Lecture 13: B+ Tree

Lecture 13

Announcements

1. Project Part 2 extension till Friday
2. Project Part 3: B+ Tree coming out Friday

3. Poll for Nov 22nd

4. Exam Pickup: If you have questions, just want to see your exam
come to office hours or drop by my office
e Two weeks (until November 8™) for questions & concerns.

Lecture 13: B+ Tree

Lecture 13

What you will learn about in this section

1. Recap: Indexing
2. B+ Trees: Basics

3. B+ Trees: Operations, Design & Cost

1. Recap: Indexing

Lecture 13 > Section 1 > Recap

Indexes: High-level

* An index on a file speeds up selections on the search key fields for the
index.
- Search key properties

- Any subset of fields
- is not the same as key of a relation

- Example:

On which attributes
would you build
indexes?

Lecture 13 > Section 1 > Recap

More precisely

* An index is a data structure mapping search keys to sets of rows in a
database table

- Provides efficient lookup & retrieval by search key value- usually much faster
than searching through all the rows of the database table

- An index can store the full rows it points to (primary index) or
pointers to those rows (secondary index)

- We’ll mainly consider secondary indexes

Lecture 13 > Section 1 > Recap

Operations on an Index

e Search: Quickly find all records which meet some condition on the
search key attributes

* More sophisticated variants as well. Why?

* Insert / Remove entries
* Bulk Load / Delete. Why?

Indexing is one the most important features
provided by a database for performance

Lecture 13 > Section 1 > ACTIVITY

Activity-13.ipynb

2. B+ Trees: Basics

Lecture 13 > Section 2

What you will learn about in this section

1. B+ Trees: Basics
2. B+ Trees: Design & Cost

3. Clustered Indexes

Lecture 13 > Section 2 > B+ Tree basics

B+ Trees

* Search trees
* B does not mean binary!

* |dea in B Trees:
* make 1 node = 1 physical page
* Balanced, height adjusted tree (not the B either)

* |dea in B+ Trees:
* Make leaves into a linked list (for range queries)

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Index

Non-leaf
Pages °<-

' '

- T A A A

© o o > <o o o > o o o > © o o

Leaf Pages (sorted by search key)

- Leaf pages contain data entries, and are chained
(prev & next)

- Non-leaf pages have data entries

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Basics

10

20

30

Parameter d = the order

Each non-leaf (“interior”) node
has d < m < 2d entries
* Minimum 50% occupancy

Root node has 1 < m < 2d
entries

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Basics

10

20

30

k<10

10< k<20

20< k<30

305 k

The n entries in a node
define n+1 ranges

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Basics

Non-leaf or internal node

il M-S B For each range, in a non-leaf
\ node, there is a pointer to
another node with entries in

22 25 28

that range

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Basics

12

17

Non-leaf or internal node

10

20

30

L~

N

Leaf nodes

22

25

28

29

32

34

37

38

Leaf nodes also have
between d and 2d entries,
and are different in that:

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Basics

12

17

Non-leaf or internal node

10

20

30

— N
2 | 5 | 28 | 2
/ // / \
22 27 28

Leaf nodes

37

38

Leaf nodes also have
between d and 2d entries,
and are different in that:

Their entry slots contain
pointers to data records

Lecture 13 > Section 2 > B+ Tree basics

/

B+ Tree Basics

Non-leaf or internal node

10

20

30

17

15

— N
I 22 25 28 29
|
| /l/ // \ |
21 22 27 28

Leaf nodes

37

38

Leaf nodes also have
between d and 2d entries,
and are different in that:

Their entry slots contain
pointers to data records

They contain a pointer
to the next leaf node as
well, for faster
sequential traversal

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Basics

Non-leaf or internal node

10 20 30
L~ DN
Leaf nodes
12 17 I 22 25 28 29 32 34 37 38
|
I \\ I I/I ll \ \\ | | \\ NN
Name: Jake Name: Bess Name: Sally Name: Sue
Age: 15 Age: 22 Age: 28 Age: 33
! Name: Jess
Name: Joe Name: John Name: Bob Name: Sal Age: 35
Age: 11 Age: 21 Age: 27 Age: 30

Name: Alf

Age: 37

Note that the pointers at the
leaf level will be to the
actual data records (rows).

