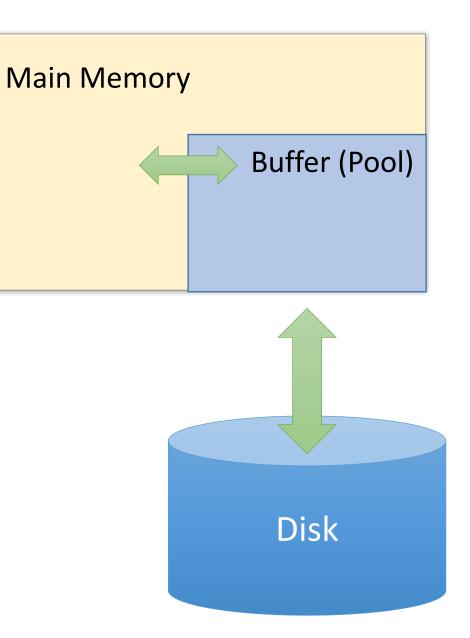
Lecture 10: Buffer Manager and File Organization

Today's Lecture

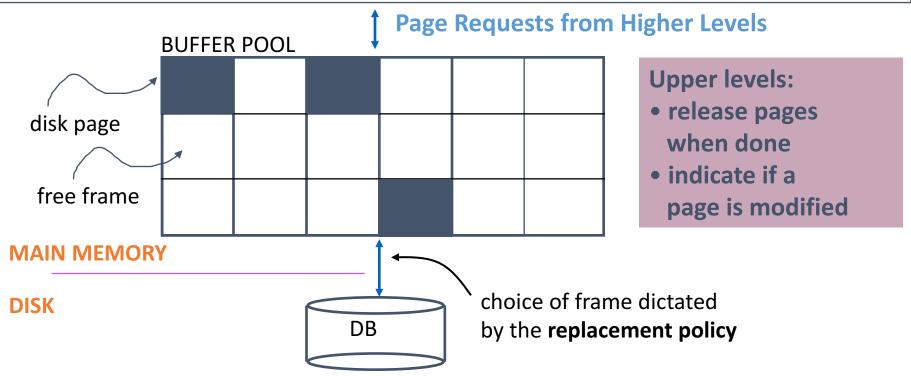
- 1. Recap: Buffer Manager
- 2. Replacement Policies
- 3. Files and Records

Lecture 10 > Section 1


1. Buffer Manager

What you will learn about in this section

- 1. Buffer Pool
- 2. Buffer Manager


The Buffer (Pool)

- A <u>buffer</u> is a region of physical memory used to store *temporary data*
 - In this lecture: a region in main memory used to store intermediate data between disk and processes
- *Key idea:* Reading / writing to disk is slowneed to cache data!

Buffer Management in a DBMS

- Data must be in RAM for DBMS to operate on it!
 - Can't keep all the DBMS pages in main memory
- Buffer Manager: Efficiently uses main memory
 - Memory divided into **buffer frames**: slots for holding disk pages

Buffer Manager

• Bookkeeping per frame:

2 requestors want to modify the same page? Handled by the concurrency control manager (using locks)

- *Pin count* : # users of the page in the frame
 - *Pinning* : Indicate that the page is in use
 - Unpinning : Release the page, and also indicate if the page is dirtied
- **Dirty bit** : Indicates if changes must be propagated to disk

Buffer Manager

- When a Page is requested:
 - In buffer pool -> return a handle to the frame. Done!
 - Increment the pin count
 - Not in the buffer pool:
 - Choose a frame for *replacement*

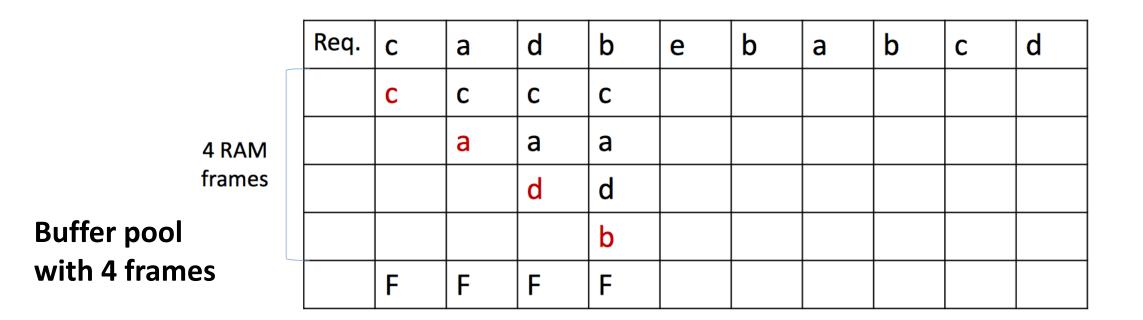
(Only replace pages with pin count == 0)

