
CS	564	Final	Review
The	Best	Of	Collection	(Master	Tracks),	Vol.	2

Final	Review

Course	Announcements

• Last	day	for	course	evaluations	-please	fill	out	J
•We	want	your	feedback	to	improve	the	course!	
•Tell	us	what	you	liked	and	didn’t!
• I	take	every evaluation	very	seriously.

• Project	4	due	today—No	late	days!

2

Final	Review

High-Level:	Lectures	9	- 11

• The	buffer &	simplified	filesystem model

• Shift	to	IO	Aware	algorithms

• The	external	merge	algorithm

Final	Review		>		Lectures	9	- 11

High-level:	Disk	vs.	Main	Memory

Disk:

• Slow: Sequential	block access
• Read	a	blocks	(not	byte)	at	a	time,	so	sequential	access	is	cheaper	

than	random
• Disk	read	/	writes	are	expensive!

• Durable:	We	will	assume	that	once	on	disk,	data	is	safe!

• Cheap 4

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random	Access	Memory	(RAM)	or	Main	Memory:

• Fast: Random	access,	byte	addressable
• ~10x	faster	for	sequential	access
• ~100,000x	faster	for	random	access!

• Volatile: Data	can	be	lost	if	e.g.	crash	occurs,	power	goes	out,	
etc!

• Expensive: For	$100,	get	16GB	of	RAM	vs.	2TB	of	disk!

Final	Review		>		Lectures	9	- 11

The	Buffer

Disk

Main	Memory

Buffer• A	buffer is	a	region	of	physical	memory	used	to	store	
temporary	data

• Key	Idea:	Reading	/	writing	to	disk	is	SLOW,	need	to	cache	
data	in	main	memory

• Can	read into	buffer,	flush back	to	disk,	release from	
buffer

• DBMS	manages	its	own	buffer	for	various	reasons	
(better	control	of	eviction	policy,	force-write	log,	
etc.)

• We	use	a	simplified	model:
• A	page is	a	fixed-length	array	of	memory;	pages	are	the	
unit	that	is	read	from	/	written	to	disk

• A	file	is	a	variable-length	list	of	pages	on	disk

1,0,3 1,0,3File

Page

Final	Review		>		Lectures	9	- 11

1,0,3

IO	Aware

• Key	idea:	Reading	from	/	writing	to	disk- e.g.	IO	operations- is	
thousands	of	times	slower	than	any	operation	in	memory

• àWe	consider	a	class	of	algorithms	which	try	to	minimize	IO,	and	effectively	
ignore	cost	of	operations	in	main	memory

Final	Review		>		Lectures	9	- 11

“IO	aware”	algorithms!

External	Merge	Algorithm

• Goal:	Merge	sorted	files	that	are	much	bigger	than	buffer

• Key	idea:	Since	the	input	files	are	sorted,	we	always	know	which	file	
to	read	from	next!

• Details:

Final	Review		>		Lectures	9	- 11

Given: B+1 buffer	pages
Input: B sorted	files,	F1,…,FB,	where	Fi has	P(Fi)	pages
Output: One	merged	sorted	file
IO	COST: 𝟐 ∗ ∑ 𝑷(𝑭𝒊)𝑩

𝒊*𝟏 (Each	page	is	read	&	written	once)

External	Merge	Sort	Algorithm

• Goal:	Sort	a	file	that	is	much	bigger	
than	the	buffer

• Key	idea:

• Phase	1:	Split	file	into	smaller	chunks	
(“initial	runs”)	which	can	be	sorted	in	
memory

• Phase	2:	Keep	merging	(do	“passes”)	
using	external	merge	algorithm	until	one	
sorted	file!

Final	Review		>		Lectures	9	- 11

Unsorted	input	file

Sorted	initial	runs
Phase	1

Merge	pass

Merge	pass

Sorted!

Phase	2

External	Merge	Sort	Algorithm

Final	Review		>		Lectures	9	- 11

Given: B+1 buffer	pages
Input: Unsorted	file	of	length	N

pages
Output: The	sorted	file
IO	COST:

𝟐𝑵(log𝑩
𝑵

𝑩 + 𝟏 + 𝟏)

Phase 1: Initial	runs	of	length	B+1	are	created
• There	are	 𝑵

𝑩1𝟏
of	these

• The	IO	cost	is	2N

Phase	2:We do	passes	of	B-way	merge	until	
fully	merged

• Need	 log𝑩
𝑵
𝑩1𝟏

passes
• The	IO	cost	is	2N	per	pass

Repacking	Optimization	for	Ext.	Merge	Sort
• Goal:	Create	larger	initial	runs

• Key	Idea:	Keep	loading	unsorted	pages,	writing	out	next-largest	
values,	and	“repacking”	for	as	long	as	possible!

