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Announcements

1. Project	Part	2	extension	till	Friday

2. Project	Part	3:	B+	Tree	coming	out	Friday

3. Poll	for	Nov	22nd

4. Exam	Pickup:	If	you	have	questions,	just	want	to	see	your	exam	
come	to	office	hours	or	drop	by	my	office
• Two	weeks	(until	November	8th)	for	questions	&	concerns.	
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What	you	will	learn	about	in	this	section

1. Recap:	Indexing

2. B+	Trees:	Basics

3. B+	Trees:	Operations,	Design	&	Cost
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1. Recap:	Indexing
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Indexes:	High-level
• An	index on	a	file	speeds	up	selections	on	the	search	key fields	for	the	
index.

• Search	key	properties
• Any	subset	of	fields
• is not the	same	as	key	of	a	relation

• Example:
On	which	attributes	
would	you	build	

indexes?
Product(name, maker, price)
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More	precisely
• An	index is	a	data	structuremapping	search	keys to	sets	of	rows	in	a	
database	table

• Provides	efficient	lookup	&	retrieval	by	search	key	value- usually	much	faster	
than	searching	through	all	the	rows	of	the	database	table

• An	index	can	store	the	full	rows	it	points	to	(primary	index)	or	
pointers	to	those	rows	(secondary	index)

• We’ll	mainly	consider	secondary	indexes
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Operations	on	an	Index

• Search:	Quickly	find	all	records	which	meet	some	condition	on	the	
search	key	attributes

• More	sophisticated	variants	as	well.	Why?

• Insert	/	Remove entries
• Bulk	Load	/	Delete.	Why?

Indexing	is	one	the	most	important	features	
provided	by	a	database	for	performance
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Activity-13.ipynb

9

Lecture	13		>		Section	1 >		ACTIVITY



2.	B+	Trees:	Basics
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What	you	will	learn	about	in	this	section

1. B+	Trees:	Basics

2. B+	Trees:	Design	&	Cost

3. Clustered	Indexes
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B+	Trees

• Search	trees	
• B	does	not	mean	binary!

• Idea	in	B	Trees:
• make	1	node	=	1	physical	page
• Balanced,	height	adjusted	tree	(not	the	B	either)

• Idea	in	B+	Trees:
• Make	leaves	into	a	linked	list	(for	range	queries)
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B+	Tree	Index

• Leaf	pages	contain	data	entries,	and	are	chained	
(prev &	next)

• Non-leaf	pages	have	data	entries

Non-leaf
Pages

Leaf Pages  (sorted by search key)



B+	Tree	Basics

10 20 30
Each	non-leaf	(“interior”)	node
has	d	≤ 𝑚 ≤ 2d	entries

• Minimum	50%	occupancy

Parameter	d =	the	order
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entries



B+	Tree	Basics

10 20 30

k	<	10

10	≤ 𝑘	<	20

20	≤ 𝑘	<	30
30	≤ 𝑘

The	n	entries	in	a	node	
define	n+1	ranges	
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B+	Tree	Basics

10 20 30

Non-leaf	or	internal	node

22 25 28

For	each	range,	in	a	non-leaf	
node,	there	is	a	pointer to	
another	node	with	entries	in	
that	range
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B+	Tree	Basics

10 20 30

Leaf	nodes	also	have	
between	d	and	2d	entries,	
and	are	different	in	that:

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17
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B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Their	entry	slots	contain	
pointers	to	data	records

21 22 27 28 30 33 35 371511
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B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

21 22 27 28 30 33 35 371511

Their	entry	slots	contain	
pointers	to	data	records

They	contain	a	pointer	
to	the	next	leaf	node	as	
well,	for	faster	
sequential	traversal
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and	are	different	in	that:



B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Note	that	the	pointers	at	the	
leaf	level	will	be	to	the	
actual	data	records	(rows).		