We might truncate these for
simpler display (as before)...

Height =1

Lecture 13 > Section 2 > B+ Tree basics

B+ Tree Page Format

index entries
[|

Py | Kq| Pyl K2/ Py m|{ “m| m+1
Pointer to a Pointer to a page Pointer to a page Pointer.to a
page with with values s.t. with values s.t., page with
Values < K, K,< Values <K, K,< Values < K, values 2K,
data entries
| I
Po R1 K 1 R 2 K 2 o o o Rn K n P n+1
? [—
Prev | | | Next
Page Page
Pointer Pointer

record 1

3. B+ Trees: Operations, Design &
Cost

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree operations

A B+ tree supports the following operations:
e equality search

* range search

* insert

* delete

* bulk loading

Lecture 13 > Section 3 > B+ Tree design & cost

Searching a B+ Tree

* For exact key values:
e Start at the root
* Proceed down, to the leaf

* For range queries:
* As above
* Then sequential traversal

name
people
age = 25

AND

name
people

20 <= age
age <= 30

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree: Search

e start from root
e examine index entries in non-leaf nodes to find the correct child
e traverse down the tree until a leaf node is reached

* non-leaf nodes can be searched using a binary or a linear search

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree Exact Search Animation

K=307?
30< 80 80
30in [20,60) { 100 | 120 | 140
/ |
30 In [30’40) 10 | 15 | 18 20 [30 | 40 [50 60 | 65 80 [8 | 90

|

\ Ly Dy el yAVAN, |
\ / \ \ \ \ \ // / Not all nodes pictured
12 20

15 28 30 40 60 63 80 84 89

/

To the data! 10

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree Range Search Animation

Kin [30,85]?

30< 80 80

30in [20,60) { 100 | 120 | 140
/ |

30 In [30’40) 10 | 15 | 18 20 [30 | 40 [50 60 | 65 80 [8 | 90

[l 1|

BAWARN A7

TO the data! 10 15 28 30 40 59 63 80 84 89

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree: Insert

* Find correct leaf L.

e Put data entry onto L.
- If L has enough space, done!

- Else, must split L (into L and a new node L2)
e Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

* This can happen recursively

- To split non-leaf node, redistribute entries evenly, but
pushing up the middle key. (Contrast with leaf splits.)

* Splits “grow” tree; root split increases height.
- Tree growth: gets wider or one level taller at top.

Lecture 13 > Section 3 > B+ Tree design & cost

Inserting 8* into B+ Tree

Root \

13| 17 || 24 || 30
L T v T T
2% | 3*| 5| 7*| |14116* 19*|20*| 221 24*% 274 29" 33% 34%38*% 39"
Entry to be inserted in parent node
5 || Copied up (and continues to appear in the
leaf)
¥ T
2* | 3* 5* | 7* | 8*

Lecture 13 > Section 3 > B+ Tree design & cost

Inserting 8* into B+ Tree

Insert in parent node.
17 Pushed up (and only appears once in the index)

5 ||13 24 |[30
iy ;o

Minimum occupancy is guaranteed in both leaf and
index page splits

Lecture 13 > Section 3 > B+ Tree design & cost

Inserting 8* into B+ Tree

Root\A

17

/'

‘ \

| S (| 13 24| 30
2*| 3* 5*| 7*| 8* 147167 19720122 24127729 33"34"‘381391

* Root was split: height increases by 1

* Could avoid split by re-distributing entries with a sibling
 Sibling: immediately to left or right, and same parent

Lecture 13 > Section 3 > B+ Tree design & cost

Inserting 8* into B+ Tree

Root \

K

8

17

24

30

K g

v

K

2*

3*

5*

7*

8*

14*

16*

191

3 205\

227

24°

27

29%

331

34*

38"

