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What	you	will	learn	about	in	this	section

1. Recap:	B+	Trees

2. B+	Trees:	Cost

3. B+	Trees:	Clustered
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1. Recap:	B+	Trees
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B+	Tree	Basics

10 20 30
Each	non-leaf	(“interior”)	node
has	d	≤ 𝑚 ≤ 2d	entries
• Minimum	50%	occupancy

Parameter	d =	the	order
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Root node has	1 ≤ 𝑚 ≤ 2d	
entries



B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Name:	John
Age:	21

Name:	Jake
Age:	15

Name:	Bob
Age:	27

Name:	Sally
Age:	28

Name:	Sue
Age:	33

Name:	Jess
Age:	35

Name:	Alf
Age:	37Name:	Joe

Age:	11

Name:	Bess
Age:	22

Name:	Sal
Age:	30
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B+	Tree	Page	Format
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B+	Tree:	Search
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• start	from	root

• examine	index	entries	in	non-leaf	nodes	to	find	the	correct	child

• traverse	down	the	tree	until	a	leaf	node	is	reached

• non-leaf	nodes	can	be	searched	using	a	binary	or	a	linear	search



B+	Tree:	Insert
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• Find	correct	leaf	L.
• Put	data	entry	onto	L.

• If	L	has	enough	space,	done!
• Else,	must	split L	(into	L	and	a	new	node	L2)

• Redistribute	entries	evenly,	copy	upmiddle	key.
• Insert	index	entry	pointing	to	L2	into	parent	of	L.

• This	can	happen	recursively
• To	split	non-leaf	node,	redistribute	entries	evenly,	but	
pushing	up the	middle	key.		(Contrast	with	leaf	splits.)

• Splits	“grow”	tree;	root	split	increases	height.		
• Tree	growth:	gets	wider or	one	level	taller	at	top.



• Start	at	root,	find	leaf	L where	entry	belongs.
• Remove	the	entry.

• If	L	is	at	least	half-full,	done!	
• If	L	has	only	d-1	entries,

• Try	to	re-distribute,	borrowing	from	sibling (adjacent	node	with	same	
parent	as	L).

• If	re-distribution	fails,	merge L	and	sibling.

• If	merge	occurred,	must	delete	entry	(pointing	to	L or	
sibling)	from	parent	of	L.
• Merge	could	propagate to	root,	decreasing	height.

B+	Tree:	Deleting	a	data	entry
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2.	B+	Trees:	Cost
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B+	Tree:	High	Fanout =	Smaller	&	Lower	IO

• As	compared	to	e.g.	binary	search	trees,	B+	Trees	
have	high fanout (between	d+1	and	2d+1)

• This	means	that	the	depth	of	the	tree	is	small	à
getting	to	any	element	requires	very	few	IO	
operations!
• Also	can	often	store	most	or	all	of	the	B+	Tree	in	main	
memory!

• A	TiB =	240 Bytes.		What	is	the	height	of	a	B+	Tree	
(with	fill-factor	=	1)	that	indexes	it	(with	64K	
pages)?
• (2*2730	+	1)h =	240 à h =	4	

The	fanout is	defined	as	the	
number	of	pointers	to	child	
nodes	coming	out	of	a	node

Note	that	fanout is	dynamic-
we’ll	often	assume	it’s	constant	
just	to	come	up	with	
approximate	eqns!
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Simple	Cost	Model	for	Search
• Let:

• f =	fanout,	which	is	in	[d+1,	2d+1]	(we’ll	assume	it’s	constant	for	our	cost	model…)
• N =	the	total	number	of	pages	we	need	to	index
• F =	fill-factor	(usually	~=	2/3)

• Our	B+	Tree	needs	to	have	room	to	index	N	/	F	pages!
• We	have	the	fill	factor	in	order	to	leave	some	open	slots	for	faster	insertions