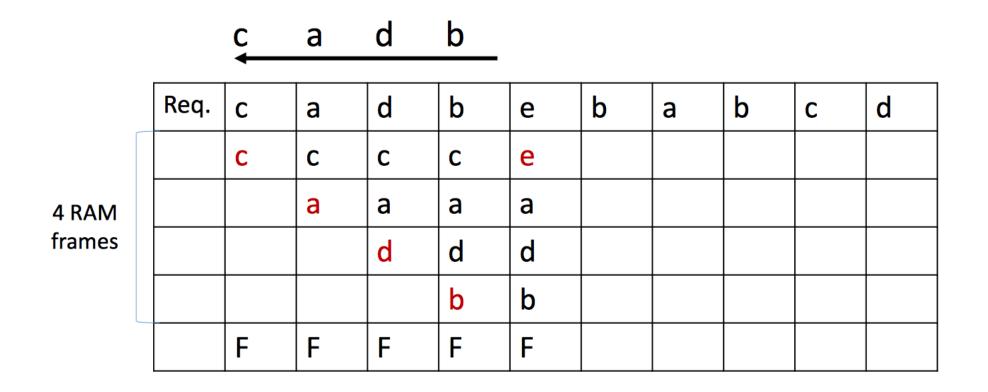
- If frame is dirty, write it to disk
- Read requested page into chosen frame
- Pin the page and return its address

Can you tell the # current users of a page in the BP? Pin Count! *Lecture 10 > Section 2*

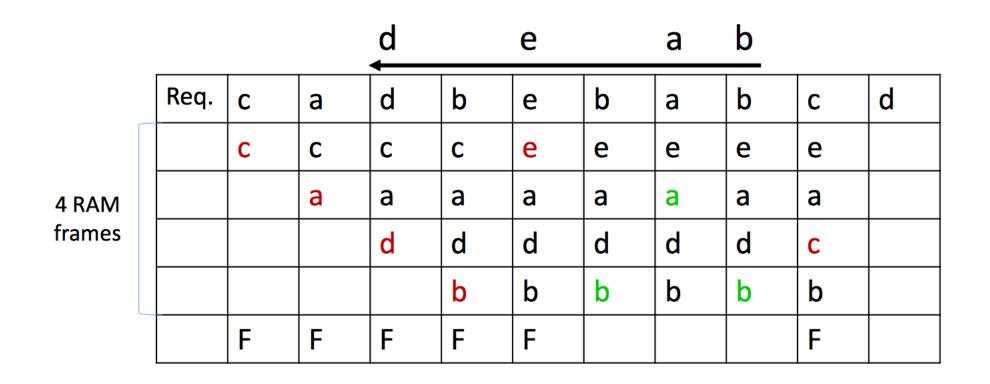
2. Replacement Policies

What you will learn about in this section


- 1. Replacement Policy
- 2. LRU and Clock
- 3. Sequential Flooding


Buffer replacement policy

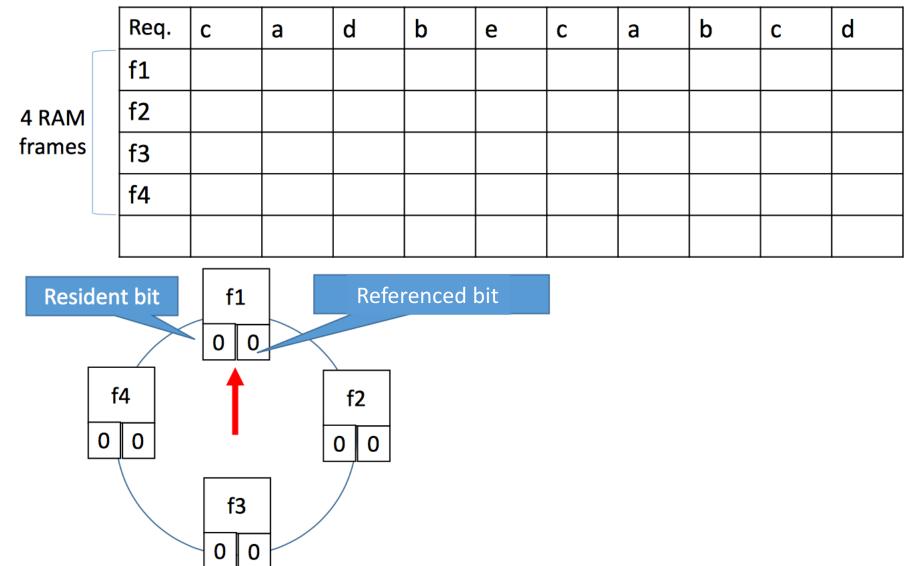
- How do we choose a frame for replacement?
 - LRU (Least Recently Used)
 - Clock
 - MRU (Most Recently Used)
 - FIFO, random, ...
- The replacement policy has big impact on # of I/O's (depends on the access pattern)


LRU

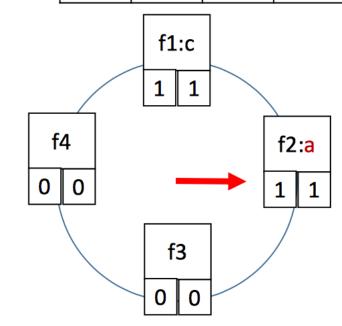
- uses a queue of pointers to frames that have pin count = 0
- a page request uses frames only from the *head* of the queue
- when a the pin count of a frame goes to 0, it is added to the *end* of the queue