• Guaranteed	to	do	at	least	as	well	as	our	previous	method	of	loading	&	doing	
quicksort

• IO	Cost:	On	average,	we	will	create	initial	runs	of	size	~2(B+1)

𝟐𝑵(log𝑩
𝑵

𝑩 + 𝟏 + 𝟏) 𝟐𝑵(log𝑩
𝑵

𝟐(𝑩 + 𝟏) + 𝟏)

Final	Review		>		Lectures	9	- 11

High-Level:	Lectures	12	- 14

• Indexes	Part	I:	Basics

• B+	Trees	

• Clustered	vs.	unclustered

• Hash	Indexes

Final	Review		>		Lectures	12	- 14

Indexes
• An	index on	a	file	speeds	up	selections	on	the	search	key fields	for	the	
index.

• Where	the	search	key	could	be	any	subset	of	fields,	and	does not need	to	be	the	
same	as	key	of	a	relation

BID Title Author Published Full_text

001 War	and	Peace Tolstoy 1869 …

002 Crime	and	Punishment Dostoyevsky 1866 …

003 Anna	Karenina Tolstoy 1877 …

Published BID

1866 002

1869 001

1877 003

Russian_NovelsBy_Yr_Index

Author Title BID

Dostoyevsky Crime and	Punishment 002

Tolstoy Anna	Karenina 003

Tolstoy War and	Peace 001

By_Author_Title_Index

Final	Review		>		Lecture	12	- 14

An	index	is	covering for	a	specific	query if	the	
index	contains	all	the	needed	attributes

Note	this	is	the	logical	setup,	not	how	data	is	actually	stored!

B+	Tree	Basics

10 20 30 Each	non-leaf	(“interior”)	
node has	≥ d	and	≤	2d	keys*

*except	for	root	node,	which	can	
have	between	1 and	2d	keys

Parameter	d =	the	order

Final	Review		>		Lecture	12	- 14

k	<	10

10	≤ 𝑘	<	20
20	≤ 𝑘	<	30

30	≤ 𝑘 The	n	keys	in	a	node	
define	n+1	ranges	

Non-leaf	or	internal	node

22 25 28

For	each	range,	in	a	non-leaf	node,	there	is	a	
pointer to	another	node	with	keys	in	that	range

B+	Tree	Basics

10 20 30

22 25 28 29

Leaf nodes

32 34 37 38

Non-leaf	or	internal	node

12 17

Name:	John
Age:	21

Name:	Jake
Age:	15

Name:	Bob
Age:	27

Name:	Sally
Age:	28

Name:	Sue
Age:	33

Name:	Jess
Age:	35

Name:	Alf
Age:	37Name:	Joe

Age:	11

Name:	Bess
Age:	22

Name:	Sal
Age:	30

Final	Review		>		Lecture	12	- 14

Leaf	nodes	also	have	between	d	and	
2d	keys,	and	are	different	in	that:

Their	key	slots	contain	
pointers	to	data	records

They	contain	a	pointer	to	
the	next	leaf	node	as	well,	
for	faster	sequential	
traversal

Searching	a	B+	Tree

10 20 30

22 25 28 29 32 34 37 3812 17

Name:	John
Age:	21

Name:	Jake
Age:	15

Name:	Bob
Age:	27

Name:	Sally
Age:	28

Name:	Sue
Age:	33

Name:	Jess
Age:	35

Name:	Alf
Age:	37Name:	Joe

Age:	11

Name:	Bess
Age:	22

Name:	Sal
Age:	30

Final	Review		>		Lecture	12	- 14

SELECT name
FROM people
WHERE age = 27

SELECT name
FROM people
WHERE 27 <= age
AND age <= 35

B+	Tree	Range	Search

• Goal:	Get	the	results	set	of	a	range	(or	exact)	query	
with	minimal	IO

• Key	idea:
• A	B+	Tree	has	high	fanout (d	~=	102-103),	which	means	it	
is	very	shallow	à we	can	get	to	the	right	root	node	within	
a	few	steps!

• Then	just	traverse	the	leaf	nodes	using	the	horizontal	
pointers

• Details:
• One	node	per	page	(thus	page	size	determines	d)
• Fill	only	some	of	each	node’s	slots	(the	fill-factor)	to	leave	
room	for	insertions

• We	can	keep	some	levels	of	the	B+	Tree	in	memory!

Final	Review		>		Lecture	12	- 14

Note	that	exact	search	is	just		a	
special	case	of	range	search	(R	=	1)

The	fanout f is	the	number	of	
pointers	coming	out	of	a	node.		Thus:	

𝑑 + 1 ≤ 𝑓 ≤ 2𝑑 + 1

Note	that	we	will	often	approximate	f	
as	constant	across	nodes!

We	define	the	height of	the	
tree	as	counting	the	root	node.		
Thus,	given	constant	fanout f,	a	
tree	of	height	h can	index	fh
pages	and	has	fh-1 leaf	nodes

B+	Tree	Range	Search

Final	Review		>		Lecture	12	- 14

Given: • Parameter d
• Fill-factor	F
• B	available pages	in	buffer
• A	B+	Tree	over	N pages
• f is	the	fanout [d+1,2d+1]

Input: A	a	range	query.