• What	height	(h)	does	our	B+	Tree	need	to	be?
• h=1	à Just	the	root	node- room	to	index	f	pages
• h=2	à f	leaf	nodes- room	to	index	f2 pages
• h=3	à f2 leaf	nodes- room	to	index	f3	pages
• …
• h	à fh-1 leaf	nodes- room	to	index	fh pages!
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Simple	Cost	Model	for	Search
• Note	that	if	we	have	B available	buffer	pages,	by	the	same	logic:
• We	can	store	𝑳𝑩 levels	of	the	B+	Tree	in	memory
• where	𝑳𝑩 is	the	number	of	levels	such	that	the	sum	of	all	the	levels’	nodes	fit	in	
the	buffer:
• 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓1234 = ∑ 𝑓𝑙123489:

• In	summary:	to	do	exact	search:
• We	read	in	one	page	per	level	of	the	tree
• However,	levels	that	we	can	fit	in	buffer	are	free!
• Finally	we	read	in	the	actual	record
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IO	Cost:	 log&
'
(
− 𝐿𝐵 + 1

where		𝐵 ≥ ∑ 𝑓𝑙123489:



Simple	Cost	Model	for	Search

• To	do	range	search,	we	just	follow	the	horizontal	pointers

• The	IO	cost	is	that	of	loading	additional	leaf	nodes	we	need	to	access	+	
the	IO	cost	of	loading	each	page of	the	results- we	phrase	this	as	
“Cost(OUT)”
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IO	Cost:	 log&
'
(
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where		𝐵 ≥ ∑ 𝑓𝑙123489:



3.	B+	Trees:	Clustered
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Clustered	Indexes

An	index	is	clustered if	the	underlying	
data	is	ordered	in	the	same	way	as	the	

index’s	data	entries.
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Clustered	vs.	Unclustered Index
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Index	Entries

Data	Records
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Clustered	vs.	Unclustered Index

• Recall	that	for	a	disk	with	block	access,	sequential	IO	is	much	faster	
than	random	IO

• For	exact	search,	no	difference	between	clustered	/	unclustered

• For	range	search	over	R	values:	difference	between	1	random	IO	+	R	
sequential	IO,	and	R	random	IO:
• A	random	IO	costs	~	10ms	(sequential	much	much	faster)
• For	R	=	100,000	records- difference	between	~10ms	and	~17min!
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Summary

• We	create	indexes over	tables	in	order	to	support	fast	(exact	and	
range)	search and	insertion over	multiple	search	keys

• B+	Trees	are	one	index	data	structure	which	support	very	fast	exact	
and	range	search	&	insertion	via	high	fanout
• Clustered	vs.	unclusteredmakes	a	big	difference	for	range	queries	too
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What	you	will	learn	about	in	this	section

1. Hash	Indexes

2. Static	Hashing

3. Extendible	Hashing
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1.	Hash	Indexes
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Hash	Index

• A	hash	index	is	a	collection	of	buckets
• bucket	=	primary	page	plus	overflow	pages
• buckets	contain	one	or	more	data	entries

• uses	a	hash	function h
• h(r)	=	bucket	in	which	(data	entry	for)	record	r belongs
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Hash	Index

• A	hash	index	is:
• good	for	equality	search
• not	so	good	for	range	search	(use	tree	indexes	instead)

• Types	of	hash	indexes:
• Static hashing
• Extendible hashing	(dynamic)
• Linear	hashing	(dynamic)	– not	covered	in	the	course,	see	
11.3	in	the	cow	book
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Operations	on	Hash	Indexes

• Equality	search
• apply	the	hash	function	on	the	search	key	to	locate	the	appropriate	bucket
• search	through	the	primary	page	(plus	overflow	pages)	to	find	the	record(s)

• Deletion
• find	the	appropriate	bucket,	delete	the	record

• Insertion
• find	the	appropriate	bucket,	insert	the	record
• if	there	is	no	space,	create	a	new	overflow	page
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Hash	Functions

• An	ideal hash	function	must	be	uniform:	each	bucket	is	assigned	the	
same	number	of	key	values

• A	bad hash	function	maps	all	search	key	values	to	the	same	bucket

• Examples	of	good	hash	functions:
• h(k)	=	a	*	k	+	b,	where a and	b are	constants
• a	random	function



2.	Static	Hashing
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Static	Hashing

• #	primary	bucket	pages	fixed,	allocated	sequentially,	never	
de-allocated;	overflow	pages	if	needed.