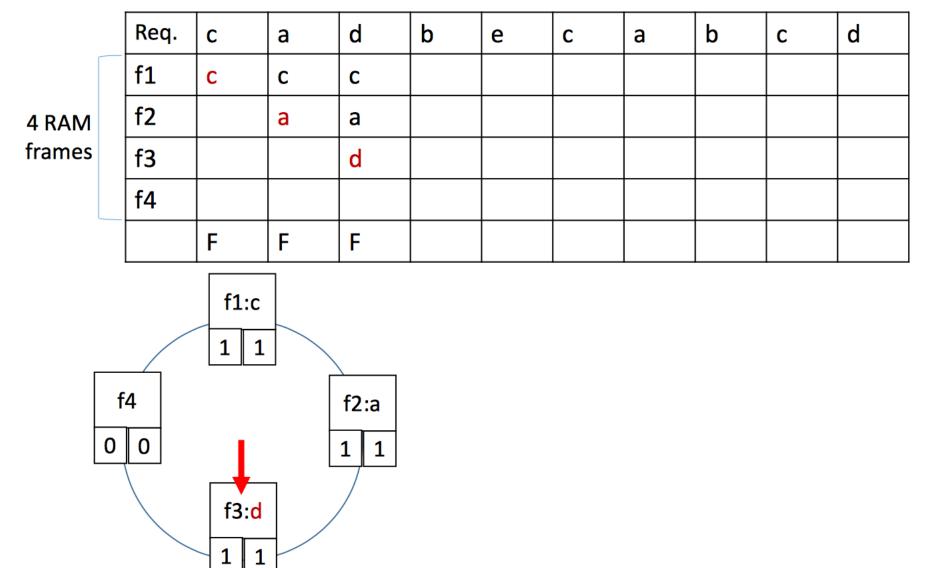
4 RAM frames	Req.	С	а	d	b	е	b	а	b	С	d
		С	С	С	С	е	е	е	е		
			а	а	а	а	а	а	а		
				d	d	d	d	d	d		
					b	b	b	b	b		
		F	F	F	F	F					

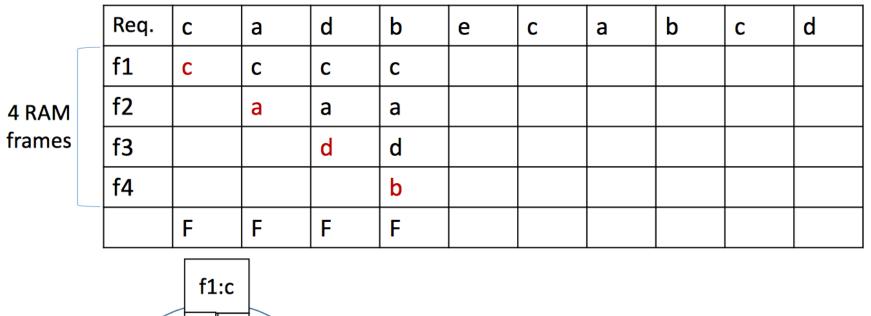
Which page is evicted next?

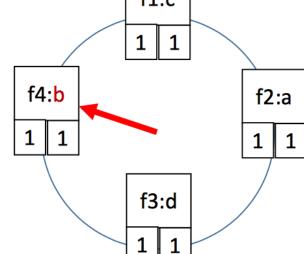

4 RAM frames	Req.	С	а	d	b	е	b	а	b	С	d
		С	С	С	С	е	е	е	е	е	
			а	а	а	а	а	а	а	а	
				d	d	d	d	d	d	С	
					b	b	b	b	b	b	
		F	F	F	F	F				F	

