Lecture 11: External Sorting

Lecture 11

Announcements

Wisconsin Football @ @BadgerFootball - Oct 7
Your weekly reminder that Jonathan Taylor is good at football.

M Really good.

Lecture 11: External Sorting

Lecture 11

What you will learn about in this section

1. External Merge (of sorted files)

2. External Merge - Sort

1. External Merge

Lecture 11 > Section 1 > External Merge

Challenge: Merging Big Files with Small
Memory

How do we efficiently merge two sorted files when both are much
larger than our main memory buffer?

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

* Input: 2 sorted lists of length M and N
e Output: 1 sorted list of length M + N
* Required: At least 3 Buffer Pages

* |10s: 2(M+N)

Lecture 11 > Section 1 > External Merge

Key (Simple) Idea

To find an element that is no larger than all elements in two lists, one
only needs to compare minimum elements from each list.

If:
A <A, <~ < Ay
B, <B, <--< By
Then:
Min(A4,B;) < A;
Min(A4,B;) < B;
fori=1...Nandj=1....M

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Two sorted

files Fy 23,24 | 25,30
Output:

One merged

sorted file

Disk

Main Memory

Buffer

Ll

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Main Memory

Buffer

nput:

Two sortec C G2l
ﬂ|es F2 23,24 25,3@

Output:

One merged

sorted file

Disk

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

nput:

Two sorted

filas F, 23,24 | 25,30
Output:

One merged

sorted file

Disk

Main Memory

Buffer

EN T N

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

nput:

Two sorted

filas F, 23,24 | 25,30
Output:

One merged

sorted file

Disk

Main Memory

Buffer

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Main Memory

Buffer
Input:
Two sorted | > [][] []
files
Output:
One merged o ,
<orted file This is all the algorithm

“sees”... Which file to load a
page from next?

Disk

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Main Memory

Buffer
Input:
Two sorted | > [][] []
files
Output:
One merged _
<orted file We know that F, only contains

values = 22... so we should
load from F,!

Disk

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Input: F, 20,31

Two sorted

filas F, 23,24 | 25,30
Output:

One merged

sorted file

Disk

Main Memory

Buffer

C)

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Input: F, 20,31

Two sorted

filas F, 23,24 | 25,30
Output:

One merged

sorted file

Disk

Main Memory

Buffer

C)

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Main Memory

Buffer

Input: F, 20,31

Two sorted CoC
files F2 25,30

Output:

One merged

sorted file

Disk

Lecture 11 > Section 1 > External Merge

External Merge Algorithm

Main Memory

Buffer
Input: Fy 20,31
Two sorted | [][=][=]
files F 23,24] 25,30 > - -

Output:

1,2 5,7
il 1 P
sorted file

And so on...

Disk

Lecture 11 > Section 1 > External Merge

We can merge 2 lists of arbitrary
length with only 3 buffer pages.

If lists of size M anc

Cost: 2(M+N)

N, then
Os

Each page is read once, written once

With B+1 buffer pages, can merge B lists. How?

2. External Merge Sort

Lecture 11 > Section 2

What you will learn about in this section

1. External merge sort (2-way sort)
2. External merge sort on larger files

3. Optimizations for sorting

Lecture 11 > Section 2 > External Merge Sort

External Merge Algorithm

* Suppose we want to merge two sorted files both much larger
than main memory (i.e. the buffer)

* We can use the external merge algorithm to merge files of
arbitrary length in 2*(N+M) 10 operations with only 3 buffer
pages!

Our first example of an “10 aware”
algorithm / cost model

Lecture 11 > Section 2 > External Merge Sort

Why are Sort Algorithms Important?

* Data requested from DB in sorted order is extremely
common

. e.g., find students in increasing GPA order

* Why not just use quicksort in main memory??
* What about if we need to sort 1TB of data with 1GB of RAM...

A classic problem in computer science!

Lecture 11 > Section 2 > External Merge Sort

More reasons to sort...

 Sorting useful for eliminating duplicate copies
in a collection of records (Why?)

* Sorting is first step in bulk loading B+ tree Coming up...
index.

o . . , Coming up...
* Sort-merge join algorithm involves sorting 7P

Lecture 11 > Section 2 > External Merge Sort

Do people care?
http://sortbenchmark.org

Sort benchmark bears his name

Lecture 11 > Section 2 > External Merge Sort

External Merge Sort

Lecture 11 > Section 2 > External Merge Sort

So how do we sort big files?

[/

1. Split into chunks small enough to sort in memory (“runs”)
2. Merge pairs (or groups) of runs using the external merge algorithm

3. Keep merging the resulting runs (each time = a “pass”) until left
with one sorted file!

Lecture 11 > Section 2 > External Merge Sort

External Merge Sort Algorithm (2-way sort)

Example: DSk Main Memory
e 3 Buffer pages
e 6-page file Buffer
F ‘ L
Orange fil —
= unsorted

1. Split into chunks small enough to sort in memory

Lecture 11 > Section 2 > External Merge Sort

External Merge Sort Algorithm (2-way sort)

Example: e Main Memory
e 3 Buffer pages <
e 6-page file Buffer

.

orage e L

= unsorted

1. Split into chunks small enough to sort in memory

Lecture 11 > Section 2 > External Merge Sort

External Merge Sort Algorithm (2-way sort)

Example: Main Memory
e 3 Buffer pages
e 6-page file Buffer
Fl
Orange file F, | [] [] []
= unsorted

1. Split into chunks small enough to sort in memory

Lecture 11 > Section 2 > External Merge Sort

External Merge Sort Algorithm (2-way sort)

Example: Main Memory
e 3 Buffer pages
e 6-page file Buffer
Fl
Orange file F, | [] [] []
= unsorted

1. Split into chunks small enough to sort in memory

Lecture 11 > Section 2 > External Merge Sort

External Merge Sort Algorithm (2-way sort)

Example: Main Memory
e 3 Buffer pages
e 6-page file Buffer

.

Each sorted
file is a F, 3,1 | [] [] []

called a run

And similarly for F,

1. Split into chunks small enough to sort in memory

Lecture 11 > Section 2 > External Merge Sort

External Merge Sort Algorithm (2-way sort)

Example: e Main Memory
e 3 Buffer pages <
e 6-page file Buffer
.
d L

2. Now just run the external merge algorithm & we’re done!

Lecture 11 > Section 2 > External Merge Sort

Calculating |10 Cost

For 3 buffer pages, 6 page file:

1. Split into two 3-page files and sort in memory
1. =1R+1W foreach file=2*(3 + 3) =12 10 operations

2. Merge each pair of sorted chunks using the external merge
algorithm
1. =2*(3+3)=1210 operations

3. Total cost=2410

Lecture 11 > Section 2 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

Assume we still
only have 3 buffer
pages (Buffer not

10,12 § 31,33 | 44,55 .
10,12 | 31,33] 44,55 pictured)

Lecture 11 > Section 2 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

.
l|i||

10,12 § 31,33 § 47,55

41,3 § 18,22 | 23,20
42,46 || 31,33 [39,55
1,3 [18,23 | 24,27

10,12 | 48,33 § 44,40

1. Split into files small enough to
sort in buffer...

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Lecture 11 > Section 2 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

DSk
< —-

10,12

3,18

31,33

1,3

10,12

31,33

20,22

3

1

3

9,42

8,23

3,40

44,55

s

47,55

23,41

46,55

24,27

44,48

1. Split into files small enough to
sort in buffer... and sort

Call each of these
sorted files a run

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

Lecture 11 > Section 2 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

2 T O

10,12 | 18,24 | 27,31

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

2. Now merge
pairs of (sorted)
files... the
resulting files
will be sorted!

Lecture 11 > Section 2 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

Assume we still
only have 3 buffer
pages (Buffer not
pictured)

3,18 3. And repeat...
Call each of these
steps a pass

Lecture 11 > Section 2 > External Merge Sort: Larger files

Running External Merge Sort on Larger Files

18,24 || 27,38 | 43,45 33,38 || 43,44 | 45,55 18,20 | 22,23 | 24,27 12,12 | 12,16 | 18,18
10,12 | 31,33 | 47,55 12,18 | 20,22 31,31 | 33,33 | 38,41 18,18 | 20,22 | 22,23

4. And repeat!

Lecture 11 > Section 2 > External Merge Sort: Larger files

Simplified 3-page Buffer Version

Unsorted input file
Assume for simplicity that we split an N-page file into N

single-page runs and sort these; then: [J

@ Split & sort
* First pass: Merge N/2 pairs of runs each of length 1 page

cJcJcJC]
* Second pass: Merge N/4 pairs of runs each of length 2 Merge

pages [) (]
Merge

* In general, for N pages, we do [log, N| passes [)

e +1 for the initial split & sort
Sorted!

* Each pass involves reading in & writing out all the pages =
2N IO

- 2N*(|log, N|+1) total IO cost!

Lecture 11 > Section 2 > Optimizations for sorting

Using B+1 buffer pages to reduce # of passes

Suppose we have B+1 buffer pages now; we can:

1. Increase length of initial runs. Sort B+1 at a time!

At the beginning, we can split the N pages into runs of length B+1 and sort
these in memory

|O Cost:

2N ([log, N| + 1) » 2N [1 N }+1
82 (082511)

Starting with runs Starting with runs of

of length 1 length B+1

Lecture 11 > Section 2 > Optimizations for sorting

Using B+1 buffer pages to reduce

Suppose we have B+1 buffer pages now; we can:

2. Perform a B-way merge.

of passes

On each pass, we can merge groups of B runs at a time (vs. merging pairs

of runs)!

|0 Cost:

2N([log, N|+1) = 2N [1 N }+1 > 2N [1 N }+1
82 (ngB+1) (OgBB+1)

Starting with runs Starting with runs of Performing B-way

of length 1 length B+1 merges

Lecture 11 > Section 2 > Optimizations for sorting

Repacking

Lecture 11 > Section 2 > Optimizations for sorting

Repacking for even longer initial runs

* With B+1 buffer pages, we can now start with B+1-length initial runs
(and use B-way merges) to get ZN([logB %} + 1) 10 cost...

* Can we reduce this cost more by getting even longer initial runs?

* Use repacking- produce longer initial runs by “merging” in buffer as
we sort at initial stage

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

e Start with unsorted single input file, and load 2 pages

Disk

Main Memory

Buffer

L

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

Also keep track of
* Take the minimum two values, and put in output page max (last) value in

. current run...
Disk

Main Memory m=12

Buffer

CIC)

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Next, repack

Disk

Main Memory m=12

Buffer

| e

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Next, repack, then load another page and continue!

Disk

Main Memory

m=33

Buffer

. e

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Now, however, the smallest values are less than the largest (last) in
the sorted run...

Disk
< Viain Memory .

Fy 3 08 Buffer
g (-

We call these values frozen because
we can’t add them to this run...

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Now, however, the smallest values are less than the largest (last) in

Disk

the sorted run...

Main Memory m=55

3,08 Buffer

|| | = |

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Now, however, the smallest values are less than the largest (last) in

Disk

the sorted run...

Main Memory m=55

Buffer

Co L JC]

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Now, however, the smallest values are less than the largest (last) in

Disk

the sorted run...

Main Memory m=55

Buffer

C L JC=)

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Once all buffer pages have a frozen value, or input file is empty, start
new run with the frozen values

Main Memory m=0

Buffer

LI ..

Lecture 11 > Section 2 > Optimizations for sorting

Repacking Example: 3 page buffer

* Once all buffer pages have a frozen value, or input file is empty, start
new run with the frozen values

Disk

Main Memory m=0

Buffer

CJC

Lecture 11 > Section 2 > Optimizations for sorting

Repacking

* Note that, for buffer with B+1 pages:
* |f input file is sorted = nothing is frozen = we get a single run!

* If input file is reverse sorted (worst case) = everything is frozen - we get runs of
length B+1

* |n general, with repacking we do no worse than without it!

 What if the file is already sorted?

* Engineer’s approximation: runs will have ~2(B+1) length

~2N(|logg + 1)

2(B + 1)

Lecture 11

Summary

 Basics of 10 and buffer management.

* We introduced the |0 cost model using sorting.
* Saw how to do merges with few |Os,
* Works better than main-memory sort algorithms.

e Described a few optimizations for sorting