Output: The	R	values	that	match

IO	COST:

log:
𝑁
𝐹 − 𝐿𝐵 + 𝐂𝐨𝐬𝐭(𝑂𝑢𝑡)

where 𝐵 ≥ ∑ 𝑓𝑙HIJKL*M

Depth	of	the	B+	Tree: For	each	level	of	the	
B+	Tree	we	read	in	one	node	=	one	page

#	of	levels	we	can	fit	in	memory: These
don’t	cost	any	IO!

This	equation	is	just	saying	that	the	sum	of	
all	the	nodes	for	LB levels	must	fit	in	buffer

Clustered	vs.	Unclustered Index
30

22 25 28 29 32 34 37 38

19 22 27 28 30 33 35 37

30

22 25 28 29 32 34 37 38

19 2227 28 3033 3537

Clustered Unclustered

Index	Entries

Data	Records

Final	Review		>		Lecture	12	- 14

1 Random	Access	IO	+	Sequential	IO	
(#	of	pages	of	answers)

Random	Access	IO	for	each	value	
(i.e.	#	of	tuples	in	answer)

Clustered	can	make	a	huge difference	for	range	queries!

Hash	Indexes

Final	Review		>		Lecture	12	- 14

Hash	Index

• A	hash	index	is:
• good	for	equality	search
• not	so	good	for	range	search	(use	tree	indexes	instead)

•An	ideal hash	function	must	be	uniform:	each	bucket	
is	assigned	the	same	number	of	key	values

•A	bad hash	function	maps	all	search	key	values	to	the	
same	bucket

Hash	Indexes

Final	Review		>		Lecture	12	- 14

• A	hash	index	is:
• good	for	equality	search
• not	so	good	for	range	search	(use	tree	indexes	instead)

•An	ideal hash	function	must	be	uniform:	each	bucket	
is	assigned	the	same	number	of	key	values

•A	bad hash	function	maps	all	search	key	values	to	the	
same	bucket

Final	Review		>		Lecture	12	- 14

Static	Hashing

• #	primary	bucket	pages	fixed,	allocated	sequentially,	never	
de-allocated;	overflow	pages	if	needed.

• h(k)	mod	N =	bucket	to	which	data	entry	with key k	belongs.	
(N	=	#	of	buckets)

h(key)	mod	N

h
key

Primary	bucket	pages Overflow	pages

1
0

N-1

Final	Review		>		Lecture	12	- 14

Extendible	Hashing

• Extendible	hashing is	a	type	of	dynamic hashing	

• It	keeps	a	directory	of	pointers	to	buckets

• On	overflow,	it	reorganizes	the	index	by	doubling	the	directory	(and	
not	the	number	of	buckets)

See	examples	in	L14!

High-Level:	Lectures	16-17

• Projection	and	Selection

• Join	Algorithms:
• Nested	Loop	Join	Variants:	NLJ,	BNLJ,	INLJ

• SMJ

• Hash	Join

Final	Review		>		Lectures	18-17

24

Selection

Final	Review		>		Lectures	18-17

access	path =	way	to	retrieve	tuples	from	a	table
• File	Scan

• scan	the	entire	file
• I/O	cost:	O(N),	where	N	=	#pages

• Index	Scan:	
• use	an	index	available	on	some	predicate
• I/O	cost:	it	varies	depending	on	the	index

25

Final	Review		>		Lectures	18-17

Index	Scan	Cost

I/O	cost	for	index	scan
• Hash	index:	O(1)	

• but	we	can	only	use	it	with	equality	predicates
• B+	tree	index:	O(logFN)	+	X

• X	depends	on	whether	the	index	is	clustered	or	not:
• unclustered:	X	=	#	selected	tuples
• clustered:	X	=	(#selected	tuples)/	(#tuples	per	page)

26

Final	Review		>		Lectures	18-17

Index	Matching

• We	say	that	an	index	matches a	selection	predicate	if	the	index	
can	be	used	to	evaluate	it

• Consider	a	conjunction-only	selection.	An	index	matches	(part	
of)	a	predicate	if

• Hash:	only	equality	operation	&	the	predicate	includes	all index	
attributes

• B+	Tree:		the	attributes	are	a	prefix	of	the	search	key	(any	ops	are	
possible)

27

Projection

Final	Review		>		Lectures	18-17

Simple	case:	SELECT R.a, R.d
• scan	the	file	and	for	each	tuple	output	R.a,	R.d

Hard	case:	SELECT DISTINCT R.a, R.d
• project	out	the	attributes	
• eliminate	duplicate	tuples	(this	is	the	difficult	part!)