We	might	truncate	these	for	
simpler	display	(as	before)…

Name:	John
Age:	21

Name:	Jake
Age:	15

Name:	Bob
Age:	27

Name:	Sally
Age:	28

Name:	Sue
Age:	33

Name:	Jess
Age:	35

Name:	Alf
Age:	37Name:	Joe

Age:	11

Name:	Bess
Age:	22

Name:	Sal
Age:	30
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B+	Tree	Page	Format
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data entries

record	1 record	2

Next	
Page
Pointer

Rn

record	n

P0

Prev	
Page
Pointer

N
on
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Pa
ge

P1 K 1 P 2 K 2 P 3 K m Pm+1

index entries

Pointer	to	a
page	with	
Values	<	K1

Pointer	to	a	page
with	values	s.t.
K1≤	Values	<	K2

Pointer	to	a
page	with	
values	≥Km

Pointer	to	a	page
with	values	s.t.,	
K2≤	Values	<	K3

Pm



3.	B+	Trees:	Operations,	Design	&	
Cost
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B+	Tree	operations

Lecture	13		>		Section	3	>		B+	Tree	design	&	cost

A	B+	tree	supports	the	following	operations:
• equality	search
• range	search
• insert
• delete
• bulk	loading



Searching	a	B+	Tree

• For	exact	key	values:
• Start	at	the	root
• Proceed	down,	to	the	leaf

• For	range	queries:
• As	above
• Then	sequential	traversal

SELECT name
FROM people
WHERE age = 25

SELECT name
FROM people
WHERE 20 <= age
AND  age <= 30
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B+	Tree:	Search

Lecture	13		>		Section	3	>		B+	Tree	design	&	cost

• start	from	root

• examine	index	entries	in	non-leaf	nodes	to	find	the	correct	child

• traverse	down	the	tree	until	a	leaf	node	is	reached

• non-leaf	nodes	can	be	searched	using	a	binary	or	a	linear	search



B+	Tree	Exact	Search	Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 60 63 80 84 89

K	=	30?	

30	<	80

30	in	[20,60)

To	the	data!
Not	all	nodes	pictured

30	in	[30,40)
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B+	Tree	Range	Search	Animation

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 12 15 20 28 30 40 59 63 80 84 89

K	in	[30,85]?	

30	<	80

30	in	[20,60)

To	the	data!
Not	all	nodes	pictured

30	in	[30,40)
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B+	Tree:	Insert

Lecture	13		>		Section	3	>		B+	Tree	design	&	cost

• Find	correct	leaf	L.
• Put	data	entry	onto	L.

• If	L	has	enough	space,	done!
• Else,	must	split L	(into	L	and	a	new	node	L2)

• Redistribute	entries	evenly,	copy	upmiddle	key.
• Insert	index	entry	pointing	to	L2	into	parent	of	L.

• This	can	happen	recursively
• To	split	non-leaf	node,	redistribute	entries	evenly,	but	
pushing	up the	middle	key.		(Contrast	with	leaf	splits.)

• Splits	“grow”	tree;	root	split	increases	height.		
• Tree	growth:	gets	wider or	one	level	taller	at	top.



Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Entry to be inserted in parent node
Copied up (and continues to appear in the 
leaf)

2* 3* 5* 7* 8*

5

Inserting	8*	into	B+	Tree
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Insert in parent node.
Pushed up (and only appears once in the index)

5 24 30

17

13

Minimum	occupancy	is	guaranteed	in	both	leaf	and	
index	page	splits

Inserting	8*	into	B+	Tree
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2* 3*

Root
17

24 30

14*16* 19*20*22* 24*27*29* 33*34*38*39*

135

7*5* 8*

• Root	was	split:	height	increases	by	1
• Could	avoid	split	by	re-distributing	entries	with	a	sibling

• Sibling:	immediately	to	left	or	right,	and	same	parent

Inserting	8*	into	B+	Tree
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• Re-distributing	entries	with	a	sibling
• Improves	page	occupancy
• Usually	not	used	for	non-leaf	node	splits.	Why?

