
Lecture	13:	B+	Tree	
(continued)

Lecture	13



What	you	will	learn	about	in	this	section

1. Recap:	B+	Trees

2. B+	Trees:	Cost

3. B+	Trees:	Clustered

2

Lecture	13



1. Recap:	B+	Trees

3

Lecture	13



B+	Tree	Basics

10 20 30
Each	non-leaf	(“interior”)	node
has	d	≤ 𝑚 ≤ 2d	entries
• Minimum	50%	occupancy

Parameter	d =	the	order

Lecture	13	>		Section	2		>		B+	Tree	basics

Root node has	1 ≤ 𝑚 ≤ 2d	
entries



B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Name:	John
Age:	21

Name:	Jake
Age:	15

Name:	Bob
Age:	27

Name:	Sally
Age:	28

Name:	Sue
Age:	33

Name:	Jess
Age:	35

Name:	Alf
Age:	37Name:	Joe

Age:	11

Name:	Bess
Age:	22

Name:	Sal
Age:	30

Lecture	13		>		Section	2		>		B+	Tree	basics



B+	Tree	Page	Format

Lecture	13		>		Section	2		>		B+	Tree	basics

Le
af
	P
ag
e

R1 K 1 R2 K 2 K n P n+1

data entries

record	1 record	2

Next	
Page
Pointer

Rn

record	n

P0

Prev	
Page
Pointer

N
on

-le
af
	

Pa
ge

P1 K 1 P 2 K 2 P 3 K m Pm+1

index entries

Pointer	to	a
page	with	
Values	<	K1

Pointer	to	a	page
with	values	s.t.
K1≤	Values	<	K2

Pointer	to	a
page	with	
values	≥Km

Pointer	to	a	page
with	values	s.t.,	
K2≤	Values	<	K3

Pm



B+	Tree:	Search

Lecture	13		>		Section	3	>		B+	Tree	design	&	cost

• start	from	root

• examine	index	entries	in	non-leaf	nodes	to	find	the	correct	child

• traverse	down	the	tree	until	a	leaf	node	is	reached

• non-leaf	nodes	can	be	searched	using	a	binary	or	a	linear	search



B+	Tree:	Insert

Lecture	13		>		Section	3	>		B+	Tree	design	&	cost

• Find	correct	leaf	L.
• Put	data	entry	onto	L.

• If	L	has	enough	space,	done!
• Else,	must	split L	(into	L	and	a	new	node	L2)

• Redistribute	entries	evenly,	copy	upmiddle	key.
• Insert	index	entry	pointing	to	L2	into	parent	of	L.

• This	can	happen	recursively
• To	split	non-leaf	node,	redistribute	entries	evenly,	but	
pushing	up the	middle	key.		(Contrast	with	leaf	splits.)

• Splits	“grow”	tree;	root	split	increases	height.		
• Tree	growth:	gets	wider or	one	level	taller	at	top.



• Start	at	root,	find	leaf	L where	entry	belongs.
• Remove	the	entry.

• If	L	is	at	least	half-full,	done!	
• If	L	has	only	d-1	entries,

• Try	to	re-distribute,	borrowing	from	sibling (adjacent	node	with	same	
parent	as	L).

• If	re-distribution	fails,	merge L	and	sibling.

• If	merge	occurred,	must	delete	entry	(pointing	to	L or	
sibling)	from	parent	of	L.
• Merge	could	propagate to	root,	decreasing	height.

B+	Tree:	Deleting	a	data	entry

Lecture	13		>		Section	3	>		B+	Tree	design	&	cost



2.	B+	Trees:	Cost

10

Lecture	13



B+	Tree:	High	Fanout =	Smaller	&	Lower	IO

• As	compared	to	e.g.	binary	search	trees,	B+	Trees	
have	high fanout (between	d+1	and	2d+1)

• This	means	that	the	depth	of	the	tree	is	small	à
getting	to	any	element	requires	very	few	IO	
operations!
• Also	can	often	store	most	or	all	of	the	B+	Tree	in	main	
memory!

• A	TiB =	240 Bytes.		What	is	the	height	of	a	B+	Tree	
(with	fill-factor	=	1)	that	indexes	it	(with	64K	
pages)?
• (2*2730	+	1)h =	240 à h =	4	

The	fanout is	defined	as	the	
number	of	pointers	to	child	
nodes	coming	out	of	a	node

Note	that	fanout is	dynamic-
we’ll	often	assume	it’s	constant	
just	to	come	up	with	
approximate	eqns!