28

Final	Review		>		Lectures	18-17

Projection:	Sort-based

We	can	improve	upon	the	naïve	algorithm	by	modifying	the	sorting	
algorithm:

1. In	Pass	0 of	sorting,	project	out	the	attributes

2. In	subsequent	passes,	eliminate	the	duplicates	while	merging	the	runs

29

Final	Review		>		Lectures	18-17

Projection:	Hash-based

2-phase	algorithm:

• partitioning	
• project	out	attributes	and	split	the	input	into	B-1	partitions	using	a	
hash	function	h

• duplicate	elimination
• read	each	partition	into	memory	and	use	an	in-memory	hash	table	
(with	a	different hash	function)	to	remove	duplicates

30

Joins:	Example

Example: Returns	all	pairs	of	
tuples	r ∈ 𝑅, 𝑠 ∈ 𝑆	such	that	
𝑟. 𝐴	 = 	𝑠. 𝐴

A D

3 7

2 2

2 3

A B C

1 0 1

2 3 4

2 5 2

3 1 1

R S
A B C D

2 3 4 2

2 3 4 3

2 5 2 2

2 5 2 3

3 1 1 7

𝐑 ⋈ 𝑺 SELECT R.A,B,C,D
FROM R, S
WHERE R.A = S.A

Final	Review		>		Lectures	18-17

Join	Algorithms:	Overview

• NLJ:	An	example	of	a	non-IO	aware	join	algorithm

• BNLJ:	Big	gains	just	by	being	IO	aware	&	reading	in	
chunks	of	pages!

• SMJ:	Sort	R	and	S,	then	scan	over	to	join!

• HJ:	Partition	R	and	S	into	buckets	using	a	hash	
function,	then	join	the	(much	smaller)	matching	
buckets

Final	Review		>		Lectures	18-17

For	R ⋈ 𝑆	𝑜𝑛	𝐴

Quadratic in	P(R),	P(S)
I.e.	O(P(R)*P(S))

Given	sufficient	buffer	
space,	linear	in	P(R),	P(S)
I.e.	~O(P(R)+P(S))

By	only	supporting	equijoins	&	
taking	advantage	of	this	structure!

Nested	Loop	Join	(NLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for r in R:
for s in S:
if r[A] == s[A]:
yield (r,s)

P(R)	+	T(R)*P(S)	+	OUT

1. Loop	over	the	tuples	in	R

2. For	every	tuple	in	R,	loop	over	all	
the	tuples	in	S

3. Check	against	join	conditions

4. Write	out	(to	page,	then	when	
page	full,	to	disk)

Cost:

Note	that	IO	cost	based	on	number	of	
pages loaded,	not	number	of	tuples!

Have	to	read	all	of	S	from	disk	for	every	tuple	in	R!

Final	Review		>		Lectures	18-17

Block	Nested	Loop	Join	(BNLJ)

Compute R ⋈ 𝑆	𝑜𝑛	𝐴:
for each B-1 pages pr of R:

for page ps of S:
for each tuple r in pr:

for each tuple s in ps:
if r[A] == s[A]:

yield (r,s)

P 𝑅 +	_ `
IJK

𝑃(𝑆) +	OUT

Given	B+1	pages	of	memory

1. Load	in	B-1	pages	of	R	at	a	
time	(leaving	1	page	each	
free	for	S	&	output)

2. For	each	(B-1)-page	segment	
of	R,	load	each	page	of	S

3. Check	against	the	join	
conditions

4. Write	out

Cost:

Again,	OUT could	be	bigger	than	
P(R)*P(S)…	but	usually	not	that	bad

Final	Review		>		Lectures	18-17

Sort	Merge	Join	(SMJ)

• Goal:	Execute	R	⋈ S	on	A

• Key	Idea:	We	can	sort	R	and	S,	then	
just	scan	over	them!

• IO	Cost:
• Sort	phase:	Sort(R)	+	Sort(S)
• Merge	/	join	phase:	~	P(R)	+	P(S)	+	OUT

• Can	be	worse	though- see	next	slide!

Final	Review		>		Lectures	18-17

SR

Unsorted	input	
relations

Split	&	sort

Merge

SRMerge

SMJ:	Backup

• Without	any	duplicates:
• We	just	scan	over	R	and	S	once	
each	à P(R)	+ P(S)

• However,	if	there	are	duplicates,	
we	may	have	to	back	up and	re-
read	parts	of	the	file

• In	worst	case	have	to	read	in	
P(R)*P(S)!

• In	worst	case,	output	is	T(R)*T(S)
• Usually	not	that	bad…

(1,b) (1,a) (5,c) (1,a) (1,d) (3,d)

Buffer

(1,b,a) (1,b,d) (1,a,a) (1,a,d)

Final	Review		>		Lectures	18-17

Merge	/	Join	Phase

Sort	Phase
(Ext.	Merge	Sort)

Simple	SMJ	Optimization

SR

Split	&	sortSplit	&	sort

MergeMerge

Given	B+1	buffer	pages

This	allows	us	to	“skip”	the	last	sort	&	save	2(P(R)	+	P(S))!

