Lecture 13: B+ Tree
Announcements

1. Project Part 2 extension till Friday

2. Project Part 3: B+ Tree coming out Friday

3. Poll for Nov 22nd

4. Exam Pickup: If you have questions, just want to see your exam come to office hours or drop by my office
 • Two weeks (until November 8th) for questions & concerns.
Lecture 13: B+ Tree
What you will learn about in this section

1. Recap: Indexing

2. B+ Trees: Basics

1. Recap: Indexing
Indexes: High-level

• An *index* on a file speeds up selections on the *search key fields* for the index.
 • Search key properties
 • Any subset of fields
 • is *not* the same as *key of a relation*

• *Example:*

```
Product(name, maker, price)
```

On which attributes would you build indexes?
More precisely

• An index is a **data structure** mapping **search keys** to **sets of rows** in a **database table**

 • Provides efficient lookup & retrieval by search key value - usually much faster than searching through all the rows of the database table

• An index can store the full rows it points to (**primary index**) or pointers to those rows (**secondary index**)

 • We’ll mainly consider secondary indexes
Operations on an Index

• **Search**: Quickly find all records which meet some *condition on the search key attributes*
 • More sophisticated variants as well. Why?

• **Insert / Remove** entries
 • Bulk Load / Delete. Why?

Indexing is one the most important features provided by a database for performance
Activity-13.ipynb
2. B+ Trees: Basics
What you will learn about in this section

1. B+ Trees: Basics
2. B+ Trees: Design & Cost
3. Clustered Indexes
B+ Trees

• Search trees
 • B does not mean binary!

• Idea in B Trees:
 • make 1 node = 1 physical page
 • Balanced, height adjusted tree (not the B either)

• Idea in B+ Trees:
 • Make leaves into a linked list (for range queries)
B+ Tree Index

- Leaf pages contain data entries, and are chained (prev & next)
- Non-leaf pages have data entries
B+ Tree Basics

Parameter $d = \text{the order}$

Each *non-leaf* ("interior") *node* has $d \leq m \leq 2d$ *entries*

- *Minimum 50% occupancy*

Root *node* has $1 \leq m \leq 2d$ *entries*
B+ Tree Basics

The \(n \) entries in a node define \(n+1 \) ranges:
- \(k < 10 \)
- \(10 \leq k < 20 \)
- \(20 \leq k < 30 \)
- \(30 \leq k \)
For each range, in a non-leaf node, there is a pointer to another node with entries in that range.
Leaf nodes also have between d and $2d$ entries, and are different in that:

Non-leaf or *internal* node

Leaf nodes
Leaf nodes also have between d and $2d$ entries, and are different in that:

Their entry slots contain pointers to data records.
Leaf nodes also have between d and $2d$ entries, and are different in that:

- Their entry slots contain pointers to data records.
- They contain a pointer to the next leaf node as well, for faster sequential traversal.
B+ Tree Basics

Non-leaf or *internal* node

Leaf nodes

Note that the pointers at the leaf level will be to the actual data records (rows).

We might truncate these for simpler display (as before)...

Height = 1
B+ Tree Page Format

Non-leaf Page

- **Index entries**
 - $P_1, K_1, P_2, K_2, P_3, \ldots, P_m, K_m, P_{m+1}$
 - Pointer to a page with values $< K_1$
 - Pointer to a page with values $s.t.\ K_1 \leq Values < K_2$
 - Pointer to a page with values $s.t.\ K_2 \leq Values < K_3$
 - Pointer to a page with values $\geq K_m$

Leaf Page

- **Data entries**
 - $P_0, R_1, K_1, R_2, K_2, \ldots, R_n, K_n, P_{n+1}$
 - Prev Page Pointer
 - record 1, record 2, record n
 - Next Page Pointer

- **Record**
 - record 1
 - record 2
 - record n
B+ Tree operations

A B+ tree supports the following operations:

- equality search
- range search
- insert
- delete
- bulk loading
Searching a B+ Tree

• For exact key values:
 • Start at the root
 • Proceed down, to the leaf

• For range queries:
 • As above
 • Then sequential traversal

```sql
SELECT  name
FROM    people
WHERE   age = 25
```

```sql
SELECT  name
FROM    people
WHERE   20 <= age
        AND age <= 30
```
B+ Tree: Search

- start from root

- examine index entries in non-leaf nodes to find the correct child

- traverse down the tree until a leaf node is reached

- non-leaf nodes can be searched using a binary or a linear search
B+ Tree Exact Search Animation

30 < 80

30 in [20,60)

30 in [30,40)

To the data!

K = 30?

Not all nodes pictured
B+ Tree Range Search Animation

30 < 80

30 in [20,60)

30 in [30,40)

To the data!

K in [30,85]?

Not all nodes pictured
B+ Tree: Insert

• Find correct leaf L.
• Put data entry onto L.
 • If L has enough space, done!
 • Else, must split L (into L and a new node $L2$)
 • Redistribute entries evenly, copy up middle key.
 • Insert index entry pointing to $L2$ into parent of L.

• This can happen recursively
 • To split non-leaf node, redistribute entries evenly, but pushing up the middle key. (Contrast with leaf splits.)

• Splits “grow” tree; root split increases height.
 • Tree growth: gets wider or one level taller at top.
Inserting 8* into B+ Tree

Entry to be inserted in parent node
Copied up (and continues to appear in the leaf)
Inserting 8* into B+ Tree

Minimum occupancy is guaranteed in both leaf and index page splits
Inserting 8* into B+ Tree

• Root was split: height increases by 1
• Could avoid split by re-distributing entries with a sibling
 • Sibling: immediately to left or right, and same parent
Inserting 8* into B+ Tree

- Re-distributing entries with a sibling
 - Improves page occupancy
 - Usually not used for non-leaf node splits. Why?
 - Increases I/O, especially if we check both siblings
 - Better if split propagates up the tree (rare)
 - Use only for leaf level entries as we have to set pointers
Fast Insertions & Self-Balancing

• The B+ Tree insertion algorithm has several attractive qualities:

 • ~ Same cost as exact search

 • **Self-balancing:** B+ Tree remains **balanced** (with respect to height) even after insert

B+ Trees also (relatively) fast for single insertions! However, can become bottleneck if many insertions (if fill-factor slack is used up...)
B+ Tree: Deleting a data entry

• Start at root, find leaf L where entry belongs.
• Remove the entry.
 • If L is at least half-full, done!
 • If L has only $d-1$ entries,
 • Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
 • If re-distribution fails, merge L and sibling.
• If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
• Merge could propagate to root, decreasing height.
Deleting 22* and 20*

- Deleting 22* is easy.
- Deleting 20* is done with re-distribution. Notice how the middle key is copied up.
... And then deleting 24*

- Must merge.
- In the non-leaf node, **toss** the index entry with key value = 27

Pull down of the index entry
Non-leaf Re-distribution

- Tree *during deletion* of 24*.
- Can re-distribute entry from left child of root to right child.
After Re-distribution

- Rotate through the parent node
- It suffices to re-distribute index entry with key 20; For illustration 17 also re-distributed
B+ Tree deletion

• Try redistribution with all siblings first, then merge. Why?
 • Good chance that redistribution is possible (large fanout!)
 • Only need to propagate changes to parent node
 • Files typically grow not shrink!
Duplicates

• Duplicate Keys: many data entries with the same key value

• Solution 1:
 • All entries with a given key value reside on a single page
 • Use overflow pages!

• Solution 2:
 • Allow duplicate key values in data entries
 • Modify search
 • Use RID to get a unique (composite) key!

• Use list of rids instead of a single rid in the leaf level
 • Single data entry could still span multiple pages
B+ Tree Design

• How large is d?

• Example:
 • Key size = 4 bytes
 • Pointer size = 8 bytes
 • Block size = 4096 bytes

• We want each node to fit on a single block/page
 • $2d \times 4 + (2d+1) \times 8 \leq 4096 \Rightarrow d \leq 170$

NB: Oracle allows 64K = 2^{16} byte blocks
$\Rightarrow d \leq 2730$
B+ Tree: High Fanout = Smaller & Lower IO

- As compared to e.g. binary search trees, B+ Trees have high fanout (between $d+1$ and $2d+1$)

- This means that the depth of the tree is small → getting to any element requires very few I/O operations!
 - Also can often store most or all of the B+ Tree in main memory!