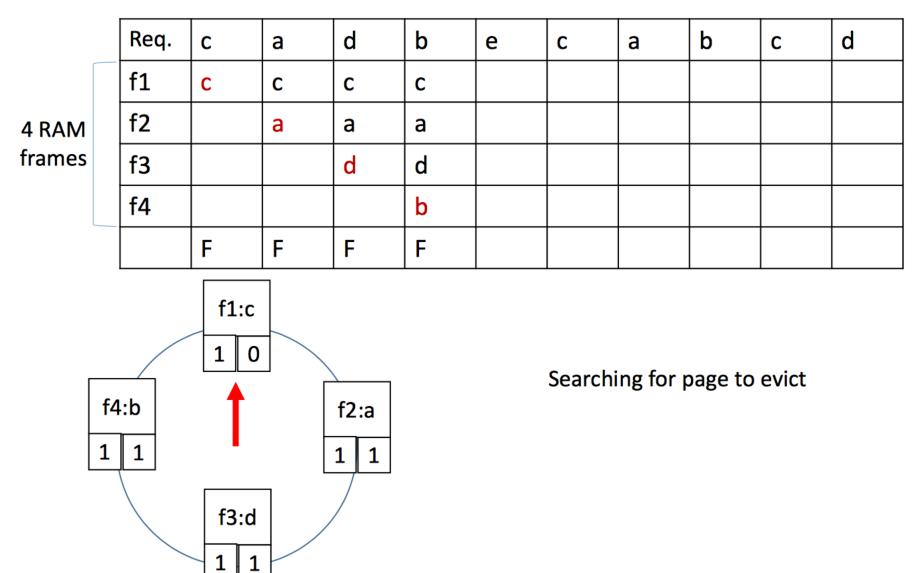
7 page faults for 10 requests

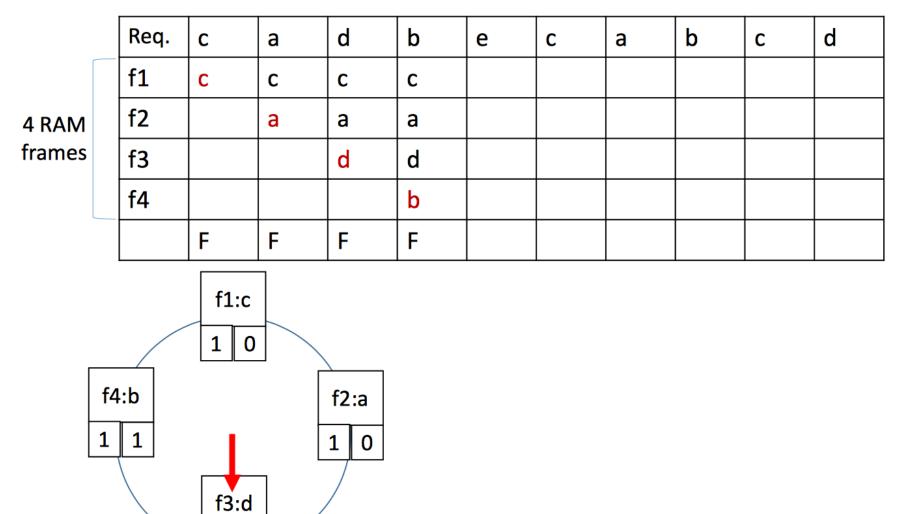

Clock

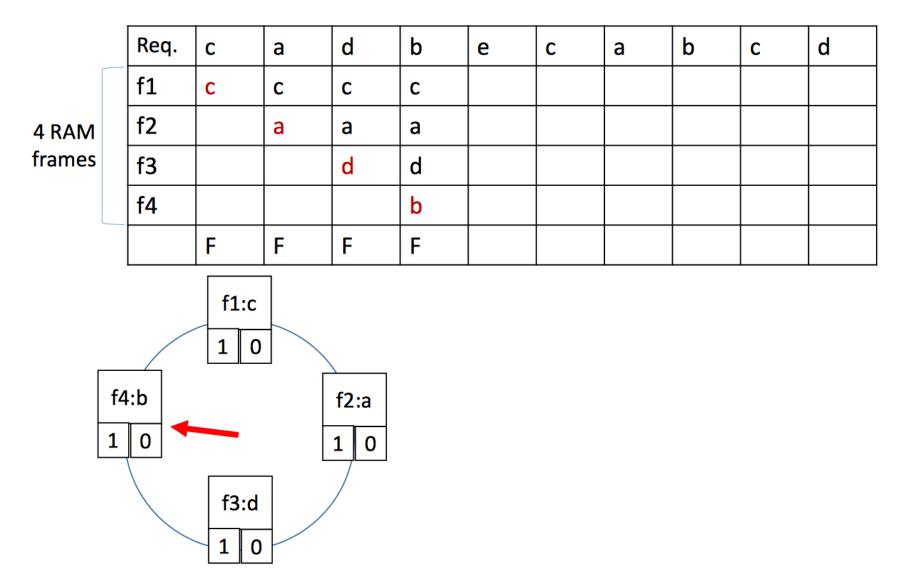

- Variant of LRU with lower memory overhead
- The *N* frames are organized into a cycle
- Each frame has a referenced bit that is set to 1 when pin count becomes 0
- A current variable points to a frame
- When a frame is considered:
 - If pin count > 0, increment current
 - If referenced = 1, set to 0 and increment
 - If referenced = 0 and pin count = 0, choose the page

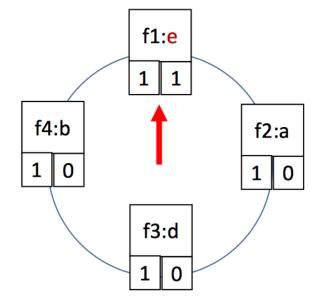


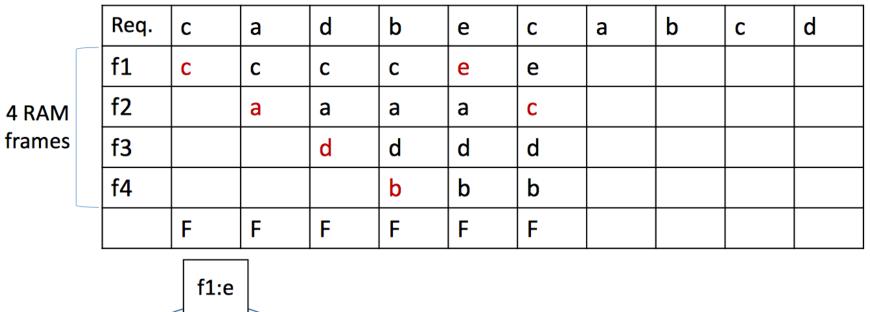

Clock Example Req. С d b b d а е С а С f1 С f2 4 RAM frames f3 f4 F f1:c 1 | 1 f4 f2 0 0 0 0 f3 0 0

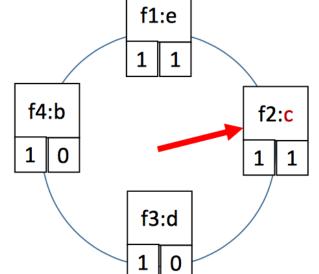

	Req.	с	а	d	b	е	С	а	b	С	d
4 RAM frames	f1	С	С								
	f2		а								
	f3										
	f4										
		F	F								