Unsorted	input	relations

<=	B	total	runs

B-Way	Merge	/	Join

Final	Review		>		Lectures	18-17

Hash	Join

SR

Unsorted	input	
relations

Final	Review		>		Lectures	18-17

Join	matching	
buckets

1 2 3 41 2 3 4

1 21 2

Partition

Partition

h h

h' h'

• Goal:	Execute	R	⋈ S	on	A

• Key	Idea:	We	can	partition	R	and	S	into	
buckets	by	hashing	the	join	attribute-
then	just	join	the	pairs	of	(small)	
matching	buckets!

• IO	Cost:
• Partition	phase:	2(P(R)	+	P(S))		each	pass
• Join	phase:	Depends	on	size	of	the	buckets…	
can	be	~	P(R)	+	P(S)	+	OUT	if	they	are	small	
enough!

• Can	be	worse	though- see	next	slide!

HJ:	Skew

• Ideally,	our	hash	functions	will	partition	the	
tuples	uniformly

• However,	hash	collisions	and	duplicate	join	
key	attributes can	cause	skew

• For	hash	collisions,	we	can	just	partition	again	
with	a	new	hash	function

• Duplicates	are	just	a	problem…	(Similar	to	in	
SMJ!)

Final	Review		>		Lectures	18-17

R

1

2

3

4

R

1

2

3

4

Overview:	SMJ	vs.	HJ

Final	Review		>		Lectures	18-17

SMJ HJ

• We	create	initial	sorted	
runs

• We	keep	merging	these	
runs	until	we	have	one	
sorted	merged	run	for	R,	S

• We	scan	over	R	and	S	to	
complete	the	join

• We	keep	partitioning R	
and	S	into	progressively	
smaller	buckets	using	
hash	functions	h,	h’,	h’’…

• We	joinmatching	pairs	
of	buckets	(using	BNLJ)

Note:
Ext.	
Merge	
Sort!

How	many	of	
these	passes	do	
we	need	to	do?

R	⋈ S	on	A

How	many	passes	do	we	need?

#	of
passes

Length	of	
runs

#	of runs

0 1 N

1 B+1 𝑁
𝐵 + 1

2 B(B+1) 1
𝐵

𝑁
	𝐵 + 1

… … …

k+1 Bk(B+1) 1
𝐵b

𝑁
	𝐵 + 1

#	of
passes

Avg. bucket	
size

#	of buckets

0 N 1

1
𝑁
𝐵

B

2
1
𝐵
𝑁
𝐵

B2

… … …

k+1
1
𝐵b

𝑁
𝐵

Bk+1

Final	Review		>		Lectures	18-17

SMJ HJ

Fewer,	longer	runs	by	a	factor	of	B More, smaller	buckets	by	a	factor	of	BEach	
pass,	
we	get:

R	⋈ S	on	A

Initial	
sorted	
runs

Each	pass	costs	2(𝑃 𝑅 + 𝑃 𝑆)

How	many	passes	do	we	need?

#	of
passes

Length	of	
runs

#	of runs

k+1 Bk(B+1)
1
𝐵b

𝑁
	(𝐵 + 1)

#	of
passes

Avg. bucket	
size

#	of buckets

k+1
1
𝐵b

𝑁
𝐵

Bk+1

Final	Review		>		Lectures	18-17

SMJ HJ

R	⋈ S	on	A

If	(#	of	runs	of	R)	+	(#	of	runs	of	S)	
≤ 𝐵,	then	we	are	ready	to	
complete	the	join	in	one	pass*:

B ≥
P R

Bk B + 1 +
P S

Bk B + 1

𝐵b1K(𝐵 + 1) ≥ P R + P(S)

*Using	the	‘optimization’	on	slide	25

If	one	of the	relations	has	bucket	
size	≤ 𝐵 − 1,	then	we	have	
partitioned	enough	to	complete	
the	join	with	single-pass	BNLJ:

B − 1 ≥
min{P R , 𝑃 𝑆 }

𝐵b1K

𝐵b1K(B − 1) ≥ min{P R , 𝑃 𝑆 }

How	many	buffer	pages	for	nice	behavior?

Final	Review		>		Lectures	18-17

𝐵(𝐵 + 1) ≥ P R + P(S)

If	we	use	repacking,	then	we	can	
satisfy	the	above	if	approximately:

𝐵2 ≥ max{P R , P S }

R	⋈ S	on	A

à Total	IO	Cost	=	3(P(R)	+	P(S))	+	OUT!

Let’s	consider	what	B	we’d	need	for	k+1	=	1	passes	(plus	the	final	join):

SMJ HJ

𝐵(𝐵 − 1) ≥ min{P R , P S }

So	approximately:

𝐵2 ≥ min{P R , P S }

Overview:	SMJ	vs.	HJ

• HJ:
• PROS:	Nice	linear	performance	is	dependent	on	the	smaller	relation
• CONS:	Skew!

• SMJ:
• PROS:	Great	if	relations	are	already	sorted;	output	is	sorted	either	way!
• CONS:

• Nice	linear	performance	is	dependent	on	the	larger	relation
• Backup!

