INLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
Given index idx on S.A:

for r in R:
s in idx(r[A]):

yield r,s

Lecture	16		>		INLJ

P(R)	+	T(R)*L	+	OUT

àWe	can	use	an	index (e.g.	B+	Tree)	to	avoid	doing	
the	full	cross-product!

where	L	is	the	IO	cost	to	access	
all	the	distinct	values	in	the	
index;	assuming	these	fit	on	
one	page,	L	~	3 is	good	est.	

Cost:

