
Lecture	10:
Buffer	Manager	and	File	

Organization

Lecture	10



Today’s	Lecture

1. Recap:	Buffer	Manager

2. Replacement	Policies

3. Files	and	Records

2

Lecture	10



1. Buffer	Manager

3

Lecture	10		>		Section	1



What	you	will	learn	about	in	this	section

1. Buffer	Pool

2. Buffer	Manager

4

Lecture	10		>		Section	1



The	Buffer	(Pool)

Lecture	10		>		Section	1

Disk

Main	Memory

Buffer	(Pool)
• A	buffer is	a	region	of	physical	memory	
used	to	store	temporary	data

• In	this	lecture:	a	region	in		main	
memory	used	to	store	intermediate	
data	between	disk	and	processes

• Key	idea:	Reading	/	writing	to	disk	is	slow-
need	to	cache	data!



6

• Data	must	be	in	RAM	for	DBMS	to	operate	on	it!
• Can’t	keep	all	the	DBMS	pages	in	main	memory

• Buffer	Manager:	Efficiently	uses	main	memory
• Memory	divided	into	buffer	frames:	slots	for	holding	disk	pages

Upper	levels:
• release	pages	
when	done

• indicate	if	a
page	is	modified

DB

MAIN	MEMORY

DISK

disk	page

free	frame

Page	Requests	from	Higher	Levels
BUFFER	POOL

choice	of	frame	dictated
by	the	replacement	policy

Buffer	Management	in	a	DBMS

Lecture	10		>		Section	1



7

Buffer	Manager

Lecture	10		>		Section	1

• Bookkeeping	per	frame:
• Pin	count	:	#	users	of	the	page	in	the	frame
• Pinning :	Indicate	that	the	page	is	in	use
• Unpinning :	Release	the	page,	and	also	indicate	if	the	
page	is	dirtied

• Dirty	bit :	Indicates	if	changes	must	be	propagated	to	disk

2	requestors	want	to	modify	
the	same	page?
Handled	by	the	concurrency	control	
manager	(using	locks)



8

Buffer	Manager

Lecture	10		>		Section	1

•When	a	Page	is	requested:
• In	buffer	pool	->	return	a	handle	to	the	frame.	Done!
• Increment	the	pin	count

• Not	in	the	buffer	pool:
• Choose	a	frame	for	replacement
(Only	replace	pages	with	pin	count	==	0)

• If	frame	is	dirty,	write	it	to	disk
• Read	requested	page	into	chosen	frame
• Pin	the	page	and	return	its	address

Can	you	tell	the	#	current	users	
of	a	page	in	the	BP?
Pin	Count!



2. Replacement	Policies

9

Lecture	10		>		Section	2



What	you	will	learn	about	in	this	section

1. Replacement	Policy

2. LRU	and	Clock

3. Sequential	Flooding

10

Lecture	10		>		Section	2



• How	do	we	choose	a	frame	for	replacement?
• LRU	(Least	Recently	Used)
• Clock
• MRU	(Most	Recently	Used)
• FIFO,	random,	…

• The	replacement	policy	has	big	impact	on	#	of	I/O’s	
(depends	on	the	access	pattern)

11

Buffer	replacement	policy

Lecture	10		>		Section	2



12

LRU

Lecture	10		>		Section	2

• uses	a	queue of	pointers	to	frames	that	have	pin	count	=	0

• a	page	request	uses	frames	only	from	the	head of	the	queue

• when	a	the	pin	count	of	a	frame	goes	to	0,	it	is	added	to	the	end	of	
the	queue



13

LRU	Example

Lecture	10		>		Section	2

Buffer	pool	
with	4	frames



14

LRU	Example

Lecture	10		>		Section	3



15

LRU	Example

Lecture	10		>		Section	2



16

LRU	Example

Lecture	10		>		Section	2



17

LRU	Example

Lecture	10		>		Section	2

Which	page	is
evicted	next?



18

LRU	Example

Lecture	10		>		Section	2



19

Clock

Lecture	10		>		Section	2

• Variant	of	LRU	with	lower	memory	overhead
• The	N frames	are	organized	into	a	cycle
• Each	frame	has	a	referenced	bit	that	is	set	to	1	when	pin	count	
becomes	0

• A	current	variable	points	to	a	frame
• When	a	frame	is	considered:

• If	pin	count	>	0,	increment	current
• If	referenced	=	1,	set	to	0	and	increment
• If	referenced	=	0	and	pin	count	=	0,	choose	the	page



20

Clock	Example

Lecture	10		>		Section	2

Referenced	bit



21

Clock	Example

Lecture	10		>		Section	2



22

Clock	Example

Lecture	10		>		Section	2



23

Clock	Example

Lecture	10		>		Section	2



24

Clock	Example

Lecture	10		>		Section	2



25

Clock	Example

Lecture	10		>		Section	2



26

Clock	Example

Lecture	10		>		Section	2



27

Clock	Example

Lecture	10		>		Section	2



28

Clock	Example

Lecture	10		>		Section	2



29

Clock	Example

Lecture	10		>		Section	2



30

Clock	Example

Lecture	10		>		Section	2



31

Clock	Example

Lecture	10		>		Section	2



32

Clock	Example

Lecture	10		>		Section	2



33

Clock	Example

Lecture	10		>		Section	2



34

Sequential	Flooding

Lecture	10		>		Section	2

• Nasty	situation	caused	by	LRU	policy	+	repeated	sequential	scans
• #	buffer	frames	<	#	pages	in	file	
• each	page	request	causes	an	I/O	!!
• MRU	much	better	in	this	situation



35

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop



36

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop



37

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop



38

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop



39

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop



40

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop



41

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop



42

Sequential	Flooding	Example

Lecture	10		>		Section	2

Nested	Loop

LRU	happens	to	evict	
exactly	the	page	which	we	

will	need	next!!!	



43

Sequential	Flooding

Lecture	10		>		Section	2

• Nasty	situation	caused	by	LRU	policy	+	repeated	sequential	scans
• #	buffer	frames	<	#	pages	in	file	
• each	page	request	causes	an	I/O	!!
• MRU	much	better	in	this	situation



3. Files	and	Records

44

Lecture	10		>		Section	3



What	you	will	learn	about	in	this	section

1. File	Organization

2. Page	Organization

3. BONUS:	Column	Stores

45

Lecture	10		>		Section	3



Managing	Disk	Space

46

Lecture	10		>		Section	3

Page	or	block	is	OK	for	I/O,	but	
higher	levels	operate	on	records,	and	files	of	records.

• The	disk	space	is	organized	into	files

• Files	are	made	up	of	pages

• Pages	contain	records



File	Operations	

47

Lecture	10		>		Section	3

• The	disk	space	is	organized	into	files

• Files	are	made	up	of	pages

• Pages	contain	records

File	operations:

• insert/delete/modify	record
• read	a	particular	record	(specified	using	the	record	id)
• scan	all	records	(possibly	with	some	conditions	on	the	
records	to	be	retrieved)



File	Organization:	Unordered	(Heap)	Files

48

Lecture	10		>		Section	3

• Simplest	file	structure	contains	records	in	no	particular	order.

• As	file	grows	and	shrinks,	disk	pages	are	allocated	and	de-allocated.
• To	support	record	level	operations,	we	must:

• keep	track	of	the	pages in	a	file: page	id	(pid)
• keep	track	of	free	space	on	pages
• keep	track	of	the	records on	a	page:	record	id	(rid)
• Many	alternatives	for	keeping	track	of	this	information

• Operations:	create/destroy	file,	insert/delete	record,	fetch	a	record	
with	a	specified	rid,	scan	all	records



Heap	File	as	a	List

49

Lecture	10		>		Section	3

Header
Page

Data
Page

Data
Page

Data
Page

Full	pages

Data
Page

Data
Page

Data
Page

Pages	with	free	space

• (heap	file	name,	header	page	id)	
recorded	in	a	known	location
• Each	page	contains	two	pointers plus	
data:	Pointer	=	Page	ID	(pid)
• Pages	in	the	free	space	list	have	
“some”	free	space

Q:	What	happens	with	variable	length	records?

A:	All	pages	are	going	to	have	free	space,	but	
maybe	we	will	have	to	go	through	a	lot	of	them	

before	we	find	one	with	enough	space.



Heap	File	as	a	Page	Directory

50

Lecture	10		>		Section	3

• Each	entry	for	a	page	keeps	track	of:
• is	the	page	free	or	full?
• how	many	free	bytes	are?

• We	can	now	locate	pages	for	new	tuples	faster!

Data
Page	N

Data
Page	2

Data
Page	1

…

Header	page

DIRECTORY



Managing	Disk	Space

51

Lecture	10		>		Section	3

• Files	made	up	of	pages

• and	pages	contain	records

• But	file	operations	are	on	records:

File	operations:

• insert/delete/modify	record
• read	a	particular	record	(specified	using	the	record	id)
• scan	all	records	(possibly	with	some	conditions	on	the	
records	to	be	retrieved)



Page	Organization:	Page	Formats

52

Lecture	10		>		Section	3

• A	page	is	collection	of	records

• Slotted	page	format
• A	page	is	a	collection	of	slots
• Each	slot	contains	a	record

• rid	=		<page	id,	slot	number>

• There	are	many	slotted	page	organizations

• We	need	to	have	support	for:
• search,	insert,	delete	records	on	a	page



53

Slot	1
Slot	2

Slot	N

.	.	.

N

PACKED

Free
Space

number	
of	records

Page	Formats:	Fixed	Length	Records

Lecture	10		>		Section	3

Packed	organization: N records	are	
always	stored	in	the	first	N slots.

Moving	records	changes	rid!		
May	not	be	acceptable.

Record	id	=	<page	id,	slot	#>



54

Page	Formats:	Fixed	Length	Records

Lecture	10		>		Section	3

Unpacked	Organization: use	a	
bitmap to	locate	records	in	the	
page.

Record	id	=	<page	id,	slot	#>

Free
Space .	.	.

M10.	.	.
M		...				3		2		1

UNPACKED,	BITMAP

Slot	1
Slot	2

Slot	N

Slot	M

11

number
of	slots



55

Page	Formats:	Variable	Length	Records

Lecture	10		>		Section	3

Book-keeping0, 
70

-1,
0

560,
90

-1, 
0

120,
40 670, 

50
012345

Slot directory
Free Space
Pointer

• Directory	grows	backwards!
• Move	records	on	same	page;	

rid	unchanged!	Good	for	
fixed-length	records	too.

Rid=?Rid= (11, 1)
Page num = 11

Delete a record? Slot Entry: Offset, 
record 
length Number of slots



56

Page	Formats:	Variable	Length	Records

Lecture	10		>		Section	3

• Deletion:	
• offset	is	set	to	-1

• Insertion:
• use	any	available	slot
• if	no	space	is	available,	reorganize

• rid remains	unchanged	when	we	move	the	record	(since	it	is	defined	
by	the	slot	number)



57

Page	Formats:	Variable	Length	Records

Lecture	10		>		Section	3

Book-keeping0, 
70

-1,
0

560,
90

-1, 
0

120,
40 670, 

50
012345

Slot directory
Free Space
Pointer

• Directory	grows	backwards!
• Move	records	on	same	page;	

rid	unchanged!	Good	for	
fixed-length	records	too.

Rid=?Rid= (11, 1)
Page num = 11

Delete a record
Offset is set to -1

Slot Entry: Offset, 
record 
length Number of slots



58

• All	records	on	the	page	are	the	same	length
• Information	about	field	types	same	for	all	records	in	a	
file;	stored	in	system catalogs.

Base	address	(B)

L1 L2 L3 L4

F1 F2 F3 F4

Address	=	B+L1+L2

Record	Formats:	Fixed	Length

Lecture	10		>		Section	3



59

Two	alternative	formats	(#	fields	is	fixed):

Array	of	
Offsets

4 $ $ $ $

Field
Count

F1																				F2																			F3																				F4

Field	delimiter	
(special	symbol)

n Second	alternative	offers	direct	access	to	i’th field
n Efficient	storage	of	nulls	
n Small	directory	overhead.	

n Issues	with	growing	records!	
n changes	in	attribute	value,	add/drop	attributes

n Records	larger	than	pages

Record	Formats:	Variable	Length

Lecture	10		>		Section	3

Use	an	array	of	integer	
offsets	in	the	beginning



Column	Stores:	Motivation

• Consider	a	table:	
• Foo	(a	INTEGER,	b	INTEGER,	c	VARCHAR(255),	…)

• And	the	query`:	
• SELECT	a FROM	Foo	WHERE	a	>	10

• What	happens	with	the	previous	record	format	in	terms	of	the	bytes	
that	have	to	be	read	from	the	IO	subsystem?

60

Lecture	10		>		Section	3



• Store	data	“vertically”
• Contrast	that	with	a	“row-store”	that	stores	all	the	
attributes	of	a	tuple/record	contiguously
• The	previous	record	formats	are	“row	stores”

61

111 212 It	was	a	cold	morning
222 222 Warm	and	sunny	here
333 232 Artic	winter	conditions
444 242 Tropical	weather

111 212 It	was	a	cold	morning
222 222 Warm	and	sunny	here
333 232 Artic	winter	conditions
444 242 Tropical	weather

File	1 File	2 File	3

Column	Stores:	Motivation

Lecture	10		>		Section	3

Each	file	is	a	set	of	pages.	
Columns	can	be	stored	in	compressed	form



• Are	there	any	disadvantages	associated	with	column	stores?

62

1. Updates	are	slower

2. Retrieving	back	more	than	one	attribute	can	be	slower,	e.g.	Queries	
like	SELECT	*	are	slower

Column	Stores:	Motivation

Lecture	10		>		Section	3