- A TiB = 2^{40} Bytes. What is the height of a B+ Tree (with fill-factor = 1) that indexes it (with 64K pages)?
 - $(2 \times 2730 + 1)^h = 2^{40} \Rightarrow h = 4$

The fanout is defined as the number of pointers to child nodes coming out of a node

Note that fanout is dynamic—we’ll often assume it’s constant just to come up with approximate eqns!

The known universe contains ~10^{80} particles... what is the height of a B+ Tree that indexes these?
B+ Trees in Practice

• Typical order: d=100. Typical fill-factor: 67%.
 • average fanout = 133

• Typical capacities:
 • Height 4: $133^4 = 312,900,700$ records
 • Height 3: $133^3 = 2,352,637$ records

• Top levels of tree sit in the buffer pool:
 • Level 1 = 1 page = 8 Kbytes
 • Level 2 = 133 pages = 1 Mbyte
 • Level 3 = 17,689 pages = 133 MBytes

Fill-factor is the percent of available slots in the B+ Tree that are filled; is usually < 1 to leave slack for (quicker) insertions.

Typically, only pay for one IO!
Simple Cost Model for Search

• Let:
 • \(f \) = fanout, which is in \([d+1, 2d+1]\) (we’ll assume it’s constant for our cost model...)
 • \(N \) = the total number of pages we need to index
 • \(F \) = fill-factor (usually \(\sim 2/3 \))

• Our B+ Tree needs to have room to index \(N/F \) pages!
 • We have the fill factor in order to leave some open slots for faster insertions

• What height (\(h \)) does our B+ Tree need to be?
 • \(h=1 \to \) Just the root node- room to index \(f \) pages
 • \(h=2 \to f \) leaf nodes- room to index \(f^2 \) pages
 • \(h=3 \to f^2 \) leaf nodes- room to index \(f^3 \) pages
 • ...
 • \(h \to f^{h-1} \) leaf nodes- room to index \(f^h \) pages!

\[\rightarrow \text{We need a B+ Tree of height } h = \left\lfloor \log_f \frac{N}{F} \right\rfloor! \]
Simple Cost Model for Search

• Note that if we have B available buffer pages, by the same logic:
 • We can store L_B levels of the B+ Tree in memory
 • where L_B is the number of levels such that the sum of all the levels’ nodes fit in the buffer:
 • $B \geq 1 + f + \cdots + f^{L_B-1} = \sum_{l=0}^{L_B-1} f^l$

• In summary: to do exact search:
 • We read in one page per level of the tree
 • However, levels that we can fit in buffer are free!
 • Finally we read in the actual record

IO Cost: $\left\lceil \log f \frac{N}{F} \right\rceil - L_B + 1$

where $B \geq \sum_{l=0}^{L_B-1} f^l$
Simple Cost Model for Search

• To do range search, we just follow the horizontal pointers

• The IO cost is that of loading additional leaf nodes we need to access + the IO cost of loading each *page* of the results- we phrase this as “Cost(OUT)”

\[
\text{IO Cost: } \left\lceil \log f \frac{N}{F} \right\rceil - L_B + \text{Cost}(\text{OUT})
\]

where \(B \geq \sum_{l=0}^{L_B-1} f^l \)
Clustered Indexes

An index is **clustered** if the underlying data is ordered in the same way as the index’s data entries.
Clustered vs. Unclustered Index

Clustered

Unclustered

Index Entries

Data Records
Clustered vs. Unclustered Index

• Recall that for a disk with block access, **sequential IO is much faster than random IO**

• For exact search, no difference between clustered / unclustered

• For range search over R values: difference between 1 random IO + R sequential IO, and R random IO:
 • A random IO costs ~ 10ms (sequential much much faster)
 • For R = 100,000 records- **difference between ~10ms and ~17min!**
Summary

• We create indexes over tables in order to support fast (exact and range) search and insertion over multiple search keys.

• B+ Trees are one index data structure which support very fast exact and range search & insertion via high fanout.
 • Clustered vs. unclustered makes a big difference for range queries too.