Final	Review		>		Lectures	18-17

High-Level:	Lecture	18

• Overall	RDBMS	architecture

• The	Relational	Model

• Relational	Algebra

Final	Review		>		Lectures	18

Check	out	the	
Relational	Algebra	
practice	exercises	
notebook!!

RDBMS	Architecture

How	does	a	SQL	engine	work	?

SQL	
Query

Relational	
Algebra	(RA)	

Plan

Optimized
RA	Plan Execution

Declarative	
query	(from	
user)

Translate	to	
relational	algebra	
expression

Find	logically	
equivalent- but	
more	efficient- RA	
expression

Execute	each	
operator	of	the	
optimized	plan!

Final	Review		>		Lectures	18

46

The	Relational	Model:	Data

sid name gpa

001 Bob 3.2

002 Joe 2.8

003 Mary 3.8

004 Alice 3.5

Student
An	attribute (or	
column)	is	a	typed	
data	entry	present	
in	each	tuple	in	
the	relation

The	number	of	
attributes	is	the	
arity of	the	
relation

A	tuple or	row (or	
record)	is	a	single	entry	
in	the	table	having	the	
attributes	specified	by	
the	schema

The	number	of	
tuples	is	the	
cardinality of	
the	relation

A	relational	instance is	a	set of	tuples	
all	conforming	to	the	same	schema

Final	Review		>		Lectures	18

• Five	basic	operators:
1. Selection: s
2. Projection:	P
3. Cartesian	Product:	´
4. Union:	È
5. Difference:	-

• Derived	or	auxiliary	operators:
• Intersection,	complement
• Joins	(natural,equi-join,	theta	join,	semi-join)
• Renaming: r
• Division

Relational	Algebra	(RA)

Final	Review		>		Lectures	18

• Returns	all	tuples	which	satisfy	a	
condition

• Notation:	 sc(R)
• The	condition	c	can	be	=,	<,	>, <>

1.	Selection	(𝜎)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:
𝜎nop	qr.s(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

Final	Review		>		Lectures	18

• Eliminates	columns,	then	removes	
duplicates

• Notation:			P A1,…,An (R)

2.	Projection	(Π)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:
Πvwpxy,nop(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

Final	Review		>		Lectures	18

• Each	tuple	in	R1	with	each	tuple	in	
R2

• Notation:	R1	´ R2
• Rare	in	practice;	mainly	used	to	
express	joins

3.	Cross-Product	(×)

SELECT *
FROM Students, People;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	×	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Final	Review		>		Lectures	18

• Changes	the	schema,	not	the	instance
• A	‘special’	operator- neither	basic	nor	
derived

• Notation:	r B1,…,Bn (R)

• Note:	this	is	shorthand	for	the	proper	
form	(since	names,	not	order	
matters!):

• r A1àB1,…,AnàBn (R)

Renaming	(𝜌)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
𝜌v}~���,wpxy,n�p�y_}��n(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We	care	about	this	operator	because we	
are	working	in	a	named	perspective

Final	Review		>		Lectures	18

• Notation:	R1⋈	R2

• Joins	R1 and	R2 on	equality	of	all	shared	attributes
• If	R1 has	attribute	set	A,	and	R2 has	attribute	set	B,	and	they	share	attributes	A⋂B	=	C,	can	also	be	
written:	R1⋈ 𝐶	R2

• Our	first	example	of	a	derived	RA operator:
• Meaning:		R1⋈ R2 =	PA	U	B(sC=D(𝜌�→�(R1)	´ R2))
• Where:

• The	rename	𝜌�→� renames	the	shared	attributes	in	
one	of	the	relations

• The	selection	sC=D	checks	equality	of	the	shared	attributes
• The	projection	PA	U	B	eliminates	the	duplicate	

common	attributes

Natural	Join	(⋈)

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠	 ⋈ 	𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

Final	Review		>		Lectures	18

Converting	SFW	Query	->	RA
SELECT DISTINCT A1,…,An
FROM R1,…,Rm
WHERE c1 AND … AND ck;

Π�K,…,�w(𝜎�K …𝜎�b(𝑅1 ⋈ ⋯ ⋈ 𝑅𝑚))

Final	Review		>		Lectures	18

Why	must	the	selections	“happen	
before”	the	projections?

High-Level:	Lecture	19

• Logical	optimization

• Physical	optimization

• Index	selections

• IO	cost	estimation

Final	Review		>		Lecture	19

Logical	vs.	Physical	Optimization

• Logical	optimization:
• Find	equivalent	plans	that	are	more	efficient
• Intuition:	Minimize	#	of	tuples	at	each	step	by	changing	
the	order	of	RA	operators

• Physical	optimization:
• Find	algorithm	with	lowest	IO	cost	to	execute	
our	plan

• Intuition:	Calculate	based	on	physical	parameters	
(buffer	size,	etc.)	and	estimates	of	data	size	(histograms)

Execution

SQL	Query

Relational	
Algebra	(RA)	Plan

Optimized
RA	Plan

Final	Review		>		Lecture	19

Logical	Optimization:	“Pushing	down”	
projection

ΠI

R(A,B) S(B,C)

ΠI

R(A,B) S(B,C)

ΠI

Why	might	we	prefer	this	plan?