39%

e Re-distributing entries with a sibling

* Improves page occupancy

* Usually not used for non-leaf node splits. Why?
* Increases I/0, especially if we check both siblings

» Better if split propagates up the tree (rare)
* Use only for leaf level entries as we have to set pointers

Lecture 13 > Section 3 > B+ Tree design & cost

Fast Insertions & Self-Balancing

* The B+ Tree insertion algorithm has several attractive qualities:

e ~ Same cost as exact search

 Self-balancing: B+ Tree remains balanced (with respect to height) even after
insert

B+ Trees also (relatively) fast for single insertions!
However, can become bottleneck if many insertions (if fill-factor
slack is used up...)

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree: Deleting a data entry

e Start at root, find leaf L where entry belongs.

 Remove the entry.
 If Lis at least half-full, done!

- If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent node with same
parent as L).

* If re-distribution fails, merge L and sibling.

* If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

* Merge could propagate to root, decreasing height.

Lecture 13 > Section 3 > B+ Tree design & cost

Deleting 22* and 20*

/'

Root\A

17

‘ \

* Deleting 22* is easy.

5 | 27 || 30
2| 3* 5 x| g* 14 16 19*(24* 27*29*%)* 33*34J[38*39’

* Deleting 20* is done with re-distribution. Notice
how the middle key is copied up.

Lecture 13 > Section 3 > B+ Tree design & cost

.. And then deleting 24*

* Must merge.

* |n the non-leaf node, \

Can this
toss the index entry with merge? 7] 30
key value = 27 _ . .
19* 27% 29* 33% 34*| 38*| 39*
R% = Pull down of

/ j WX entry

2+ | 3* 5¢| 7¢| g 144 16" 191271 29¢ | | 334 34*1 38+ 39*

Lecture 13 > Section 3 > B+ Tree design & cost

Non-leaf Re-distribution

* Tree during deletion of 24*.

e Can re-distribute entry from left child of root to right

RON

child.

/’

13

17

20

/K\

22

| ‘/_\A\&Xs KT

T

8

141

167

17

k1 8'k

207

21}

22

27

2

T
of 331343

87

397

Lecture 13 > Section 3 > B+ Tree design & cost

After Re-distribution

* Rotate through the parent node

* It suffices to re-distribute index entry with key 20; For
illustration 17 also re-distributed

ROCNA

17

LT

13 20|| 22|| 30
2% 3* 5*| 7*| 8* 141167 177187 207121 227127t291 ||331347138%39

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree deletion

* Try redistribution with all siblings first, then merge.
Why?
* Good chance that redistribution is possible (large fanout!)
* Only need to propagate changes to parent node
* Files typically grow not shrink!

Lecture 13 > Section 3 > B+ Tree design & cost

Duplicates

* Duplicate Keys: many data entries with the same key value

 Solution 1:
* All entries with a given key value reside on a single page
* Use overflow pages!

* Solution 2:
* Allow duplicate key values in data entries
* Modify search
* Use RID to get a unique (composite) key!

e Use list of rids instead of a single rid in the leaf level

* Single data entry could still span multiple pages

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree Design

* How large is d?

NB: Oracle allows 64K =

* Example: 2716 byte blocks
* Key size = 4 bytes S d<=2730
e Pointer size = 8 bytes
* Block size = 4096 bytes

* We want each node to fit on a single block/page
e 2dx4 +(2d+1)x 8 <= 4096 > d <= 170

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Tree: High Fanout = Smaller & Lower 10

The fanout is defined as the

* As compared to e.g. binary search trees, B+ Trees number of pointers to child
have high fanout (between d+1 and 2d+1)

nodes coming out of a node

* This means that the depth of the tree is small > Note that fanout is dynamic-
getting to any element requires very few 10

operations! We Il often GSSUIT)? it’s constant
« Also can often store most or all of the B+ Tree in main Just to come up with
memory! approximate eqns!