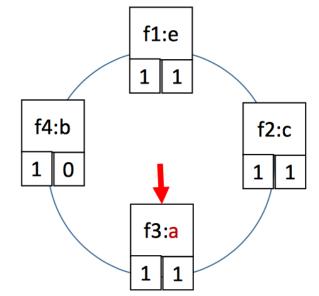



1 0

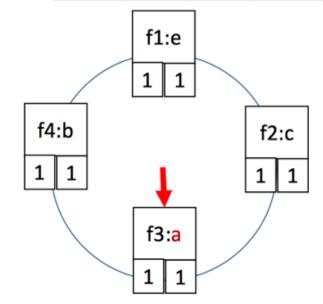

4 RAM frames	Req.	с	а	d	b	е	С	а	b	С	d
	f1	С	с	С	с	е					
	f2		а	а	а	а					
	f3			d	d	d					
	f4				b	b					
		F	F	F	F	F					

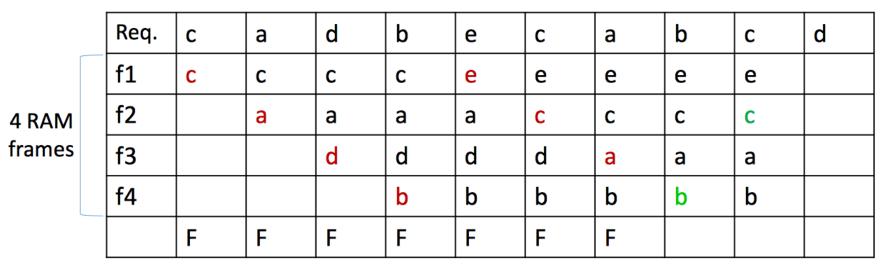

-

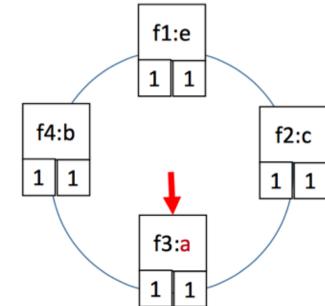
Evicted page c



Evicted page a

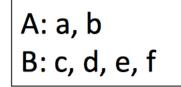

4 RAM frames	Req.	с	а	d	b	е	с	а	b	с	d
	f1	С	с	с	с	е	е	е			
	f2		а	а	а	а	С	с			
	f3			d	d	d	d	а			
	f4				b	b	b	b			
		F	F	F	F	F	F	F			


Evicted page d



4 RAM frames	Req.	с	а	d	b	е	с	а	b	С	d
	f1	С	С	С	С	е	е	е	е	е	
	f2		а	а	а	а	С	с	С	С	
	f3			d	d	d	d	а	а	а	
	f4				b	b	b	b	b	b	
		F	F	F	F	F	F	F			

We know that c is in buffer


Where does *d* go:

- A: frame 1
- B: frame 2
- C: frame 3
- D: frame 4

Sequential Flooding

- Nasty situation caused by LRU policy + repeated sequential scans
 - # buffer frames < # pages in file
 - each page request causes an I/O !!
 - MRU much better in this situation

Sequential Flooding Example

	req.	а	а	а	а	b	b	b	b
3 frames									
for A - enough									
3	req.	с	d	е	f	С	d	е	f
frames for B									
< B									

Nested Loop

for each record *i* in A for each record *j* in B

do something with *i* and *j*

Sequential Flooding Example

A: a, b	
B: c, d, e, f	

	req.	а	а	а	а	b	b	b	b
3		а	а	а					
frames for A -									
enough									
		F							
	req.	С	d	е	f	С	d	е	f
3 frames		С	с	С					
for B			d	d					
< B				е					
		F	F	F					

Nested Loop

for each record i in A for each record j in B do something with i and j

A: a, b	
B: c, d, e, f	

Nested Loop

	req.	а	а	а	а	b	b	b	b
3		а	а	а	а				
frames for A -									
enough									
		F							
	req.	с	d	e	f	с	d	е	f
3 frames	-	С	с	с	f				
for B			d	d	d				
< B				е	е				
		F	F	F	F				