Final	Review		>		Lecture	19

Logical	Optimization:	“Pushing	down”	
selection

𝜎I��

R(A,B) S(B,C)

𝜎I��

R(A,B) S(B,C)

𝜎I��

Why	might	we	prefer	this	plan?

Final	Review		>		Lecture	19

RA	commutators

• The	basic	commutators:
• Push	projection through	(1)	selection,	(2)	join
• Push	selection	through	(3)	selection,	(4)	projection,	(5)	join
• Also:	Joins	can	be	re-ordered!

• Note	that	this	is	not	an	exhaustive	set	of	operations
• This	covers	local	re-writes;	global	re-writes	possible	but	much	harder

This	simple	set	of	tools	allows	us	to	greatly	improve	the	
execution	time	of	queries	by	optimizing	RA	plans!

Final	Review		>		Lecture	19

Index	Selection
Input:

• Schema	of	the	database
• Workload	description: set	of	(query	template,	frequency)	pairs

Goal:	Select	a	set	of	indexes	that	minimize	execution	time	of	the	
workload.

• Cost	/	benefit	balance:	Each	additional	index	may	help	with	some	
queries,	but	requires	updating

This	is	an	optimization	problem!

Final	Review		>		Lecture	19

IO	Cost	Estimation	via	Histograms

• For	index	selection:
• What	is	the	cost	of	an	index	lookup?

• Also	for	deciding	which	algorithm	to	use:
• Ex:	To	execute	R ⋈ 𝑆,	which	join	algorithm	should	DBMS	use?

• What	if	we	want	to	compute	𝝈𝑨q𝟏𝟎(𝐑) ⋈ 𝝈𝑩*𝟏(𝑺)?

• In	general,	we	will	need	some	way	to	estimate intermediate	result	set	sizes

Histograms	provide	a	way	to	efficiently	
store	estimates	of	these	quantities

Final	Review		>		Lecture	19

Histogram	types

All	buckets	roughly	the	same	width

All	buckets	contain	roughly	the	same	
number	of	items	(total	frequency)

Equi-depth

Equi-width

Final	Review		>		Lecture	19

High-Level:	Lecture	20

• Our	model	of	the	computer:	Disk	vs.	RAM,	local	vs.	global

• Transactions	(TXNs)

• ACID

• Logging	for	Atomicity	&	Durability
• Write-ahead	logging	(WAL)

Final	Review		>		Lecture	20

Our	model:	Three	Types	of	Regions	of	
Memory

1. Local:	 In	our	model	each	process	in	a	DBMS	has	its	
own	local	memory,	where	it	stores	values	that	only	
it	“sees”

2. Global:		Each	process	can	read	from	/	write	to	
shared	data	in	main	memory

3. Disk:		Global	memory	can	read	from	/	flush	to	disk

4. Log:	Assume	on	stable	disk	storage- spans	both	
main	memory	and	disk…

Local Global
Main

Memory	
(RAM)

Disk

“Flushing to	disk”	=	
writing	to	disk	+	erasing	
(“evicting”)	from	main	
memory

1 2

3

Log	is	a	sequence from	
main	memory	->	disk

4

Final	Review		>		Lecture	20

Transactions:	Basic	Definition

A	transaction	(“TXN”)	is	a	sequence	
of	one	or	more	operations (reads	or	
writes)	which	reflects	a	single	real-
world	transition.

START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

Final	Review		>		Lecture	20

65

Transaction	Properties:	ACID

• Atomic
• State	shows	either	all	the	effects	of	txn,	or	none	of	them

• Consistent
• Txn moves	from	a	state	where	integrity	holds,	to	another	where	integrity	
holds

• Isolated
• Effect	of	txns is	the	same	as	txns running	one	after	another	(ie looks	like	batch	
mode)

• Durable
• Once	a	txn has	committed,	its	effects	remain	in	the	database

ACID	is/was	source	of	great	debate!	

Final	Review		>		Lecture	20

Goal	of	LOGGING:	Ensuring	Atomicity	&	
Durability

• Atomicity:
• TXNs	should	either	happen	completely	or	
not	at	all

• If	abort	/	crash	during	TXN,	no effects	
should	be	seen

66

ACID

TXN	1

TXN	2

No changes	
persisted

All changes	
persisted

Crash	/	abort

• Durability:
• If	DBMS	stops	running,	changes	due	to	
completed	TXNs	should	all	persist

• Just	store	on	stable	disk

Final	Review		>		Lecture	20

Basic	Idea:	(Physical)	Logging
• Record	UNDO	information	for	every	update!