+ ATiB = 20 Bytes. What is the height of a B+ Tree 1€ kKnown universe
(with fill-factor = 1) that indexes it (with 64K contains ~10%° particles...

pages*)? o what is the height of a B+
* (2%2730+1)'=2" > h=4 Tree that indexes these?

Lecture 13 > Section 3 > B+ Tree design & cost

B+ Trees in Practice

* Typical order: d=100. Typical fill-factor: 67%. Fill-factor is the percent of

* average fanout = 133 available slots in the B+
Tree that are filled; is
usually < 1 to leave slack
for (quicker) insertions

* Typical capacities:
* Height 4: 1334 =312,900,700 records
e Height 3: 1333= 2,352,637 records

* Top levels of tree sit in the buffer pool:
* Level 1= 1 page = 8 Kbytes
e lLevel 2= 133 pages= 1 Mbyte
* Level 3=17,689 pages = 133 MBytes

Typically, only
pay for one 10!

Lecture 13 > Section 3 > B+ Tree design & cost

Simple Cost Model for Search

* Let:
e f=fanout, which is in [d+1, 2d+1] (we’ll assume it’s constant for our cost model...)
* N =the total number of pages we need to index
 F = fill-factor (usually ~=2/3)

e Our B+ Tree needs to have room to index N / F pages!
* We have the fill factor in order to leave some open slots for faster insertions

* What height (h) does our B+ Tree need to be?
* h=1 - Just the root node- room to index f pages

h=2 - f leaf nodes- room to index 2 pages n
h=3 - f? leaf nodes- room to index f3 pages ~ WeneedaB Tr;e
of height h = [log

h = fh1|eaf nodes- room to index f" pages!

Lecture 13 > Section 3 > B+ Tree design & cost

Simple Cost Model for Search

* Note that if we have B available buffer pages, by the same logic:
* We can store Ly levels of the B+ Tree in memory

* where Ly is the number of levels such that the sum of all the levels’ nodes fit in
the buffer:

* B=1+f+-+4flst =Ygt f!

* In summary: to do exact search: 10 Cost: [log ﬂ} — L.+
: fF B
 We read in one page per level of the tree
* However, levels that we can fit in buffer are free!

where B > Y155t f!

Lecture 13 > Section 3 > B+ Tree design & cost

Simple Cost Model for Search

* To do range search, we just follow the horizontal pointers

* The 10 cost is that of loading additional leaf nodes we need to access +
the |0 cost of loading each page of the results- we phrase this as
“Cost(OUT)”

|0 Cost: [logf g — L+

where B > Y.155" [

Lecture 13 > Section 3 > B+ Tree design & cost

Clustered Indexes

An index is clustered if the underlying
data is ordered in the same way as the
index’s data entries.

Lecture 13 > Section 3 > B+ Tree design & cost

Clustered vs. Unclustered Index

30

/

N\

£

Index Entries

22 | 25 | 28 29

32\ 37

38

30

/

AN

£

AN

/I A W AN

25

28

29

32

34

37

38

TN

19 22 27 28

Clustered

BRNN

30

\

~N

Data Records

33

27

22

37

28

Unclustered

35

Lecture 13 > Section 3 > B+ Tree design & cost

Clustered vs. Unclustered Index

* Recall that for a disk with block access, sequential 10 is much faster
than random IO

* For exact search, no difference between clustered / unclustered

* For range search over R values: difference between 1 random 10 + R
sequential 10, and R random 10:
* Arandom IO costs ~ 10ms (sequential much much faster)
 For R =100,000 records- difference between ~10ms and ~17min!

Lecture 13 > SUMMARY

Ssummary

* We create indexes over tables in order to support fast (exact and
range) search and insertion over multiple search keys

* B+ Trees are one index data structure which support very fast exact
and range search & insertion via high fanout

* Clustered vs. unclustered makes a big difference for range queries too