• h(k)	mod	N =	bucket	to	which	data	entry	with key k	belongs.	
(N	=	#	of	buckets)

h(key)	mod	N

h
key

Primary	bucket	pages Overflow	pages

1
0

N-1
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Static	Hashing:	Example
Person(name,zipcode,phone)
• search	key:	zipcode
• hash	function	h:	last	2	digits	

bucket	0 (John,	53400,	23218564)
(Alice,	54768,	60743111)

bucket	1 (Theo,	53409,	23200564)

bucket	2

bucket	3 (Bob,	34411,	29010533)

• 4	buckets
• each	bucket	has	2	data	

entries	(full	record)

(Anna,	53632,	23209964)

overflow	pagesprimary	pages
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Hash	Functions

• An	ideal hash	function	must	be	uniform:	each	bucket	is	assigned	the	
same	number	of	key	values

• A	bad hash	function	maps	all	search	key	values	to	the	same	bucket

• Examples	of	good	hash	functions:
• h(k)	=	a	*	k	+	b,	where a and	b are	constants
• a	random	function
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Bucket	Overflow

• Bucket	overflow can	occur	because	of	
• insufficient	number	of	buckets	
• skew in	distribution	of	records

• many	records	have	the	same	search-key	value
• the	hash	function	results	in	a	non-uniform	distribution	of	key	values

• Bucket	overflow	is	handled	using	overflow	buckets
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Problems	of	Static	Hashing

• In	static	hashing,	there	is	a	fixed number	of	buckets	in	the	index

• Issues	with	this:
• if	the	database	grows,	the	number	of	buckets	will	be	too	small:	long	overflow	
chains	degrade	performance
• if	the	database	shrinks,	space	is	wasted
• reorganizing	the	index	is	expensive	and	can	block	query	execution



3.	Extendible	Hashing
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Extendible	Hashing

• Extendible	hashing is	a	type	of	dynamic hashing	

• It	keeps	a	directory	of	pointers	to	buckets

• On	overflow,	it	reorganizes	the	index	by	doubling	the	directory	(and	
not	the	number	of	buckets)
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Extendible	Hashing
To	search,	use	the	last 2	digits	of	the	binary	form of	the	search	key	value

00

01

10

11

2

global	depth 2

2

2

2

local	depth

(John,	12,	23218564)
(Alice,	8,	60743111)

(Theo,	9,	23200564)

(Maria,	11,	29010533)
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Extendible	Hashing:	Insert
If	there	is	space	in	the	bucket,	simply	add	the	record

00

01

10

11

2

global	depth 2

2

2

2

local	depth

(John,	12,	23218564)
(Alice,	8,	60743111)

(Theo,	9,	23200564)
(Zoe,	13,	23345563)

(Maria,	11,	29010533)
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Extendible	Hashing:	Insert
If	the	bucket	is	full,	split	the	bucket	and	redistribute	the	entries	

000

100

001

101

010

110

011

111

3

global	depth	
increases	by	1 3

2

2

2

(Natalie,	4,	23200564)
(John,	12,	23218564)

(Theo,	9,	23200564)
(Zoe,	13,	23345563)

(Maria,	11,	29010533)

(Alice,	8,	60743111)3
local	depth	increases	for
the	split	bucket!

local	depth	remains	
the	same	for	the	other
buckets
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Extendible	Hashing:	Delete
• Locate	the	bucket	of	the	record	and	remove	it
• If	the	bucket	becomes	empty,	it	can	be	removed	(and	update	the	
directory)
• Two	buckets	can	also	be	coalesced	together	if	the	sum	of	the	entries	fit	in	
a	single	bucket
• Decreasing	the	size	of	the	directory	can	also	be	done,	but	it	is	expensive
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More	on	Extendible	Hashing
• How	many	disk	accesses	for	equality	search?
• One	if	directory	fits	in	memory,	else	two

• Directory	grows	in	spurts,	and,	if	the	distribution	of	hash	values	is	
skewed,	the	directory	can	grow	very	large

• We	may	need	overflow	pages	when	multiple	entries	have	the	same	hash	