• Sequential	writes	to	log
• Minimal	info	(diff)	written	to	log

• The	log consists	of	an	ordered	list	of	actions
• Log	record	contains:	

<XID,	location,	old	data,	new	data>	

This	is	sufficient	to	UNDO	any	transaction!

Final	Review		>		Lecture	20

Write-ahead	Logging	(WAL)	Commit	Protocol

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1
This	time,	let’s	try	
committing	after we’ve	
written	log	to	disk	but	
before we’ve	written	
data	to	disk…	this	is	WAL!

If	we	crash	now,	is	T	
durable?

OK,	Commit!

Final	Review		>		Lecture	20

Write-ahead	Logging	(WAL)	Commit	Protocol

Data	on	Disk

Main	Memory

Log	on	Disk

T	

A=0

T:	R(A),	W(A)	

A:	0à1

This	time,	let’s	try	
committing	after we’ve	
written	log	to	disk	but	
before we’ve	written	
data	to	disk…	this	is	WAL!

If	we	crash	now,	is	T	
durable?

OK,	Commit!

USE	THE	LOG!
A=1

Final	Review		>		Lecture	20

Write-Ahead	Logging	(WAL)

• DB	uses	Write-Ahead	Logging	(WAL) Protocol:

1. Must	force	log	record for	an	update	before the	
corresponding	data	page	goes	to	storage

2. Must	write	all	log	records	for	a	TX	before commit

Each	update	is	
logged!	Why	not	
reads?

à Atomicity

à Durability

Final	Review		>		Lecture	20

High-Level:	Lecture	21

• Motivation:	Concurrency	with	Isolation	&	consistency
• Using	TXNs…

• Scheduling

• Serializability

• Conflict	types	&	classic	anomalies

Final	Review		>		Lecture	21

Concurrency:	Isolation	&	Consistency

• The	DBMS	must	handle	concurrency	such	that…

1. Isolation is	maintained:	Users	must	be	able	to	execute	
each	TXN	as	if	they	were	the	only	user
• DBMS	handles	the	details	of	interleaving various	TXNs

2. Consistency is	maintained:	TXNs	must	leave	the	DB	in	
a	consistent	state
• DBMS	handles	the	details	of	enforcing	integrity	constraints

ACID

ACID

Final	Review		>		Lecture	21

Example- consider	two	TXNs:

What	goes	/	could	go	wrong	here??

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Time

The	DBMS	can	also	interleave the	TXNs

Final	Review		>		Lecture	21

Scheduling	examples

74

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

A B

$50 $200

A B

$159 $106

A B

$159 $112

Starting	
Balance

Different	
result	than	
serial	
T1àT2!

Serial	schedule	T1àT2:

Interleaved	schedule	B:

Final	Review		>		Lecture	21

Scheduling Definitions
• A	serial	schedule is	one	that	does	not	interleave	the	actions	of	
different	transactions

• A	and	B	are	equivalent	schedules if, for	any	database	state,	the	
effect	on	DB	of	executing	A	is	identical	to	the	effect	of	executing	B

• A	serializable	schedule is	a schedule	that	is	equivalent	to	some serial	
execution	of	the	transactions.

The	word	“some”	makes	this	
def powerful	and	tricky!

Final	Review		>		Lecture	21

Serializable?

76

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Same	as	a	serial	schedule	
for	all	possible	values	of	
A,	B	=	serializable

Serial	schedules:

A B
T1àT2 1.06*(A+100) 1.06*(B-100)

T2àT1 1.06*A	+	100 1.06*B	- 100

A B
1.06*(A+100) 1.06*(B-100)

Final	Review		>		Lecture	21

The	DBMS’s	view	of	the	schedule

77

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

T1

T2

R(A)

R(A)

W(A)

W(A) R(B) W(B)

R(B) W(B)

Each	action	in	the	TXNs	
reads	a	value	from	global	
memory and	then	writes	
one	back	to	it

Scheduling	order	matters!

Final	Review		>		Lecture	21

Conflict	Types

• Thus,	there	are	three	types	of	conflicts:
• Read-Write	conflicts	(RW)
• Write-Read	conflicts	(WR)	
• Write-Write	conflicts	(WW)

Why	no	“RR	Conflict”?

Two	actions	conflict if	they	are	part	of	different	TXNs,	involve	the	same	
variable,	and	at	least	one	of	them	is	a	write

Interleaving	anomalies	occur	with	/	because	of	these	conflicts	between	
TXNs (but	these	conflicts	can	occur	without	causing	anomalies!)

Final	Review		>		Lecture	21

Classic	Anomalies	with	Interleaved	Execution

“Unrepeatable	read”: T1
T2

R(A) R(A)

R(A) W(A) C

“Dirty	read”	/	Reading	
uncommitted	data:

T1

T2

W(A) A

R(A) W(A) C

“Inconsistent	read”	/	Reading	
partial	commits:

T1

T2

W(A) W(B) C

R(A) CR(B) W(D)

Partially-lost	update: T1

T2

W(A) W(B) C

W(A) CW(B)

Final	Review		>		Lecture	21