• Increases	I/O,	especially	if	we	check	both	siblings
• Better	if	split	propagates	up	the	tree	(rare)
• Use	only	for	leaf	level	entries	as	we	have	to	set	pointers

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

8* 14* 16*

8

Inserting	8*	into	B+	Tree
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Fast	Insertions	&	Self-Balancing

• The	B+	Tree	insertion	algorithm	has	several	attractive	qualities:

• ~	Same	cost	as	exact	search

• Self-balancing:	B+	Tree	remains	balanced	(with	respect	to	height)	even	after	
insert

B+	Trees	also	(relatively)	fast	for	single	insertions!
However,	can	become	bottleneck	if	many	insertions	(if	fill-factor	

slack	is	used	up…)
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• Start	at	root,	find	leaf	L where	entry	belongs.
• Remove	the	entry.

• If	L	is	at	least	half-full,	done!	
• If	L	has	only	d-1	entries,

• Try	to	re-distribute,	borrowing	from	sibling (adjacent	node	with	same	
parent	as	L).

• If	re-distribution	fails,	merge L	and	sibling.

• If	merge	occurred,	must	delete	entry	(pointing	to	L or	
sibling)	from	parent	of	L.

• Merge	could	propagate to	root,	decreasing	height.

B+	Tree:	Deleting	a	data	entry
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• Deleting	22*	is	easy.
• Deleting	20*	is	done	with	re-distribution.	Notice	
how	the	middle	key	is	copied	up.

27*29*2* 3*

Root
17

24 30

14*16* 19* 20*22* 24* 33*34*38*39*

135

7*5* 8*

27

24* 27* 29*

Deleting	22*	and	20*
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… And	then	deleting	24*
• Must	merge.
• In	the	non-leaf	node,	
toss the	index	entry	with	
key	value	=	27

30

19* 27* 29* 33* 34* 38* 39*

Can	this	
merge?

2* 3* 7* 14* 16* 19* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

n Pull	down of	
the	index	entry
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• Tree	during	deletion	of	24*.	
• Can	re-distribute	entry	from	left	child	of	root	to	right	
child.		

Root

135 17 20

22

30

14*16* 17*18* 20* 33*34*38*39*22* 27*29*21*7*5* 8*3*2*

Non-leaf	Re-distribution
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• Rotate	through	the	parent	node
• It	suffices	to	re-distribute	index	entry	with	key	20;	For	
illustration	17	also	re-distributed

14*16* 33*34*38*39*22* 27*29*17*18* 20*21*7*5* 8*2* 3*

Root

135

17

3020 22

After	Re-distribution
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• Try	redistribution	with	all siblings	first,	then	merge.	
Why?

• Good	chance	that	redistribution	is	possible	(large	fanout!)
• Only	need	to	propagate	changes	to	parent	node
• Files	typically	grow	not	shrink!

B+	Tree	deletion
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• Duplicate	Keys:	many	data	entries	with	the	same	key	value
• Solution	1:	

• All	entries	with	a	given	key	value	reside	on	a	single	page
• Use	overflow	pages!

• Solution	2:	
• Allow	duplicate	key	values	in	data	entries
• Modify	search
• Use	RID	to	get	a	unique (composite)	key!

• Use	list	of	rids	instead	of	a	single	rid	in	the	leaf	level
• Single	data	entry	could	still	span	multiple	pages

Duplicates
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B+	Tree	Design

• How	large is	d?

• Example:
• Key	size	=	4	bytes
• Pointer	size	=	8	bytes
• Block	size	=	4096	bytes

• We	want	each	node to	fit	on	a	single	block/page
• 2d	x	4		+	(2d+1)	x	8		<=		4096	à d	<=	170

NB:	Oracle	allows	64K	=	
2^16	byte	blocks
à d	<=	2730
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B+	Tree:	High	Fanout =	Smaller	&	Lower	IO

• As	compared	to	e.g.	binary	search	trees,	B+	Trees	
have	high fanout (between	d+1	and	2d+1)

• This	means	that	the	depth	of	the	tree	is	small	à
getting	to	any	element	requires	very	few	IO	
operations!

• Also	can	often	store	most	or	all	of	the	B+	Tree	in	main	
memory!

• A	TiB =	240 Bytes.		What	is	the	height	of	a	B+	Tree	
(with	fill-factor	=	1)	that	indexes	it	(with	64K	
pages)?

• (2*2730	+	1)h =	240 à h =	4	

The	fanout is	defined	as	the	
number	of	pointers	to	child	
nodes	coming	out	of	a	node

Note	that	fanout is	dynamic-
we’ll	often	assume	it’s	constant	
just	to	come	up	with	
approximate	eqns!