Г

Г

Г

for each record i in A
for each record j in B

do something with *i* and *j*

f evicts c

A: a, b B: c, d, e, f	
B: c, d, e, f	

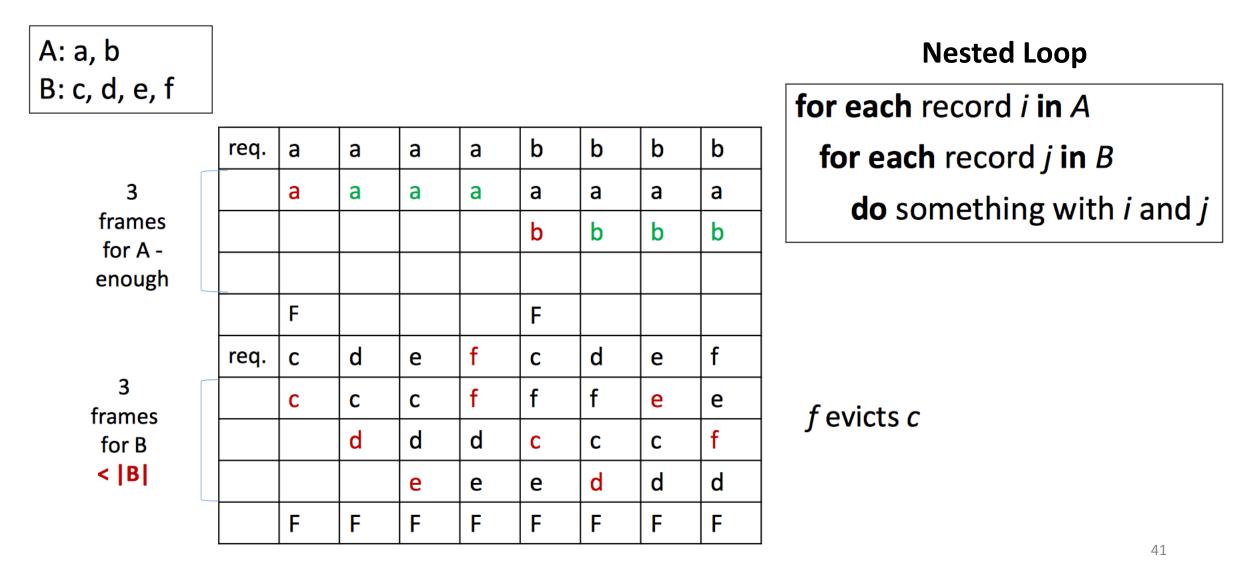
	req.	а	а	а	а	b	b	b	b
3		а	а	а	а	а			
frames for A -						b			
enough									
		F				F			
	req.	с	d	е	f	С	d	е	f
3 frames	-	С	С	С	f	f			
for B			d	d	d	С			
< B				е	е	е			
		F	F	F	F	F			

Nested Loop

for each record i in A
for each record j in B
do something with i and j

c evicts d

A: a, b										Nested Loop
B: c, d, e, f										for each record <i>i</i> in A
	req.	а	а	а	а	b	b	b	b	for each record <i>j</i> in <i>B</i>
3		а	а	а	а	а	а			do something with <i>i</i> and <i>j</i>
frames for A -						b	b			
enough										
		F				F				
	req.	с	d	e	f	с	d	e	f	
3 frames		С	с	с	f	f	f			d evicts e
for B			d	d	d	С	с			u evicis e
				е	е	е	d			
		F	F	F	F	F	F			39


A: a, b	
A: a, b B: c, d, e, f	

	req.	а	а	а	а	b	b	b	b
3		а	а	а	а	а	а	а	
frames for A -						b	b	b	
enough									
		F				F			
	req.	С	d	е	f	С	d	е	f
3 frames		С	С	С	f	f	f	е	
for B			d	d	d	С	С	С	
< B				е	е	е	d	d	
		F	F	F	F	F	F	F	

Nested Loop

for each record i in A for each record j in B do something with i and j

e evicts f

A: a, b	
A: a, b B: c, d, e, f	

	req.	а	а	а	а	b	b	b	b
3 frames		а	а	a	а	а	а	а	а
for A -						b	b	b	b
enough									
		F				F			
3 _	req.	с	d	е	f	С	d	е	f
frames		С	С	С	f	f	f	е	е
for B <			d	d	d	C	С	С	f
				е	е	е	d	d	d
		F	F	F	F	F	F	F	F

Nested Loop

for each record *i* in A

for each record j in B

do something with *i* and *j*

- Sequential flooding
- each request –
 page fault

LRU happens to evict exactly the page which we will need next!!!

Sequential Flooding

- Nasty situation caused by LRU policy + repeated sequential scans
 - # buffer frames < # pages in file
 - each page request causes an I/O !!
 - MRU much better in this situation

Lecture 10 > Section 3

3. Files and Records

What you will learn about in this section

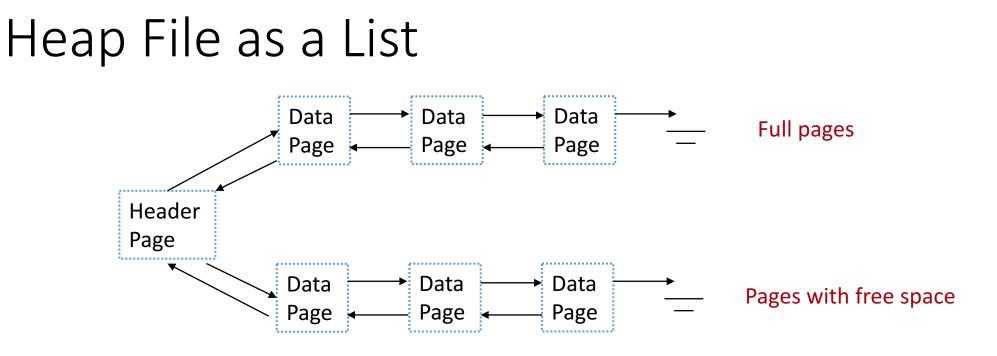
- 1. File Organization
- 2. Page Organization
- 3. BONUS: Column Stores

Managing Disk Space

- The disk space is organized into files
- Files are made up of pages
- Pages contain records

Page or block is OK for I/O, but higher levels operate on *records*, and *files of records*.