Lecture	13		>		Section	2		>		B+	Tree	cost



Simple	Cost	Model	for	Search
• Let:

• f =	fanout,	which	is	in	[d+1,	2d+1]	(we’ll	assume	it’s	constant	for	our	cost	model…)
• N =	the	total	number	of	pages	we	need	to	index
• F =	fill-factor	(usually	~=	2/3)

• Our	B+	Tree	needs	to	have	room	to	index	N	/	F	pages!
• We	have	the	fill	factor	in	order	to	leave	some	open	slots	for	faster	insertions

• What	height	(h)	does	our	B+	Tree	need	to	be?
• h=1	à Just	the	root	node- room	to	index	f	pages
• h=2	à f	leaf	nodes- room	to	index	f2 pages
• h=3	à f2 leaf	nodes- room	to	index	f3	pages
• …
• h	à fh-1 leaf	nodes- room	to	index	fh pages!

Lecture	13		>		Section	2		>		B+	cost

àWe	need	a	B+	Tree	
of	height	h	=	 log&

'
(
!



Simple	Cost	Model	for	Search
• Note	that	if	we	have	B available	buffer	pages,	by	the	same	logic:
• We	can	store	𝑳𝑩 levels	of	the	B+	Tree	in	memory
• where	𝑳𝑩 is	the	number	of	levels	such	that	the	sum	of	all	the	levels’	nodes	fit	in	
the	buffer:
• 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓1234 = ∑ 𝑓𝑙123489:

• In	summary:	to	do	exact	search:
• We	read	in	one	page	per	level	of	the	tree
• However,	levels	that	we	can	fit	in	buffer	are	free!
• Finally	we	read	in	the	actual	record

Lecture	13		>		Section	2		>		B+	cost

IO	Cost:	 log&
'
(
− 𝐿𝐵 + 1

where		𝐵 ≥ ∑ 𝑓𝑙123489:



Simple	Cost	Model	for	Search

• To	do	range	search,	we	just	follow	the	horizontal	pointers

• The	IO	cost	is	that	of	loading	additional	leaf	nodes	we	need	to	access	+	
the	IO	cost	of	loading	each	page of	the	results- we	phrase	this	as	
“Cost(OUT)”

Lecture	13		>		Section	2		>		B+	Tree	cost

IO	Cost:	 log&
'
(
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)

where		𝐵 ≥ ∑ 𝑓𝑙123489:



3.	B+	Trees:	Clustered

15

Lecture	13



Clustered	Indexes

An	index	is	clustered if	the	underlying	
data	is	ordered	in	the	same	way	as	the	

index’s	data	entries.

Lecture	13		>		Section	3



Clustered	vs.	Unclustered Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index	Entries

Data	Records

Lecture	13		>		Section	3



Clustered	vs.	Unclustered Index

• Recall	that	for	a	disk	with	block	access,	sequential	IO	is	much	faster	
than	random	IO

• For	exact	search,	no	difference	between	clustered	/	unclustered

• For	range	search	over	R	values:	difference	between	1	random	IO	+	R	
sequential	IO,	and	R	random	IO:
• A	random	IO	costs	~	10ms	(sequential	much	much	faster)
• For	R	=	100,000	records- difference	between	~10ms	and	~17min!

Lecture	13		>		Section	3



Summary

• We	create	indexes over	tables	in	order	to	support	fast	(exact	and	
range)	search and	insertion over	multiple	search	keys

• B+	Trees	are	one	index	data	structure	which	support	very	fast	exact	
and	range	search	&	insertion	via	high	fanout
• Clustered	vs.	unclusteredmakes	a	big	difference	for	range	queries	too

Lecture	13	>		SUMMARY



Lecture	14:	Hash	Indexes

Lecture	14



What	you	will	learn	about	in	this	section

1. Hash	Indexes

2. Static	Hashing

3. Extendible	Hashing

21

Lecture	14



1.	Hash	Indexes

22

Lecture	14



Lecture	14		>		Section	1

Hash	Index

• A	hash	index	is	a	collection	of	buckets
• bucket	=	primary	page	plus	overflow	pages
• buckets	contain	one	or	more	data	entries

• uses	a	hash	function h
• h(r)	=	bucket	in	which	(data	entry	for)	record	r belongs



Lecture	14		>		Section	1

Hash	Index

• A	hash	index	is:
• good	for	equality	search
• not	so	good	for	range	search	(use	tree	indexes	instead)

• Types	of	hash	indexes:
• Static hashing
• Extendible hashing	(dynamic)
• Linear	hashing	(dynamic)	– not	covered	in	the	course,	see	
11.3	in	the	cow	book



Lecture	14		>		Section	1

Operations	on	Hash	Indexes

• Equality	search
• apply	the	hash	function	on	the	search	key	to	locate	the	appropriate	bucket
• search	through	the	primary	page	(plus	overflow	pages)	to	find	the	record(s)

• Deletion
• find	the	appropriate	bucket,	delete	the	record

• Insertion
• find	the	appropriate	bucket,	insert	the	record
• if	there	is	no	space,	create	a	new	overflow	page



Lecture	14		>		Section	1

Hash	Functions

• An	ideal hash	function	must	be	uniform:	each	bucket	is	assigned	the	
same	number	of	key	values

• A	bad hash	function	maps	all	search	key	values	to	the	same	bucket

• Examples	of	good	hash	functions:
• h(k)	=	a	*	k	+	b,	where a and	b are	constants
• a	random	function



2.	Static	Hashing

27

Lecture	14



Lecture	14		>		Section	2

Static	Hashing

• #	primary	bucket	pages	fixed,	allocated	sequentially,	never	
de-allocated;	overflow	pages	if	needed.