The	known	universe	
contains	~1080 particles…	
what	is	the	height	of	a	B+	
Tree	that	indexes	these?
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B+	Trees	in	Practice
• Typical	order:	d=100.		Typical	fill-factor:	67%.

• average	fanout =	133

• Typical	capacities:
• Height	4:	1334 =	312,900,700	records
• Height	3:	1333 =					2,352,637	records

• Top	levels	of	tree	sit	in	the	buffer	pool:
• Level	1	=											1	page		=					8	Kbytes
• Level	2	=						133	pages	=					1	Mbyte
• Level	3	=	17,689	pages	=	133	MBytes

Typically,	only	
pay	for	one	IO!

Fill-factor is	the	percent	of	
available	slots	in	the	B+	
Tree	that	are	filled;	is	
usually	<	1	to	leave	slack	
for	(quicker)	insertions
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Simple	Cost	Model	for	Search
• Let:

• f =	fanout,	which	is	in	[d+1,	2d+1]	(we’ll	assume	it’s	constant	for	our	cost	model…)
• N =	the	total	number	of	pages	we	need	to	index
• F =	fill-factor	(usually	~=	2/3)

• Our	B+	Tree	needs	to	have	room	to	index	N	/	F	pages!
• We	have	the	fill	factor	in	order	to	leave	some	open	slots	for	faster	insertions

• What	height	(h)	does	our	B+	Tree	need	to	be?
• h=1	à Just	the	root	node- room	to	index	f	pages
• h=2	à f	leaf	nodes- room	to	index	f2 pages
• h=3	à f2 leaf	nodes- room	to	index	f3	pages
• …
• h	à fh-1 leaf	nodes- room	to	index	fh pages!
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)
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Simple	Cost	Model	for	Search
• Note	that	if	we	have	B available	buffer	pages,	by	the	same	logic:

• We	can	store	𝑳𝑩 levels	of	the	B+	Tree	in	memory
• where	𝑳𝑩 is	the	number	of	levels	such	that	the	sum	of	all	the	levels’	nodes	fit	in	
the	buffer:

• 𝐵 ≥ 1 + 𝑓 +⋯+ 𝑓3456 = ∑ 𝑓𝑙3456:;<

• In	summary:	to	do	exact	search:
• We	read	in	one	page	per	level	of	the	tree
• However,	levels	that	we	can	fit	in	buffer	are	free!
• Finally	we	read	in	the	actual	record
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Simple	Cost	Model	for	Search

• To	do	range	search,	we	just	follow	the	horizontal	pointers

• The	IO	cost	is	that	of	loading	additional	leaf	nodes	we	need	to	access	+	
the	IO	cost	of	loading	each	page of	the	results- we	phrase	this	as	
“Cost(OUT)”
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IO	Cost:	 log(
)
*
− 𝐿𝐵 + 𝐶𝑜𝑠𝑡(𝑂𝑈𝑇)
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Clustered	Indexes

An	index	is	clustered if	the	underlying	
data	is	ordered	in	the	same	way	as	the	

index’s	data	entries.
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Clustered	vs.	Unclustered Index

30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index	Entries

Data	Records
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Clustered	vs.	Unclustered Index

• Recall	that	for	a	disk	with	block	access,	sequential	IO	is	much	faster	
than	random	IO

• For	exact	search,	no	difference	between	clustered	/	unclustered

• For	range	search	over	R	values:	difference	between	1	random	IO	+	R	
sequential	IO,	and	R	random	IO:

• A	random	IO	costs	~	10ms	(sequential	much	much	faster)
• For	R	=	100,000	records- difference	between	~10ms	and	~17min!
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Summary

• We	create	indexes over	tables	in	order	to	support	fast	(exact	and	
range)	search and	insertion over	multiple	search	keys

• B+	Trees	are	one	index	data	structure	which	support	very	fast	exact	
and	range	search	&	insertion	via	high	fanout

• Clustered	vs.	unclusteredmakes	a	big	difference	for	range	queries	too
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