File Operations

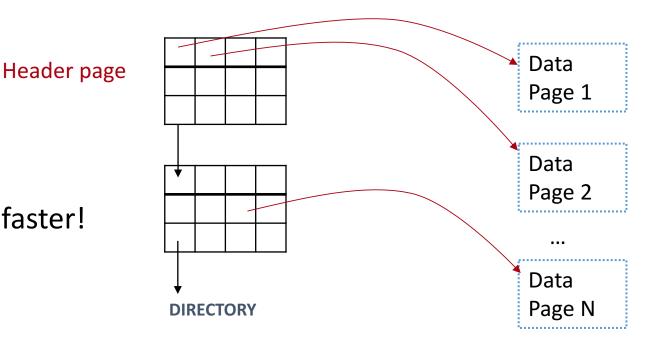

- The disk space is organized into files
- Files are made up of pages
- Pages contain records

File operations:

- insert/delete/modify record
- read a particular record (specified using the *record id*)
- scan all records (possibly with some conditions on the records to be retrieved)

File Organization: Unordered (Heap) Files

- Simplest file structure contains records in no particular order.
- As file grows and shrinks, disk pages are allocated and de-allocated.
- To support record level operations, we must:
 - keep track of the pages in a file: page id (pid)
 - keep track of *free space* on pages
 - keep track of the *records* on a page: record id (rid)
 - Many alternatives for keeping track of this information
- Operations: create/destroy file, insert/delete record, fetch a record with a specified rid, scan all records


- (heap file name, header page id) recorded in a known location
- Each page contains two pointers plus data: Pointer = Page ID (pid)
- Pages in the free space list have "some" free space

Q: What happens with variable length records?

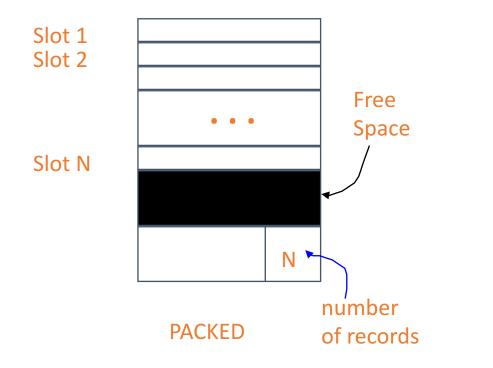
A: All pages are going to have free space, but maybe we will have to go through a lot of them before we find one with enough space.

Heap File as a Page Directory

- Each entry for a page keeps track of:
 - is the page free or full?
 - how many free bytes are?
- We can now locate pages for new tuples faster!

Managing Disk Space

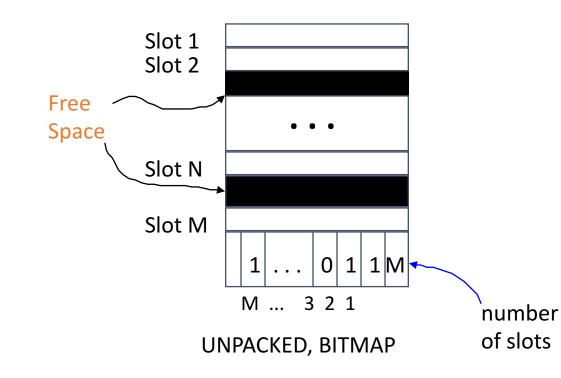
- Files made up of pages
- and pages contain records
- But file operations are on records:


File operations:

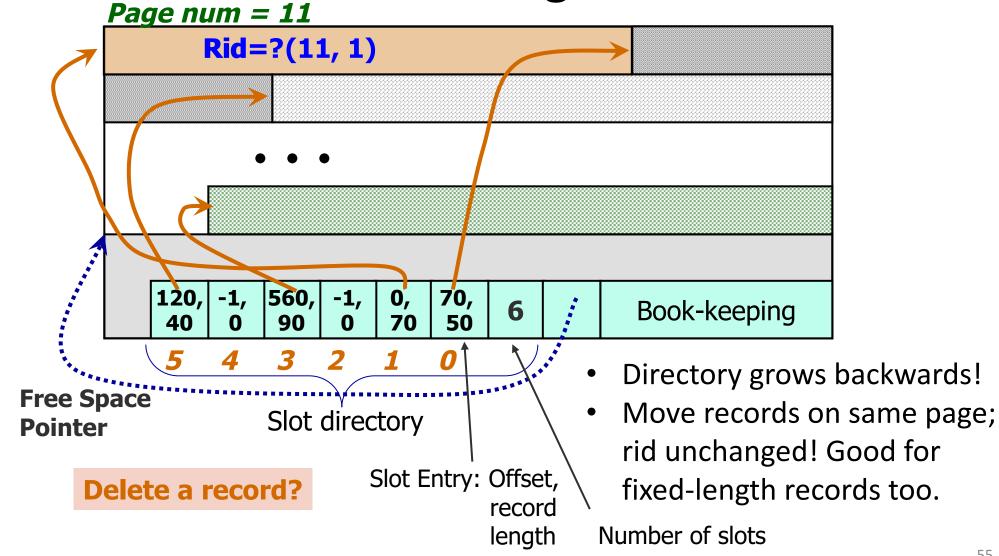
- insert/delete/modify record
- read a particular record (specified using the *record id*)
- scan all records (possibly with some conditions on the records to be retrieved)

Page Organization: Page Formats

- A page is collection of records
- Slotted page format
 - A page is a collection of slots
 - Each slot contains a record
- rid = <page id, slot number>
- There are many slotted page organizations
- We need to have support for:
 - search, insert, delete records on a page