• h(k)	mod	N =	bucket	to	which	data	entry	with key k	belongs.	
(N	=	#	of	buckets)

h(key)	mod	N

h
key

Primary	bucket	pages Overflow	pages

1
0

N-1



Lecture	14		>		Section	2

Static	Hashing:	Example
Person(name,zipcode,phone)
• search	key:	zipcode
• hash	function	h:	last	2	digits	

bucket	0 (John,	53400,	23218564)
(Alice,	54768,	60743111)

bucket	1 (Theo,	53409,	23200564)

bucket	2

bucket	3 (Bob,	34411,	29010533)

• 4	buckets
• each	bucket	has	2	data	

entries	(full	record)

(Anna,	53632,	23209964)

overflow	pagesprimary	pages



Lecture	14		>		Section	2

Hash	Functions

• An	ideal hash	function	must	be	uniform:	each	bucket	is	assigned	the	
same	number	of	key	values

• A	bad hash	function	maps	all	search	key	values	to	the	same	bucket

• Examples	of	good	hash	functions:
• h(k)	=	a	*	k	+	b,	where a and	b are	constants
• a	random	function



Lecture	14		>		Section	2

Bucket	Overflow

• Bucket	overflow can	occur	because	of	
• insufficient	number	of	buckets	
• skew in	distribution	of	records

• many	records	have	the	same	search-key	value
• the	hash	function	results	in	a	non-uniform	distribution	of	key	values

• Bucket	overflow	is	handled	using	overflow	buckets



Lecture	14		>		Section	2

Problems	of	Static	Hashing

• In	static	hashing,	there	is	a	fixed number	of	buckets	in	the	index

• Issues	with	this:
• if	the	database	grows,	the	number	of	buckets	will	be	too	small:	long	overflow	
chains	degrade	performance
• if	the	database	shrinks,	space	is	wasted
• reorganizing	the	index	is	expensive	and	can	block	query	execution



3.	Extendible	Hashing

33

Lecture	14



Lecture	14		>		Section	3

Extendible	Hashing

• Extendible	hashing is	a	type	of	dynamic hashing	

• It	keeps	a	directory	of	pointers	to	buckets

• On	overflow,	it	reorganizes	the	index	by	doubling	the	directory	(and	
not	the	number	of	buckets)



Lecture	14		>		Section	3

Extendible	Hashing
To	search,	use	the	last 2	digits	of	the	binary	form of	the	search	key	value

00

01

10

11

2

global	depth 2

2

2

2

local	depth

(John,	12,	23218564)
(Alice,	8,	60743111)

(Theo,	9,	23200564)

(Maria,	11,	29010533)



Lecture	14		>		Section	3

Extendible	Hashing:	Insert
If	there	is	space	in	the	bucket,	simply	add	the	record

00

01

10

11

2

global	depth 2

2

2

2

local	depth

(John,	12,	23218564)
(Alice,	8,	60743111)

(Theo,	9,	23200564)
(Zoe,	13,	23345563)

(Maria,	11,	29010533)



Lecture	14		>		Section	3

Extendible	Hashing:	Insert
If	the	bucket	is	full,	split	the	bucket	and	redistribute	the	entries	

000

100

001

101

010

110

011

111

3

global	depth	
increases	by	1 3

2

2

2

(Natalie,	4,	23200564)
(John,	12,	23218564)

(Theo,	9,	23200564)
(Zoe,	13,	23345563)

(Maria,	11,	29010533)

(Alice,	8,	60743111)3
local	depth	increases	for
the	split	bucket!

local	depth	remains	
the	same	for	the	other
buckets



Lecture	14		>		Section	3

Extendible	Hashing:	Delete
• Locate	the	bucket	of	the	record	and	remove	it
• If	the	bucket	becomes	empty,	it	can	be	removed	(and	update	the	
directory)
• Two	buckets	can	also	be	coalesced	together	if	the	sum	of	the	entries	fit	in	
a	single	bucket
• Decreasing	the	size	of	the	directory	can	also	be	done,	but	it	is	expensive



Lecture	14		>		Section	3

More	on	Extendible	Hashing
• How	many	disk	accesses	for	equality	search?
• One	if	directory	fits	in	memory,	else	two

• Directory	grows	in	spurts,	and,	if	the	distribution	of	hash	values	is	
skewed,	the	directory	can	grow	very	large

• We	may	need	overflow	pages	when	multiple	entries	have	the	same	hash	