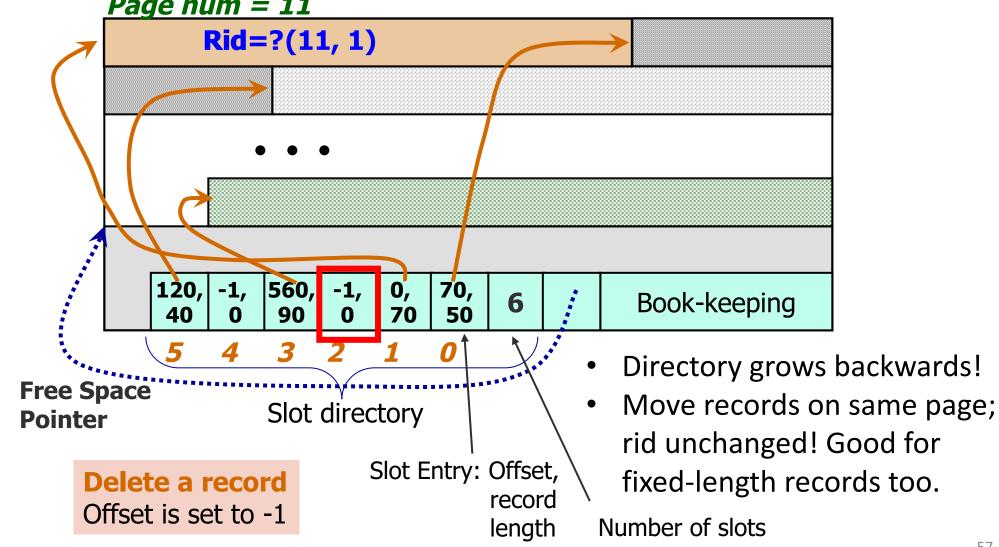

Page Formats: Fixed Length Records Record id = <page id, slot #>

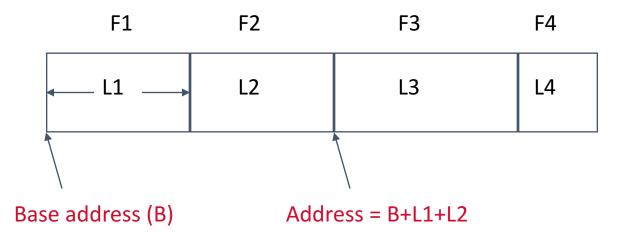
Packed organization: *N* records are always stored in the first *N* slots.


Moving records changes rid! May not be acceptable.

Page Formats: Fixed Length Records Record id = <page id, slot #>

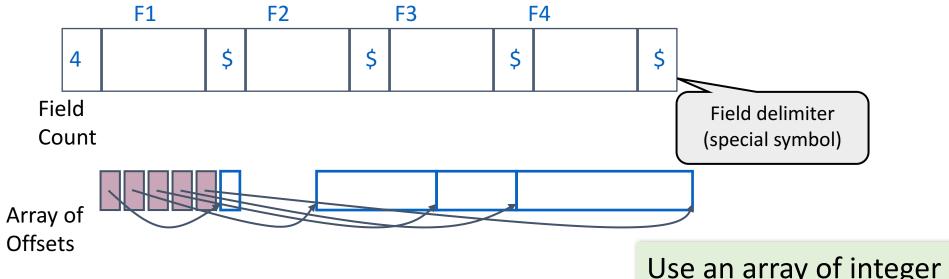
<u>Unpacked Organization</u>: use a *bitmap* to locate records in the page.


Page Formats: Variable Length Records


Page Formats: Variable Length Records

- Deletion:
 - offset is set to -1
- Insertion:
 - use any available slot
 - if no space is available, reorganize
- *rid* remains unchanged when we move the record (since it is defined by the slot number)

Page Formats: Variable Length Records


Record Formats: Fixed Length

- All records on the page are the same length
- Information about field types same for all records in a file; stored in *system catalogs*.

Record Formats: Variable Length

Two alternative formats (# fields is fixed):

- Second alternative offers direct access to i'th field
 - Efficient storage of nulls
 - Small directory overhead.
- Issues with growing records!
 - changes in attribute value, add/drop attributes
- Records larger than pages

Use an array of integer offsets in the beginning

Column Stores: Motivation

- Consider a table:
 - Foo (a INTEGER, b INTEGER, c VARCHAR(255), ...)
- And the query`:
 - SELECT a FROM Foo WHERE a > 10
- What happens with the previous record format in terms of the bytes that have to be read from the IO subsystem?

Column Stores: Motivation

- Store data "vertically"
- Contrast that with a "row-store" that stores all the attributes of a tuple/record contiguously
 - The previous record formats are "row stores"

111	212	It was a cold mor	ning	111	212	It was a cold morning							
222	222	Warm and sunny	here	222	222	Warm and sunny here							
333	232	Artic winter condi	onditions	333	232	Artic winter conditions							
444	242	Tropical weath	er	444	242	Tropical weather							
		•		• • File 1	File 2	File 3							
		Colu	Each file is a set of pages. Columns can be stored in compressed form										

Column Stores: Motivation

- Are there any disadvantages associated with column stores?
 - 1. Updates are slower
 - 2. Retrieving back more than one attribute can be slower, e.g. Queries like SELECT * are slower